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Abstract—Today’s computational science applications are
increasingly dependent on many complex, data-intensive
operations on distributed datasets that originate from a variety
of scientific instruments and repositories. To manage this
complexity, science workflows are created to automate the
execution of these computational and data transfer tasks, which
significantly improves scientific productivity. As the scale of
workflows rapidly increases, detecting anomalous behaviors in
workflow executions has become critical to ensure timely and
accurate science products. In this paper, we present a set of
lightweight machine learning-based techniques, including both
supervised and unsupervised algorithms, to identify anomalous
workflow behaviors. We perform anomaly analysis on both
workflow-level and task-level datasets collected from real
workflow executions on a distributed cloud testbed. Results
show that the workflow-level analysis employing k-means
clustering can accurately cluster anomalous, i.e. failure-prone
and poorly performing workflows into statistically similar
classes with a reasonable quality of clustering, achieving over
0.7 for Normalized Mutual Information and Completeness
scores. These results affirm the selection of the workflow-level
features for workflow anomaly analysis. For task-level analysis,
the Decision Tree classifier achieves >80% accuracy, while other
tested classifiers can achieve >50% accuracy in most cases. We
believe that these promising results can be a foundation for
future research on anomaly detection and failure prediction for
scientific workflows running in production environments.

I. INTRODUCTION

Today’s computational science applications are increasingly
dependent on many complex, data-intensive operations on dis-
tributed datasets that originate from a variety of scientific in-
struments and repositories. To manage this complexity, sci-
ence workflows are created to automate the execution of these
computation and data transfer tasks, which significantly im-
proves the productivity of large scale computational sciences.
Scientific workflow management systems, such as the Pega-
sus Workflow Management System (WMS) [8], are critical au-
tomation components that enable efficient workflow execution
across heterogeneous HPC infrastructures. Although such sys-
tems provide some mechanisms to move past errors when pos-
sible (e.g. retries), it remains challenging to perform a thor-
ough analysis of performance anomalies and detection and di-
agnosis of errors in workflow executions. The problem of un-
expected or anomalous behavior during workflow execution
is exacerbated by the use of complex distributed cyberinfras-
tructure that often encounters both performance problems and

faults/errors that potentially span all levels of the system—
applications, middleware, and the underlying execution plat-
form. As the scale of science workflows rapidly grows, it be-
comes urgent to find appropriate mechanisms to detect and
pinpoint the source of bottlenecks that impair normal work-
flow executions [7].

The performance and reliability of complex science
workflows can be affected by many factors, which may lead
workflows to fail. Workflow configuration errors, network
congestion and packet loss, compute node I/O, disk and
RAM slow down, all negatively impact the performance of
a workflow run. While end-to-end monitoring of workflow
applications and systems is an essential building block
to detect such problems, current techniques for anomaly
detection are often based on thresholds, moving averages,
or univariate statistical analysis [13], [9] that can’t capture
interactions between performance features, or using rule-
based classification methods, e.g., identify workflow failures
using execution time, file transfer throughput, etc [20]. With
ever-increasing complexity, today’s large scale workflows
have brought significant challenges to such traditional failure
detection mechanisms that are univariate or are based on
simple rules. Hence, multivariate techniques, in particular
machine learning (ML) algorithms, are needed for building
failure models and for detecting and diagnosing failures in
large-scale workflow executions on complex systems.

In this paper, we seek to characterize the performance
of science workflows, and to explore ML methods to find
early signs of anomalous behaviors that may cause the
workflows to fail. Our work looks into workflow anomaly
detection using a multi-level approach: overall workflow level
and sub-workflow (task) level analysis. The workflow-level
performance analysis uses high-level, aggregate workflow
performance metrics, such as the proportion of failed tasks
in the workflow, to predict the overall behavior of a running
workflow by clustering statistically similar workflows into
classes. The task-level analysis detects faults and bottlenecks
using classification approaches that leverage detailed task-
level metrics such as resource usages and data sizes, to
predict task execution failures.

