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Abstract—Science reproducibility is a cornerstone feature in
scientific workflows. In most cases, this has been implemented
as a way to exactly reproduce the computational steps taken to
reach the final results. While these steps are often completely de-
scribed, including the input parameters, datasets, and codes, the
environment in which these steps are executed is only described
at a higher level with endpoints and operating system name and
versions. Though this may be sufficient for reproducibility in the
short term, systems evolve and are replaced over time, breaking
the underlying workflow reproducibility. A natural solution to
this problem is containers, as they are well defined, have a lifetime
independent of the underlying system, and can be user-controlled
so that they can provide custom environments if needed. This
paper highlights some unique challenges that may arise when
using containers in distributed scientific workflows. Further, this
paper explores how the Pegasus Workflow Management System
implements container support to address such challenges.

I. INTRODUCTION AND MOTIVATION

Container technologies have become ubiquitous in all areas
of scientific computing [1], [2]. While Docker [3] has been
a leader in areas such as microservices, containers did not
become common in high throughput computing (HTC) or in
high performance computing (HPC) environments until Singu-
larity [4] was introduced. Scientific computing specialists now
have a range of container tools available to them, in addition to
Docker and Singularity. There are also HPC-specific solutions
like Shifter [5], open frameworks such as Podman [6] (which
can be used to develop, manage, and run application contain-
ers), and orchestration tools like Kubernetes [7] (which can be
used for automated deployment, scaling, and management of
containerized applications).

In the context of scientific workflows, container technolo-
gies are especially interesting for two reasons: (1) they supply
a way to foster reproducibility by providing a fully defined and
reproducible environment; and (2) they are able to provide a
flexible, custom, user-controlled environment in a manner that
the underlying centrally managed compute cluster cannot (due
to the fact that administrators have as main goal of provid-
ing a stable, slow-moving, multi-user environment). Science
reproducibility in scientific workflows is often implemented
as a way to reproduce the exact computational steps taken
to reach the final results. While these steps are completely

described, including the input parameters, datasets, and codes,
the environment in which these steps are executed is only
described at a higher level with endpoints and operating system
name and versions. While this is enough to attain reproducibil-
ity in the short term, systems evolve and are replaced over
time, breaking the workflow reproducibility. Containers are
well defined and have whatever lifetime the owner desires,
meaning that containers outlast whatever compute environment
the workflow was first executed in. Similarly, containers also
enable the workflow to be seamlessly transferred to completely
different compute environments.

Applications are increasingly relying on a diverse set of
underlying technologies and libraries to optimize the use
of evolving computing hardware. As a result, requests for
custom software environments are becoming more and more
common. Users’ software stack requirements may conflict
with a system-provided stack or even with other users. These
requirements are often impossible to satisfy for a stable,
multi-user compute cluster environment. A typical example
nowadays is TensorFlow [8], a popular machine learning
toolkit. TensorFlow is Python-based and requires a set of
very recent Python libraries. For example, this environment
is not impossible to satisfy under a RHEL 7 based compute
cluster. However, TensorFlow is a non-trivial stack to build
and provide support for. Many HPC centers now solve this
problem by providing Singularity images of such tools.

While containers increase reproducibility and enable cus-
tom environments, using containers in a distributed scientific
workflow introduces some unique challenges. Most notable is
the challenge of distributing the associated container images
and making them available to the compute jobs. Pegasus [9]
workflows regularly contain thousands or millions of jobs,
simultaneously running across a set of different compute
environments. To distribute the image at such a large scale and
make the image available on the node where a job executes,
special care has to be taken. Additionally, the container
technologies are fragmented, so a one-size-fits-all approach
may not be ideal while trying to support workflow execution
in varied execution environments.

With the above goals in mind we have added new ca-



pabilities to Pegasus WMS to support variety of Container
technologies in different execution environments.

This paper is organized as follows. We start by describing
the requirements and design considerations that we identified
in the process of supporting containers in Pegasus. Our ap-
proach on containers support is described in Section III. In
Section IV, we present results from our experiments on a real
world workflow and we quantify some of the overheads that
result from using containers in Pegasus workflows. Section V
describes two application workflows that are now using con-
tainers for their production runs. In Section V, we also report
our experiences with and lessons resulting from executing
these workflows with containers in a production environment.
SectionVI describes the related work and finally, Section VII
concludes with a brief summary of results and a discussion of
potential future research.

