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Abstract—Scientific workflows are often used to automate
large-scale data analysis pipelines on clusters, grids, and clouds.
However, because workflows can be extremely data-intensive, and
are often executed on shared resources, it is critical to be able to
limit or minimize the amount of disk space that workflows use on
shared storage systems. This paper proposes a novel and simple
approach that constrains the amount of storage space used by a
workflow by inserting data cleanup tasks into the workflow task
graph. Unlike previous solutions, the proposed approach provides
guaranteed limits on disk usage, requires no new functionality in
the underlying workflow scheduler, and does not require estimates
of task runtimes. Experimental results show that this algorithm
significantly reduces the number of cleanup tasks added to a
workflow and yields better workflow makespans than the strategy
currently used by the Pegasus Workflow Management System.

I. INTRODUCTION

Hosted computing infrastructures such as campus clusters,
grids and clouds have become daily instruments of scientific
research. Applications running on these infrastructures have
grown in size and complexity. As a result, many scientists
now formulate their computational problems as scientific work-
flows [1]. Workflows allow researchers to easily express multi-
step computational and data manipulation tasks, for example:
retrieve data from an instrument or a database, reformat the
data, and run an analysis. When executing large, data-intensive
workflows composed of hundreds or thousands of tasks that
generate terabytes of data, it is important to carefully manage
the storage space on the execution resources. Workflow man-
agement systems often clean up temporary data only after the
workflow finishes. However, in the case of larger workflows
the total storage required by a workflow for all inputs and
outputs may exceed the available storage space, leading to
workflow failures. As a result, it is necessary to remove
intermediate data from the storage system as the workflow is
executing. This can be achieved by adding in the workflow data
cleanup tasks that are responsible for removing intermediate
data when it is no longer required. For example, the inputs
for a task are no longer required once the task has finished
successfully. Similarly, the outputs generated by a task are no
longer required once all the tasks that use those outputs have
finished successfully, or when data is staged out to permanent
storage.

Scheduling scientific workflows under storage constraints
has been addressed in previous work [2]–[5]. However, the
approaches proposed there either required the development of
a new scheduler that is aware of application data and storage

resources, or they required accurate task runtime estimates,
which are difficult to predict in practice [6]. In addition, online
approaches for solving this problem may result in deadlocks,
where progress cannot be made without removing data that
will be required in the future. Such deadlocks can only be
resolved by backtracking and re-executing tasks, which results
in wasted time and resources.

In this paper, we propose a novel offline algorithm that
implements storage constraints by inserting cleanup tasks into
the workflow task graph. The algorithm provides guaranteed
limits on the amount of storage space required by the work-
flow without requiring task runtime estimates or data-aware
schedulers. Our approach is based on a static rearrangement
of the workflow during a planning step just prior to execution.
The algorithm adds cleanup tasks to the workflow, and makes
computational tasks dependent on them in a way that ensures
sufficient storage space has been freed before a dependant
task can begin executing. This approach guarantees that, if
the algorithm is able to find a feasible solution, then the
workflow will be able to run to completion without exhausting
the available storage space.

Inserting cleanup tasks into the workflow has two poten-
tially negative effects: 1) it adds tasks to the workflow that
may increase the makespan of the workflow, and 2) it creates
dependencies in the workflow that may add bottlenecks and
reduce parallelism. In order to understand these issues, we
performed simulation experiments using synthetic workflows
based on two real science applications. When compared our
algorithm with the existing cleanup algorithm [2] used in the
Pegasus Workflow Management System [7], [8]. The results
show that the new algorithm generates far fewer cleanup tasks
and yields better workflow makespans.

The remainder of this paper is organized as follows.
Section II summarizes the related work. Section III provides
relevant background information and describes the problem in
detail. Section IV describes the proposed storage-constrained
cleanup algorithm. Section V describes the results of several
experiments that were used to evaluate the proposed algorithm.
Finally, Section VI concludes the paper and discusses possible
future work.

II. RELATED WORK

Ramakrishnan et al. [2] and Singh et al. [3] introduced the
concept of cleanup tasks to reduce the amount of peak storage
required by a workflow, and proposed several algorithms for
storage-constrained workflow execution. The first algorithm



adds cleanup tasks as leaf nodes in the task graph. For each
file, the algorithm adds a cleanup task that depends on all
the compute tasks that use the file as input. This algorithm
reduces the footprint of a workflow, but does not implement
storage constraints since the amount of storage used depends
on the order in which the tasks are executed. In addition,
since it creates a cleanup task for every file in the workflow,
this algorithm may result in a large number of cleanup tasks
relative to non-cleanup tasks, which may significantly impact
the performance of the workflow. Singh et al. developed a
variation of this algorithm that adds task clustering to reduce
the number of cleanup tasks. This algorithm groups together
the cleanup tasks generated by Ramakrishnan’s algorithm so
that the number of cleanup tasks in the workflow is no more
than the number of non-cleanup tasks. Singh’s algorithm is
the default cleanup algorithm used in The Pegasus Workflow
Management System [7], and it is used in this paper for
comparison with our approach.

Ramakrishnan et al. [2] also developed a storage constraint
algorithm that partitions a task graph across a set of grid
sites so that each partition does not exceed the available
storage at its assigned site. This algorithm implements storage
constraints, but it does not work for single sites or when the
total storage available across all sites is less than the maximum
workflow footprint. Chen and Deelman [5] proposed a similar
algorithm that also attempts to minimize the amount of data
transferred between execution sites.