Specifically, in this paper, we make following contributions:

o We characterize the performance features of scientific

workflow execution aided by an end-to-end, streamlined
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Fig. 1: The Panorama 360 workflow analysis framework.

data collection infrastructure [3] integrated with Pegasus;
it provides the dataset for multi-level analysis.

e We develop and test multiple machine learning-based
methods, including K-Means, Naive Bayes, Decision
Tree, and Isolation Forest, to study workflow-level and
task-level characteristics and anomalous behaviors.

+« We make innovative use of an experimental testbed to
train and develop our machine learning methods through
systematic injection of faults and performance anomalies.

o We test anomaly detection methods using data collected
from a real science workflow — the 1000 Genome work-
flow, which produces a reference for human gene varia-
tion, having reconstructed the genomes of 2,504 individ-
uals across 26 different populations [4].

o We perform an in-depth analysis of findings and issues
from the machine learning algorithms, laying the founda-
tion for further research on anomaly detection and failure
prediction for scientific workflows.

II. METHODOLOGIES

Our goal in this work is to capture anomalous workflow be-
havior in existing workflow runs and use such data as training
data for future anomaly detection and failure prediction. This
section describes the methodologies for collecting the sam-
ple data, as well as machine learning methods for extracting
underlying features.

A. The Panorama 360 workflow analysis framework

We use the Panorama 360 workflow performance analysis
framework [3] for collecting the workflow execution data.
Figure 1 depicts the general data collection architecture.
The Panorama 360 framework uses Pegasus to automate the
workflow execution on both production HPC environments
(such as Summit [17]), as well as on testbed environments
(such as ExoGENI testbed [6]). The workflow performance
data is collected by Pegasus online monitoring services and
stored in an internal database. At 30-second intervals, an

[ Metric | Description |
J_s jobs_succeeded/jobs_completed
J_f jobs_failed/jobs_completed
ts Sum(duration(jobs_succeeded))/jobs_succeeded
tf Sum(duration(jobs_failed))/jobs_failed
0_j_s jobs_succeeded/total_workflow_jobs

TABLE I: Workflow level metrics and descriptions.

[ Metric [ Description |
Utime User level CPU usage
Bwrite & Bread | Bytes written to/read from disk

IOwait CPU idle time waiting for I/O
Wchar & Rchar Characters read/write

TABLE II: Task level metrics and descriptions.

online module collects data using the Pegasus REST API
and stores the required features for the machine learning
analysis. Finally, we perform clustering and classification
on the captured performance data for multi-level workflow
performance analysis.

B. Workflow performance analysis

Figure 2 summarizes the overall architecture of our machine
learning analysis, which contains two aspects: 1) workflow-
level analysis that predicts overall behavior of running
workflow by clustering statistically similar workflows, and 2)
task-level analysis for detecting faults and bottlenecks using
task-level metrics to predict task-level execution failures.
Both analysis methods use the monitoring data collected
by Pegasus, to be used in the respective machine learning
models.

1) Workflow-level analysis: Table I summarizes the overall
workflow execution statistics, i.e. the relevant features used
for workflow-level ML analysis, which are similar to the ones
used in [20]. These features are calculated from different val-
ues stored in the internal Stampede database and are indica-
tive of the overall progress of the workflow toward a failed
or successful state. For example, the J_s and J_f features are
measures of the current proportions of workflow jobs that have
succeeded or failed. The ¢_s and ¢_f features are measures of
average duration of successful and failed jobs. We hypothesize
that using these features will help uncover patterns in success-
ful vs. failure-prone workflows, and part of this work is to
verify this hypothesis and to understand whether these features
should indeed be selected for workflow failure prediction.