II. REQUIREMENTS AND DESIGN CONSIDERATIONS

Pegasus allows scientists to describe their computational
pipelines as a directed, acyclic graph of tasks. The Pegasus
input format (called the DAX) is a high-level, portable descrip-
tion that is agnostic of the underlying computing environment
and refers to data and user codes using logical identifiers.
Pegasus consumes this description and generates an executable
workflow that is tailored for users that target computing
environments such as local desktops, campus clusters, com-
putational grids, and cloud environments. During this process,
Pegasus automatically identifies the necessary input data and
adds data management tasks to the user workflow that are
responsible for fetching the data required for the workflow,
stages-out the generated outputs to a user specified location,
and optionally removes data products that are no longer needed
as the workflow executes. The separation between the high-
level user description of the pipeline in the DAX and the
actual executable workflow that is executed on the computing
resources has enabled our user community to keep abreast with
infrastructure improvements and migrate their pipelines from
original HPC focused environments (such as local campus
clusters) to more distributed computing environments (such
as Open Science Grid and clouds).

Running an application or service using containers is a well
known and straightforward process. However, incorporating
this process into scientific workflow systems, presents a unique
set of challenges. Thus, we identified some over-arching re-
quirements for architecting support for containers in Pegasus.
There requirements are listed below:

1) Support for different container technologies: Early on it
was clear to us that a one-size-fits-all approach would
not suffice when picking a container technology for
widespread use. For example, Docker, while popular
in traditional corporate computing environments and in
local captive computing resources, is not supported on
most shared computing infrastructures as the Docker
agents and jobs run as root. Singularity, however, is a
preferred container technology that allows containerized
jobs to run in user space in HPC environments. Some

HPC centers such as the National Energy Research
Scientific Computing Center (NERSC) have introduced
their own specific container technologies. Shifter, en-
ables users to securely run Docker images on NERSC’s
systems at scale. The goal of Pegasus is to allow
users to optimize computing resources at their disposal
and leverage technologies that are supported on those
resources.

2) Work in Distributed Environments: Irrespective of the
container technology supported, it was important to
ensure that Pegasus’ support enabled users to utilize
containerized jobs in distributed environments. In such
environments, users often don’t know a priori which
node or cluster their job might land on. The task of
fetching and deploying a container that a job requires
on a node and any associated setup required for the
container (such as loading an image in the local con-
tainer registry, etc.) should be handled by the workflow
management system and not in users’ scripts.

3) Easy Configuration and Representation: It should be
easy for users to configure which container and type
of container is required by their jobs, allowing different
jobs in the same workflow to use different containers and
technologies. The underlying representation to describe
containers used for a workflow should be compact and
prevent duplication.

4) Support for Public Registries: Today, a lot of popular
container images are available to users in public reg-
istries (such as Docker Hub and Singularity Hub). Our
solution should support retrieval of images from these
registries for use in a workflow and should also scale-
up for large workflows whereby the registries are not
accessed repeatedly for the same image. Private images
can be loaded directly from an image file.

III. APPROACH

We based our overall approach to incorporating support
for containers by making containers first class citizens in
our model and treating them as an input dependency for a
job. Keeping in mind that we wanted our solution to scale-
up for large workflows and access public registries without
overloading these registries during a workflow run, we decided
to represent the container dependency as a data dependency,
and leverage Pegasus data management capabilities to manage
distribution of containers required for a workflow. Support
for containers in Pegasus was first introduced in Pegasus
4.8.0, which was released in September 2017 with support
for Singularity and Docker Containers. The current version of
Pegasus, version 4.9.1, also has support for Shifter.

A. Container Execution Model

Executing a job via a container on a remote node usually
requires some setup and cleanup actions before and after
the job has run. For example, before launching a job, the
associated container image might need to be retrieved and
loaded in the local container registry. After job completion,



the container image might need to be unloaded/removed. We
decided to incorporate the container setup for a job into
PegasusLite [10], a light-weight Pegasus remote execution
engine which wraps the user task on the remote worker node
when a job is scheduled to the node. PegasusLite is responsible
for figuring out the appropriate job directory in which the job
executes, staging-in datasets that a job requires, launching the
job, staging-out data, and cleaning up the job directory.

Fig. 1. The PegasusLite steps taken on the bare-metal host and inside the
container instance.

The updated PegasusLite flow for handling a containerized
job when starting on a remote worker node is outlined below:

1) Sets up a directory in which it will run a user job.
2) Pulls or links the container image to that directory.
3) Mounts the job directory into the container as /scratch

for Docker containers, while as /srv for Singularity
containers.