Clustering analysis. In the workflow-level analysis, we
make use of the workflow-level features to predict the overall
behavior of running workflow by clustering the statistically
similar workflows. We use the K-means [23] clustering
algorithm, which is a commonly used unsupervised clustering
algorithm, a fast iterative algorithm for partitioning the input
feature vectors into k clusters. The K-means algorithm clusters
data by trying to separate samples in groups, such that the
group members are close to each other for the nearest mean
that minimizes within-cluster variances (squared Euclidean
distances). K-means requires proper parameter selection in
regards to the number of clusters to be partitioned. It also
has good performance when processing a large number of
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Fig. 2: Workflow- and task-level anomaly detection.

samples, which makes it useful for a variety of applications
in many different fields.

In our case, the input to the clustering algorithm was a
set of feature vectors of the form: {J_s, J_f, t_s, t f, o_j_s}.
Each feature vector corresponds to one execution of a given
workflow, thereby characterizing the overall performance of
that workflow at a very coarse level of granularity. The output
of the clustering algorithm partitions the set of these feature
vectors into multiple clusters with statistically similar feature
vectors belonging to the same cluster.

2) Task-level performance analysis: The task-level analysis
uses real-time performance data to characterize the perfor-
mance of individual workflow tasks, which is in contrast to the
coarse performance characterization of the entire workflow as
described in the last section. The task-level analysis captures
early signs of anomalous behavior and ultimately predicts
workflow failures. We make use of three machine learning
classifiers for the failure prediction: Naive-Bayes, Decision
Tree, and Isolation Forest. The input to the classifiers was a
set of feature vectors, summarized in Table II: {Urime, Bwrite,
Bread, I0wait, Wchar, Rchar}. These features were collected
from low-level Linux statistics and processed through the
above Pegasus data collection framework.

Naive Bayes. Naive Bayes classifiers [21] are a family of
supervised, probabilistic classifiers, for predicting the likeli-
hood of failures. This classifier uses Bayes’s theorem and as-
sumes that all variables are independent considering the value
of the class variable. This algorithm can efficiently learn a va-
riety of controlled classification problems with high accuracy.

Decision Tree. Decision Tree [19] is a supervised learning
classification algorithm that recursively partitions the data sets
into a rule space, and makes decisions based on rules learned
from the labeled training dataset. The objective is to partition
the samples based on the data into the purest samples possible.
This measurement of purity is determined by the Gini index
or entropy function.

Isolation Forest. Isolation Forest [14] is an unsupervised
classification algorithm that is commonly used for outlier
detection in high-dimensional data sets. Isolation Forest is
based on the fact that anomalies are data points that are
usually fewer in number and have different distribution
patterns from the normal data. Usually, random partitioning
produces shorter paths for anomalies. Hence, when a forest
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Fig. 3: Experimental setup on the ExoGENI testbed.

of random trees collectively produces shorter path lengths for
particular samples, they are highly likely to be anomalies.

III. EXPERIMENT SETUP

Testbed infrastructure. We deployed the workflows on the
ExoGENI testbed [6], a cloud testbed with sites located across
the US and connected via research networks such as Inter-
net2 [2] and ESNet [1], through their programmable exchange
points. By using an isolated, controlled testbed environment,
we ensure minimal system interference and generate synthetic
anomalies for evaluation purposes.

Figure 3 shows the experiment set up. Our setup consists of
one data node, one master node, and four compute (worker)
nodes. Each node has four 2.2 GHz vCPUs and 10 GB RAM.
A shared file system (NFS) is hosted on the master node, to
speed up the data sharing among the master node and the
compute nodes.

Science workflow. We use the 1000 Genome workflow for
performance evaluations. The 1000 Genomes project provides
a reference for human variation, having reconstructed genomes
of 2,504 individuals across 26 different populations [4]. The
1000 Genome workflow used in this paper is composed of 52
tasks, identifying mutational overlaps in data from the 1000
genomes project, for statistical evaluation of potential disease-
related mutations.