4) Container then runs a job specific script created by
PegasusLite that does the following:

a) Figures the appropriate Pegasus worker to use in
the container if not already installed.

b) Sets up the job environment to use (including
transfer and setup of any credentials transferred as
part of PegasusLite).

c) Pulls in all the relevant input data and executables
required by the job.

d) Launches the user application using pegasus-
kickstart.

e) Ships the output data to the staging site.
5) Optionally, shuts down the container (only applicable to

Docker containers).
6) Cleans up the directory on the worker node.

The Pegasus planner configures PegasusLite for each job,
with container specific directives using a pluggable interface.
This interface allows us to easily incorporate newer container
technologies. Below, we describe the supported Container
technologies and how PegasusLite is configured for each
of them. For the purposes of this section, we assume the
associated container image file is present on the node where
the job is executed. Section III-B describes how the container
image required for the job gets to the worker node.

1) Docker: PegasusLite first loads the container from the
container image file into the local node registry. It then
identifies the user (the user on the host OS) that the job is
being launched as and creates the same user in the container if
it does not exist. Running the job inside the container with the
same UID/GID as the host OS ensures data access to the host
working directory and guarantees any outputs created by the
job are as the same user as on the host OS. The job directory
as determined by PegasusLite gets mounted as /scratch into
Docker containers. The job is then setup and executed in the
container as described in Step 4.

2) Singularity: Comparatively, Singularity setup is more
straightforward as it is designed to be executed in user space
and the image file can be invoked as any other Linux exe-
cutable using singularity exec command. In case of Singularity,
the job directory (as determined by PegasusLite) is mounted
as /srv in the container, and then the job is setup and executed
in the container as described in Step 4. Using /srv under
Singularity comes from Singularity not using overlay-fs in
some cases, and hence having to rely on existing mount points
in the image when bind mounting.

3) Shifter: Shifter is a technology developed by NERSC
and optimized for executing on HPC machines. Shifter con-
tainers are different from Docker and Singularity because
Shifter containers cannot be exported to a container image file
that can reside on a filesystem. Additionally, the containers
are expected to be available locally on the compute sites in
the local Shifter registry. In case of Shifter, the job directory
(as determined by PegasusLite) is mounted as /scratch in
the container and the job is then setup and executed in the
container as described in Step 4.

B. Data Management for Containers

Pegasus treats containers as an input data dependency for
a job that needs to be staged to a compute node if it is not
already present there. If a container is described in the Trans-
formation Catalog as residing in a container registry (such as
Docker Hub or Singularity Hub), we first export the image
as a container image file as part of the executable workflow.
To achieve this, we modified our data transfer tool pegasus-
transfer to pull the images from Docker or Singularity Hub
and export them as container image files. Treating containers
as data allows us to:

• Execute wokflows in distributed environments, where the
container, along with job input data, gets deployed at
runtime on a remote compute node when a job starts.



• Optimize transfer of containers for large workflows in a
manner similar to how Pegasus does for datasets [10].
This is of particular importance when workflows refer to
containers in public container registries. For a workflow,
Pegasus will retrieve a particular container image from a
public registry once per data staging site irrespective of
the number of jobs in the workflow. This is significant as
the access pattern for container images from a workflow
execution can appear as a Denial of Service attack for
the operators of the registries.

• Export the image to a file format from a Hub, which also
allows us to stage-in the image to the compute nodes via
a staging server in the instance that the actual compute
nodes may not have direct access to the public internet.

• Symlink against a container image file if a shared filesys-
tem is available on the compute nodes of a target execu-
tion resource. In this case, the data staging node added
by Pegasus in the executable workflow will place the
container image on a directory on the shared filesystem
and all the jobs will then symlink the container into their
job directories. This is particularly useful when jobs refer
to large container images. This also minimizes saturation
of network links in a compute site. In Section IV, we
highlight the benefit of this optimization.

By default, Pegasus only mounts the job directory deter-
mined by PegasusLite into the application container. However,
in the Transformation Catalog, users can specify additional
directories that need to be mounted into the container and
made available to the job. This allows jobs in the workflow
to symlink against pre-existing input data sets that may be
available on the node. Many computing sites now distribute
datasets using CVMFS [11] (e.g., the Gravitational-wave Open
Science Center [12]), which Pegasus can mount into the
container automatically when a user job starts.

Overall, treating containers as an explicit data dependency
for jobs has given us the flexibility to leverage containers
in a variety of execution environments while simultaneously
optimizing the access pattern based on the individual compute
environments.

C. Representation

Pegasus users describe their applications as transformations
in a Transformation Catalog. The Transformation Catalog
maps logical transformations to physical executables on a
particular system. It also provides additional information about
the transformation such as what system they are compiled for,
what profiles or environment variables need to be set when the
transformation is invoked, and so on. Users have an option of
marking the executables as installed on a particular system or
as stageable, in which case Pegasus will transfer the executable
along with the job. We updated the Transformation Catalog to
allow users to refer to a container that is required for execution.
A sample representation is illustrated below
- transformations:
- namespace: "example"
name: "keg"
version: 1.0

site:
- name: "isi"
arch: "x86"
os: "linux"
container: "centos-pegasus"
pfn: "/shared/pegasus/bin/pegasus-keg"

# INSTALLED means pfn refers to path in the container.
# STAGEABLE means the executable can be staged into
# the container
type: "INSTALLED"

- cont:
- name: "centos-pegasus"

# URL to image in a docker|singularity hub|shitfer
# repo url OR URL to an existing docker image
# exported as a tar file or singularity image
image: "docker:///rynge/montage:latest"

# can be either docker or singularity or shifter
type: "docker"

# mount information to mount host directories into
# container format src-dir:dest-dir[:options]
mount:
- "/Volumes/Work/lfs1:/shared-data/:ro"

# environment to be set when the job is run in the
# container only env profiles are supported
profile:
- env:

JAVA_HOME: "/bin/java.1.6"

The container itself is defined using a separate “cont” entry.
Multiple transformations can refer to the same container. Users
can choose whether to use either the same container for all
their jobs in the workflow or different containers for different
types of jobs. We also support the notion of allowing users
to stage their executables into a container at runtime. This
is useful when a user maybe using a standard base container
image from a public repository but wants to user their own
executables.

We briefly describe the attributes supported for describing
a container

• cont - A container identifier.
• image - URL to image in a Docker—Singularity hub—

shifter repo URL or URL to an existing Docker im-
age exported as a tar file or an existing Singular-
ity image. An example of a Docker hub URL is
docker:///rynge/montage:latest and an example of a sin-
gularity is shub://singularity-hub.org/pegasus-isi/fedora-
montage. Shifter images can only be referred to by a
shifter URL scheme that indicates that the image is avail-
able in the local shifter repository on the compute site. An
example of this is shifter:///papajim/namd image:latest.

• mount - mount information to mount host directories
into container of format src-dir:dest-dir[:options]. This is
used to mount directories from the shared filesystem on
a compute site in the container, for symlinking against
pre-existing inputs a job may require.

• profiles - One or many profiles can be attached to a
transformation for all sites or to a transformation on
a particular site. For containers, only env profiles are
supported.



Fig. 2. Non Shared Fileystem Setup

Fig. 3. Shared Filesystem Setup

IV. EXPERIMENTS

In order to obtain a better understanding of the performance
overheads when adding container transfers and instance man-
agement, a set of experiments were conducted. The Chameleon
testbed [13] was used as our testing infrastructure. Our setup
consisted of one workflow submit node, one NFS server node,
and four worker nodes, located in Texas Advanced Computing
Center (TACC). All of the nodes were bare metal nodes with
24 physical cores, 128GB of RAM, and 10Gbps network
connection. However, because we wanted to simulate lower
network speeds on the submit node, we capped its network link
to 1Gbps. Additionally, the submit node didn’t have access to
the storage server via NFS. The shared filesystem was only
shared across the worker nodes. Our software stack on the
submit node apart from HTCondor and Pegasus, also included
an http server, in order to allow the workers to fetch input data
to the jobs.

As a test workflow, we used the CASA application workflow
described in SectionV-B, which is normally configured to use
Docker containers. The workflow was configured to use http
for staging-in data to the jobs and scp to store data back to
the data staging site. The CASA workflow we used in our
experiment had 63 compute tasks in the abstract workflow
and 73 jobs in the executable workflow (when there is no task
clustering). The 10 additional tasks are the data transfer and
auxiliary tasks added by Pegasus during the planning of the
workflow. Due to the real-time nature of this workflow, each

compute task is designed to complete execution within a few
seconds as it processes incoming data every minute.