Dataset. We perform clean runs to mimic normal workflow
executions, and use synthetically injected anomalies to mimic
real workflow failures and performance degradation. The
synthetic anomalies are generated by (1) randomly terminating
some of the tasks to mimic workflow failures caused by
improper configurations or other factors, and (2) using Linux



[ Experiment [ Total Samples |

Clean 30

Failure injection (level high) 50

Failure injection (level low) 50
Stress on CPU, RAM, HDD 10 each

High stress (with CPU, RAM and HDD) 10

TABLE III: Workflow-level Samples Collected.

[ Experiment [ Total Samples |
Clean 1352
Stress on CPU (on 1, 2, 3 workers) 2496
Stress on I/0 (on 1, 2, 3 workers) 2496
Stress on HDD (on 1, 2, 3 workers) 2496

TABLE IV: Task-level Samples Collected.

stress [25] tool to slow down the workflow execution and
therefore cause timeout failures. Stressing includes CPU, 1/O,
disk, and memory to mimic interference in real workflow
execution in shared infrastructure.

We conducted 170 workflow runs for each of the workflow-
level and task-level analysis. For workflow-level analysis, we
collect data, summarized in Table III, from 30 clean runs, 100
runs with synthetic task failures at two failure levels (low and
high, 50 runs each), and 40 runs with stress at two levels (10
runs of high stress and 30 runs of low stress of CPU, memory
and disk with 10 runs for each resource type).

Since synthetically terminated tasks pose little logical rela-
tionship with the actual task failure, for task-level failure pre-
diction, we introduce anomalies by stressing the systems. In
this case, we collected data, summarized in Table IV, from 26
clean runs, and 144 runs with stress under 9 different anomaly
scenarios, where each workflow contains 52 tasks. In total,
the task level analysis dataset captured 8840 tasks. For task-
level classifiers, we use the clean run data as the training data,
and the workflow runs with stress anomalies as testing data
for performance evaluations. The model is trained individually
for each type of anomalies. In this case, training data contains
1352 samples, each type of anomaly (testing case) contains
832 samples.

IV. RESULTS AND ANALYSIS

This section presents detailed evaluation of the workflow-
and task-level anomaly and failure identification. We herein
present the results and analysis of the experiments using the
setup described in the previous section.

A. Workflow-level analysis

Workflows with failure injection. For workflow-level per-
formance analysis, we use k-means clustering, aiming to find
common features by clustering statistically similar workflows.
The input was the set of feature vectors corresponding to clean
runs and runs with synthetically injected failures. We selected
J_s, t_s and ¢_f as the features used for this clustering analy-
sis. For k-means, the parameter k is known to be challenging
to choose when not given by external constraints. Therefore,
our first step was to find the optimal number of clusters. Fig-
ure 4a shows the optimal number of clusters for this set of
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Fig. 4: Clustering for workflows with failure injection.

feature vectors by comparing the sum of squared errors (SSE)
among the different numbers of clusters, i.e., k. We look for
the elbow where we get diminishing returns by increasing k.
We can observe that the sum of squared errors decreases sig-
nificantly until near-optimal in the case with 3 clusters. Fig-
ure 4b shows the actual k-means clustering with 3 clusters.
The X, y, and z axes represent value ranges for scaled features
selected in this analysis. The green dots represent the clean
workflow runs. The red and blue dots represent the workflow
runs with failure injection, corresponding to low and high fail-
ures. Figure 4b shows that all clean workflow runs can be eas-
ily distinguished from workflows with synthetic injected fail-
ures, justifying the k value selection from Figure 4a.