We devised three experiments. All experiments executed
the workflow using PegasusLite [10] mode. In this mode,
each job is wrapped in a lightweight PegasusLite instance
that determines the directory in which the user task will be
run, pulls in the input data for the job from data staging
site, launches the task, and stages out the generated outputs
back to the data staging site before cleaning up. The first
experiment which served as a base, involved executing the
CASA workflow without any containers, with input data
(application data) staging occurring via http from the submit
host, as shown in Figure 2. The second experiment involved
executing workflows with containers (Docker and Singularity
both), with input data (container and application data) staging
occurring via http from the submit host, as shown in Figure 2,
and the stage-out of data from workers to submit host via scp.
In the third experiment, we staged the input data to the NFS (as
shown in Figure 3) and then had the compute jobs symlink
against the input data on the NFS instead of storing a true
copy to the local filesystem. For all the experiments we ran
workflows 10 times in each configuration, and present average
results over these 10 runs where applicable. Additionally,
while running these experiments, in order to collect network
and block device statistics, on all nodes we were recording
system activity every second via sar [14]. The goals of these
experiments were the following:

• Demonstrate the increase in walltime due to the staging
of application containers and how job clustering can help
mitigate the overhead.

• Show that the staging of application containers for a
workflow for each task can saturate both the network links
and disk IO.

The first graph in Figure 4 shows an increase in end to
end workflow walltime from 172.2 seconds to 681.7 and
321.6 when Docker containers and Singularity containers
are used respectively and when there is no job clustering
(Cluster size 1 - purple bar and lines in the plots). We also
noticed that the Docker workflow walltime is much longer than
Singularity. This is primarily because of the difference in the
size of the Docker and Singularity image files (488MB and
153MB respectively) even though the underlying recipe files
are functionally equivalent. Clustering the tasks together (so
that one job executes 12 tasks; green bars in the plot) helps
reduce the workflow walltime as job clustering leads the image
being transferred only once per 12 tasks, and to fewer jobs in
the final executable workflow; thereby reducing the number of
times the container image is transferred from the submit host
to the worker nodes.

Figure 5 shows the network link usage on the submit host,
which is also the data staging site for the Docker case in
non shared filesystem setup, as shown in Figure 2 (with and
without job clustering). The top subgraph (no job clustering)
shows sustained period of network saturation on the link
because of the associated data transfers of the containers per
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job. On the other hand, in the bottom subgraph (clustering 12
tasks per job) the network saturation is not sustained.

Figure 6 shows average service time of I/O requests on
one of the workers over a workflow run for executions with
and without Docker containers; and with and without job
clustering. In the case of no containers, the effect on the
average service time is negligible. Introducing containers leads
to a significant increase in average disk wait times, even
though we are symlinking against the Docker image file on
the NFS instead of doing a true copy to the local disk. The
reason for this is that the Docker image image file still needs
to be untarred internally on local disk by Docker before being
loaded in the local node registry. A proposed optimization for
smarter Docker loading in the PegasusLite script is explained
in Section VII, which would lower the loading overhead when
multiple jobs land on the same compute nodes. The same
average service time plot for Singularity shown in Figure 7
does not present a similar increase. This can be attributed
both to Singularity images being read directly, as well as being
comparatively much smaller in size.

An interesting observation is that the use of NFS doesn’t
improve the workflow makespan except in the case of Docker,
and that too without any job clustering. The goal of the
NFS in the experimental setup is to minimize or alleviate
the prolonged network saturation on the Submit node when
transferring a lot of input data at the same time and in
this case specifically, container images. In the case of no
clustering, compared to Docker, Singularity doesn’t saturate
the network link on the Submit node, which can be attributed
to its significantly smaller image size, and as a result NFS
doesn’t improve the performance as much. In the case of
clustering 12 tasks together, experiments using either Docker
or Singularity aren’t benefiting by the use of NFS, since
clustering tasks together reduces the amount of the transferred
input data. Finally, in the cases where network saturation isn’t
the bottleneck, using the NFS adds extra overhead because
of the additional stage-in and stage-out steps that need to be
executed by Pegasus.
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V. CASE STUDIES

Since container support was first added to Pegasus, our user
base has been migrating their existing Pegasus pipelines to use
containers. In this section, we describe two such applications,
one using Singularity and the other using Docker.

A. PyCBC

PyCBC is a python-based software package used to explore
astrophysical sources of gravitational waves [15]. It contains
algorithms that can detect coalescing compact binaries [16]–
[20] and measure the astrophysical parameters of detected
sources [21]. PyCBC was used in the discovery of gravita-
tional waves from binary black holes [22] and binary neutron
stars [23], in the ongoing analysis of gravitational-wave data
by the LIGO and Virgo Scientific Collaborations [24], and in
the analysis of these data by independent groups [25].

PyCBC executables are Python scripts that call functions
from PyCBC-provided, system, and third-party Python li-
braries, as well as compiled code from shared-object libraries.
Unlike previous generations of gravitational-wave search ex-
ecutables that were provided as statically-linked C code with
minimal dependencies [26], PyCBC programs have a com-
plex run-time environment that must be carried with each
executable. A standard PyCBC installation requires that the
install directory is available at runtime so that Python can
find the package’s libraries. It also requires that the build
and runtime environments are compatible (e.g., compatible
versions of glibc, gcc, and Python). Some PyCBC executables
(e.g., pycbc_inspiral) require runtime compilation of
code using SciPy weave [27], so the execution environment
must have a full installation of gcc and the Python develop-
ment libraries.

On clusters where the user community has control over the
Python interpreter and software installation, the complexities
of the run-time environment have been managed by using a
standard software installation and the Python virtual environ-
ment tool virtualenv to create known environments into
which all the software is installed. However, when running
on OSG or XSEDE clusters for example, these requirements
may not be satisfied. Although CVMFS can provide access
to the PyCBC libraries at runtime on the OSG, many OSG
execute machines do not have the required environment to
weave-compile code at runtime. The initial solution for these
environments was to build bundled executables using PyIn-
staller [28]. These bundles contain all of the Python and user-
space C libraries required, as well as a Python interpreter
to run the code. This bundle must also contain pre-compiled
objects for all of the weave code that is needed at runtime. A
build script run under Travis CI as part of PyCBC’s build and
test system complied the necessary code into the bundle.

The use of PyInstaller allowed the construction of more
self-contained executables that can be deployed on the OSG.
However, this approach had several complexities: PyInstaller
bundles are not completely static and still require a dynami-
cally linked version of glibc at runtime. Since Linux systems
are backwards but not forwards compatible, the bundle needed

to be built on the lowest-common denominator operating
system for the execution platform (e.g. RHEL6 for OSG). The
bundle building script itself was quite complicated and the
insertion of weave-compiled objects into the bundle required
running the executable, extracting the complied object code
from the weave cache, and inserting it into the bundle as part
of the build script. If a user added new code that was not
exercised as part of this build, then the compiled objects would
be missing from the bundled executable and attempts to use
that feature would fail at run time.

Containerization has allowed us to mitigate these prob-
lems and create a more robust run-time environment. Since
PyCBC’s Travis CI build script was already configured
to build a Docker container, this container is be con-
verted into a Singulariy image using the OSG-provided
cvmfs-singularity-sync tool [29]. This tool pulls the
latest PyCBC container (as well as released versions) from
Docker Hub, converts the Docker container to a Singularity
image, and copies the resulting image to the OSG’s CVMFS
origin server. Since the PyCBC maintainers have complete
control over the PyCBC Docker container environment, any
necessary run-time software (including software needed for
runtime compilation of code) can be installed into the con-
tainer.

The implementation of containers in Pegasus meant that
PyCBC’s workflow generation script did not need to be
modified as deployment of the container is managed by the
Pegasus WMS. If the user wants Pegasus to run a PyCBC
program inside a container, then Pegasus profiles are set to
specify the container type, the path to the container image,
and directives to mount CVMFS inside the container for
access to data needed at runtime. The PyCBC program that
invokes the Pegasus planner can set Pegasus profiles based
on its command-line arguments, so no code changes were
needed in the PyCBC code itself. During testing, we discov-
ered that two changes were needed in Pegasus for optimal
use of containers in PyCBC: better handling for containers
distributed via CVMFS and better handling of data staging
for containerized jobs. We describe these changes in Sec. V-C
below. A containerized PyCBC workflow was used to run the
analysis for the First Open Gravitational-Wave Catalog [25]
on the OSG.

B. CASA

CASA is an NSF Engineering Research Center with a focus
on low atmosphere sensing, particularly with the use of net-
works of Doppler weather radars for the purpose of improving
severe weather warning systems, emergency response, and sit-
uational awareness. Radar systems produce voluminous data,
requiring substantial computing and networking infrastructure
to process the data in a timely manner. Radar data is fused
together to create derived products on which chains of post-
processing occur, including image creation, GIS style analysis,
and notification mechanisms for decision support. One of
these chains, Nowcasting, was selected as a representative
example of a domain user workflow that was well tailored



for this approach to processing. Nowcasting is a form of short
range forecasting that primarily uses observed radar data over
time to produce a non-linear advection model that estimates
future positions of radar echoes. Every minute, the Nowcasting
algorithm produces 31 grids, representing the projected radar
reflectivity every minute from 0-30 minutes. As part of the
workflow, CASA creates images of each of these grids and
extracts contours representing projected areas of meteoro-
logical impact based on predefined thresholds. Contours are
represented as GIS style polygons, which are effective ways
of describing geographic areas of weather risk to end users.
However, contouring into well-ordered non-convex polygons
is a function of the weather contained and the grid size, which
is a CPU intensive process approaching O(n2) complexity.
Because timeliness is a key concern for effective end user
response, innovative approaches to processing, including the
use of the academic cloud, are necessary to keep up with the
one minute update rate of nowcasting.