We evaluated the classifier performance by comparing it
with information from domain knowledge. In this case, since
we injected synthetic failures, we knew which feature vectors
corresponded to clean runs and which ones corresponded
to the two levels of failure. Mapping the feature vectors
to clusters, we calculated three metrics to measure the
quality of clustering algorithms, namely Normalized Mutual
Information (NMI) score [15], Completeness score [16],
and Calinski Harabaz (CH) score. For all three scores, a
higher value represents better clustering performance. The
first two scores have values between O and 1. An NMI or
Completeness score of 1 indicates that the clustering of
the feature vectors as obtained by the clustering algorithm
completely matches the manual mapping. The first column
in Table V shows our scores for workflows with injected



clustering with
failure injection

clustering

Metri .
¢ with stress

Normalized mutual

R 0.727 0.697
info score [0, 1]
Completeness score [0, 1] 0.739 0.714
Calinski Harabaz score 951.57 1513.60

TABLE V: Workflow-level clustering performance summary.

failures. An NMI/Completeness score of 0.73 indicates that
most of the workflows were clustered into the “right” cluster.

From these results, we can infer that the workflow-level
features chosen for the clustering analysis were appropriate to
differentiate failure-prone workflows from clean workflows,
and could reasonably differentiate high failure ones from
low failure ones. Hence, these features should be extracted
for failure detection for workflows using other machine
learning-based methods.
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Fig. 5: K-means clustering for workflows with stress.

Workflows with stress. Similar observations hold for
workflow runs with stress, where we introduce synthetic loads
for CPU, disk, and memory to emulate the interference in real
shared infrastructures. The input was a set of feature vectors
corresponding to clean runs and runs with synthetically
injected stress functions. Figure 5a shows that the elbow k
happens when k = 3, which produces near-optimal SSE.
Figure 5b shows the clustering results, where green dots
represent a cluster of clean runs, and the rest represents runs
with different levels of stress. As in the previous analysis, the
various scores of the accuracy of the clustering algorithms are
shown in the second column of Table V. In this case, with
an NMI/Completeness score of 0.7, we observe that most
of the feature vectors were mapped to the “right” cluster.

The reason that the score was not 1 was that the clustering
algorithm mapped one set of feature vectors corresponding
to low-stress levels into the normal cluster. These results
also reaffirm our choice of the workflow-level features to
distinguish anomalous workflows from normal ones and that
they should be used for anomaly detection algorithms.

B. Task-level analysis

For the task-level analysis, we compare the performance be-
tween Naive Bayes, Decision Tree and Isolation Forest, where
the first two are supervised learning, and Isolation Forest is an
unsupervised learning algorithm. We introduce various CPU,
I/0 and hard-disk anomalies on 1, 2, and 3 worker nodes, re-
spectively, aiming to introduce synthetic task failures due to
extended run time errors.

Figure 6 summarizes the overall task execution status,
where x-axis shows different stressing scenarios and y-axis
shows the percentage of failed, succeeded, and unsubmitted
tasks. We disabled the auto-retry feature from the workflow,
for evaluation purposes. Therefore, the remaining tasks will
not be submitted for execution if their dependency tasks have
failed. Stressing on CPU produces a similar number of task
failures, with stress on different workers. The success rate of
I/O stress decreases when more workers are being stressed.
Finally, stressing on hard-disk produces the most number of
failures, especially for the case with stress on 3 workers. This
is because 1000Genome is a data-intensive workflow; slow
hard-disk significantly affects workflow performance.

We evaluate the performance of classifiers using two
commonly used metrics: precision and balanced accuracy.
The precision (PPV) is evaluated by:

TruePositive
PPV = . 1
TruePositive + FalsePositive M

The balanced accuracy (BACC) is evaluated by:

TruePositive  TrueNegative

BACC =

)

Positive Negative

Figure 7 shows the performance of the three classifiers,
Naive Bayes (NB), Decision Tree (DT), and Isolation Forest
(IF), across different anomaly scenarios. The Decision Tree
classifier has the best precision, over 90%, in most of the
cases. The Naive Bayes classifier also performs well, with
over 70%, for scenarios with CPU and I/O anomalies.
However, NB cannot produce correct prediction when hard-
disk anomalies were introduced. Isolation Forest provided
moderate precision (>50%) for all the cases.