C. Experiences/Lessons Learnt

Based on our users’ feedback from using containers in their
scientific workflows, we have introduced optimizations and
made changes to our approach. Here we describe a few of
these changes.

1) Direct Access to Singularity Images via CVMFS: The
PyCBC pipeline usually runs on a HTCondor-based computing
infrastructure (e.g., on the Open Science Grid, on clusters
at Syracuse University and AEI-Hannover, or on the LIGO
Data Grid). On this infrastructure, the singularity image files
are distributed using CVMFS, a scalable, reliable, and low-
maintenance software distribution service that is available on
all the nodes. In the most general case, Pegasus opts to pull a
container image once to the data staging site and then lets the
jobs pull the image to the compute nodes filesystem along
with the other input data. However, this approach did not
take advantage of the out-of-band caching and distribution
of the Singularity images provided by CVMFS. In order for
PyCBC workflows to directly use Singularity images stored
in CVMFS, we updated Pegasus to allow for bypassing
of container images files to the staging site and to enable
symlinking to pre-existing images on the compute sites. These
improvements allowed PyCBC workflows to use containers
without introducing any new data transfer overhead associated
with container data-staging.

2) Moved transfer data staging into the container rather
than the host OS: In Pegasus 4.8.x and 4.9.0, the PegasusLite
script (the lightweight job wrapper that is used to launch a
job on the compute node) executing on the host OS was
responsible for pulling in the job inputs from the staging site
into the directory where the job runs, and then mounted that
directory into the application container at runtime. The user
application then was launched in the container and executed.
The generated outputs were then staged back to the staging
site by PegasusLite. This approach had the advantage of doing
all the data transfers outside of the container relying on
the tools provided by the computing infrastructure provider.

However, this left the user with no control over using their
own preferred choice of data transfer protocols when staging
the data products to the worker nodes. With Pegasus 4.9.1, we
moved data staging to occur within the application container so
that users can install and leverage additional data staging tools
specific to their infrastructure. We ran into this issue while
executing PyCBC workflows on local cluster at Syracuse,
where preferred grid transfer tools such as gfal-copy are not
pre-installed.

3) Loading multiple Docker image tar files: Currently,
Pegasus doesn’t have any optimization in place to avoid
loading an image that already exists in the local Docker
images, or an image that is already being loaded by a another
PegasusLite script. This can result in multiple “docker load
-i” commands to be dispatched within a short period of time,
severely impacting the performance of the local disk. In Figure
6, we presented the effect of loading multiple Docker images
during a CASA workflow run where we observed the average
wait time for an I/O service request times to be as high as
1.2 seconds. As a result, a very powerful node (24 physical
cores with 128GB RAM) becomes almost unresponsive. In a
scenario that the workers are shared among projects, this can
also affect others if their jobs get scheduled to the affected
nodes. Preliminary results we have from machines using SSDs
present a much more subtle effect, however we are planning
to address this issue on the upcoming Pegasus release.

VI. RELATED WORK

Over the past decade, container systems such as Docker
and Singularity have emerged to facilitate the sharing and
migration of software by defining immutable, reusable exe-
cution environments. Their rapidly adoption by the scientific
community have already supported a number of scientific
progresses [1], [2]. Several systems have been leveraged to
improve the way containers are stored, shared, and indexed.
For instance, the OSG has leveraged the CVMFS filesystem
for storing and sharing Singularity images for their users [11].
This solutions provides a consistent and efficient environment
across all OSG computing sites. On the deployment manage-
ment aspect, Kubernetes [7], an open source cluster manager
for Docker containers, decouples application containers from
the details of the system they run. Both technologies have
significantly improved the way containers are built, stored, and
delivered, and they have been leveraged by several workflow
management systems as discussed below. Kubernetes has been
widely used by EGI for managing containerized workloads and
services. Through EGI Cloud Container Compute [30] users
can start a cluster of virtual machines and create a Kubernetes
cluster to run Docker containers, which can be spawned to
their high throughput computing infrastructure.

In the context of scientific workflows, new systems have
been designed for specifically running workflows on cloud en-
vironments with extended support for Linux containers [31]–
[36], while well-established workflow systems have evolved
to provide seamless support for running containerized applica-
tions [37], [38]. Skyport [31], [32] utilizes Docker containers



to solve software deployment issues via software isolation.
It targets automated deployment of Docker containers on
cloud environments. Once built, container images are stored
in the Shock data management system [31], in which data is
represented as an object with a unique identifier (the Shock
node ID) and metadata describing computational and scientific
provenance information. At runtime, input files and Docker
images are automatically deployed into cloud instances to per-
form computation. In Pegasus, we can emulate such behavior
by running workflows on OSG where application container
images are stored in the CVMFS filesystem. Additionally,
we provide mechanisms to properly configure the execution
environment within the container as defined by the user in the
workflow description (as described in Section III).

Airflow [33] is a workflow system for running DAG-based
workflows on cloud platforms. Recently, they have enabled
support for Kubernetes to orchestrate the execution of Docker-
enabled application containers in commercial clouds. Simi-
larly, CWL-Airflow [34] provides a lightweight abstraction
layer for running workflows described with the Common
Workflow Language (CWL) [39] interface. Pachyderm [35]
is data-driven pipeline execution system natively built for
running workflows on Docker and Kubernetes. In Pachyderm,
workflows are organized into Git repositories and describe
operations to be performed in data files stored in such repos-
itories, which fosters reproducibility through version control.
Nextflow [36] is a workflow management system that uses
Docker and Singularity for multi-scale handling of container-
ized computation. More recently, they have also enabled
support for Kubernetes in a similar manner as for Pachyderm.
Most of these systems target the orchestration of application
containers on cloud platforms. In contrast, our approach is
platform agnostic, i.e. application containers can be deployed
in a range of computing platforms including standard laptops,
campus clusters, and HPC and HTC systems. To the best of
our knowledge, Pegasus is the first workflow system providing
such versatility while preserving the fundamental concept of
scientific workflow portability, i.e. framework and platform
agnostic descriptions of workflows.

Makeflow, a well-established workflow management sys-
tem, has evolved to enable support for application container
execution on distributed computing resources [37], [38]. In
order to capacitate Makeflow with containers, they have con-
ducted a study [37] on how to best integrate container tech-
nology into workflow systems by analyzing different methods
for orchestrating and running workflow tasks (e.g., individual
tasks per container, multiple compatible tasks per container,
etc.). Our proposed and implemented approach complies with
the outcomes of this study, and extends it by providing
mechanisms for automated data management for containers.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have described our overall approach to
incorporating a variety of container technologies in Pegasus
WMS, enabling our users to use them in varied execution
environments. Since first releasing support for containers in

Pegasus 4.8.0, our user base has slowly and surely started
migrating their production workflows to use containers. Our
approach focused on efficiently managing automatic container
deployment on remote nodes on which workflow jobs are
executed. This deployment went hand in hand with ensuring
that requisite job input data was made available to the user
application in the container while simultaneously preserving
data access optimizations (such as mounting directories host-
ing input data automatically). By working with different user
communities, we now realize that the question of whether
to execute data transfers required for a job from within the
container or from the host OS is not yet answered. We have
seen compelling arguments for both approaches. We now feel
that, instead of preferring one over the other, we should present
the options to the users and Pegasus should support both
options regardless.

Thus far, we have allowed users to refer to a pre-built
container hosted either in a public container repository or
exported as a tar image on a file server. In the future, we
plan to allow users to specify the container build file (such
as DockerFile in Pegasus catalogs) instead of using a pre-
built image. Pegasus will then build the image automatically
as part of the executable workflow and deploy the image to
remote compute nodes where jobs execute. This makes the
user workflow more self contained as the entire environment is
described in a Docker file alone, enabling reproducibility and
ease of sharing application user workflows. Additionally, we
plan to support private container registries by implementing
the necessary credential support in our data transfer tool
pegasus-transfer. We would also like to explore use of Docker
alternatives like Podman [6] which, unlike Docker, is a dae-
monless container engine used to manage OCI containers and
can run containers in root or rootless mode by utilizing Linux
namespaces. Use of Podman would enable us to overcome
drawbacks of running Docker in HPC environments and would
bridge the gap between Docker and Singularity.

Lastly, the development of Unikernels [40] is of interest, as
they are essentially applications compiled along with a library
kernel into a micro VM. Packaging in this manner provides
smaller image sizes and faster boot times than containers, and
at the same time isolation characteristics of a VM.
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