Similarly, we observe that, for balanced accuracy evaluation
shown in Figure 8, the Decision Tree performs best compared
to others. Naive Bayes performs better in the cases with hard-
disk anomalies, compared to precision evaluation. This is be-
cause Naive Bayes predicts more True Negatives, which is in-
cluded in this metric. We also observe that Isolation Forest has
decreased balanced accuracy when anomalies were introduced
on more worker nodes.

In summary, for task-level analysis, we see a better overall
performance from Decision Tree and moderate performance
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from Isolation Forest. Note that Isolation Forest is the only
unsupervised classifier we evaluated in this paper, and unsu-
pervised algorithms can be especially useful in real studies
when we lack the ground truth labels in the training data.

V. RELATED WORK

Science workflows often leverage a collection of many
elements including compute, storage and networks. It has
been brought to increasing attention to use machine learning
to characterize the workflow behavior, in many aspects,
such as execution timeline, data transfer performance etc.
In a recent paper, Singh et al. [22] presented a machine
learning framework that predicts workflow performance
and forecasts workflow behavior. This work presented
results on the XSEDE SDSC Comet cluster, showing that
independent workflows still show the dependency of multiple
components which are beneficial for predicting overall
workflow performance. On the other hand, Herbst et al. [12],
[11] presented the acquisition of workflow models and their
adaptation to changing requirements. They proposed two

machine learning methods based on the induction of hidden
Markov models for workflow management systems.

Although there has been previous work on clustering work-
loads and workflows to identify failure patterns [5], [10], [20],
[24], our work makes innovative use of testbed infrastructure
for fault and stress injections to enable deterministic attribu-
tion of domain mapping and hence a more thorough cluster-
ing evaluation with realistic workflow use case. Gaikwad et
al. [9] presented an anomaly detection method based on auto-
regression and time-series prediction to understand how work-
flow anomalies can be detected on cloud infrastructures.

Feature extraction can also be used to investigate user
behavior with traffic models [18]. Zhang et al. [26] described
anomaly detection as a significant step for network intrusion
detection systems to work, but highlighted that these systems
are based on known or supervised data sets. The authors
recognize that a more robust unsupervised feature extraction
method is needed, with features learned from real network
data sets, to make the systems more reliable.

In this paper, we focus on using both supervised and
unsupervised machine learning methods, based on domain
knowledge, to extract certain characteristics from known
workflow-level and task-level datasets. The collected feature
filters can be leveraged for any future machine learning
methods. With the goal of understanding data intensive
workflow performance, our results show positive results with
the selected feature extraction methods.

VI. CONCLUSIONS

Machine learning is a powerful technique to identify be-
havioral characteristics of scientific workflows on distributed
infrastructures.In this paper, we presented a set of lightweight
machine learning techniques, including both supervised and
unsupervised algorithms, to identify anomalous workflow
executions. We performed anomaly detection analysis on both
workflow-level, using k-means clustering, and sub-workflow
(task) level, using Naive Bayes, Decision Tree, and Isolation
Forest. We evaluated the proposed techniques on datasets
that are collected from real science workflow executions on a
testbed environment.

Results show that the workflow-level analysis employing k-
means clustering can accurately cluster anomalous workflows
into statistically similar classes with a reasonable quality of
clustering, achieving over 0.7 for NMI and Completeness
scores, affirming our workflow-level feature selection. For
task-level analysis, in most of the cases, the tested classifiers
can achieve >50% accuracy, especially Decision Tree
classifier can achieve >80% accuracy. We believe that the
promising results can be a foundation for future research on
science workflow anomaly detection and failure prediction
for workflows running in production environments.

For future work, we will extend the classifiers to explore
more hyperparameter tuning and deep learning neural
networks to help identify feature relationships in scientific
workflow executions. We also plan to apply the proposed
classifiers to the workflow runs on real infrastructures.
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