Singh et al. [3] also investigated workflow restructuring to
reduce storage requirements. They used an ad-hoc approach,
where dependencies were added to the workflow manually to
force a specific execution order. This new execution order,
when combined with their cleanup algorithm, resulted in a
smaller maximum storage footprint. In this paper, we propose
an algorithm to achieve similar restructuring in an automated
way.

Bharathi et al. [4] proposed several algorithms for im-
plementing storage constraints, including one simple greedy
algorithm and two solutions based on metaheuristics. All three
algorithms begin with a task graph containing cleanup tasks
as proposed by Ramakrishnan et al. and Singh et al. The
greedy algorithm identifies non-overlapping partitions of the
task graph rooted at each cleanup task. The algorithm examines
these partitions at a regular time interval in breadth-first order
and releases the next partition for execution when sufficient
storage space is available for the entire partition. In the same
work, the authors proposed two other approaches based on
genetic algorithms: one that considers the ordering of the
cleanup tasks only, and one that considers the ordering of
all tasks. Only valid topological orderings that use less than
the available storage space are allowed, and fitness is defined
as a function of makespan and storage space required for
execution. All three algorithms required significant changes
to the scheduler to make it data-aware. In comparison, the
algorithm proposed in this paper requires no changes to the
scheduler.

III. PROBLEM DEFINITION

Scientific workflows describe complex, multi-step compu-
tational pipelines used to automate computer modeling, simula-
tion, and data processing activities for science and engineering

applications. This paper considers a class of workflows that
can be represented as a directed acyclic graph (DAG), where
each node in the graph is a computational task and the edges
between the nodes represent data or control flow dependencies.
More specifically, in these workflows a task represents the
invocation of a command-line program with a given set of
arguments, and each invocation may involve reading several
input files and writing several output files. This is the workflow
application model supported by Pegasus [7], [8] and many
other workflow management systems [9]–[11].

Workflows are often used to automate large computations
that may involve thousands of tasks and terabytes of data.
Executing such workflows requires a significant amount of
temporary disk space to store intermediate data products.
These data products are generated by the workflow, but do not
need to be saved after the workflow finishes executing. In the
case of large, data-intensive workflows, the storage available
on the execution site may not be sufficient to store all of
the intermediate data required for the workflow to execute to
completion. The storage space may be limited by the amount of
disk space available on the storage system, or by user quotas.
To prevent these problems, data cleanup tasks may be inserted
into the task graph to remove intermediate data after all the
tasks that require it finish execution. In addition, the workflow
can be restructured such that non-cleanup tasks depend on
cleanup tasks to ensure that storage is freed for non-cleanup
tasks before they are allowed to execute. It is possible to use
these dependencies to enforce upper limits on the maximum
amount of storage used by the workflow.

The addition of cleanup tasks can be performed automat-
ically by the workflow system through static analysis of the
task graph. The data cleanup problem with storage constraints
can be defined as the problem of adding data cleanup tasks to
the workflow task graph, such that the peak storage used does
not exceed a given storage limit. Solutions to this problem
must ensure that the modified task graph maintains the same
ordering of non-cleanup tasks as the original task graph.
Adding cleanup tasks to a workflow introduces delays caused
by overheads in the execution infrastructure [12], and the
addition of dependencies may create bottlenecks that result in
reduced parallelism. Therefore, better solutions to this problem
will insert cleanup tasks in a way that minimizes the resulting
makespan of the modified workflow.

IV. STORAGE-CONSTRAINED CLEANUP
ALGORITHM

The algorithm proposed in this paper builds upon the
work done by Ramakrishnan et al. [2] and Singh et al. [3],
who developed offline algorithms to insert cleanup tasks into
workflow task graphs. In Singh’s algorithm, the number of
cleanup tasks added to the workflow can be very large. In the
worst case, it is equal to the number of tasks in the workflow.
At the same time, while the algorithm does reduce the peak
storage requirements of the workflow, it is unable to provide
any guarantees regarding the total storage space that will be
used by the workflow at runtime.

Our proposed algorithm attempts to resolve these issues. It
inserts cleanup tasks and automatically restructures the task
graph by adding extra edges to ensure that the maximum



storage footprint of the workflow does not exceed a given
storage constraint. It also attempts to minimize the number
of cleanup tasks added to the workflow by inserting cleanup
tasks only when they are required. Unlike previous approaches,
the storage used by the workflow does not depend on the order
in which the workflow execution engine, such as HTCon-
dor DAGMan [13], releases tasks at runtime. The algorithm
achieves this by adding extra edges between the cleanup task
and the subsequent computational (non-cleanup) tasks. As a
result, subsequent computational tasks only start executing
once the parent cleanup task has finished. Intuitively, cleanup
tasks act as barrier points in the execution of the workflow.
They prevent other tasks from executing until sufficient storage
has been reclaimed for their outputs.

This algorithm only assumes that data sizes for task inputs
and outputs are provided. The decision about where to place
cleanup tasks uses a greedy approach based on a simulated
execution of the workflow. Tasks are selected using a heuristic
based on the size of data generated by the task, and the size of
data that can be cleaned up after the task finishes executing.
The algorithm identifies potential storage constraint violations
by “executing” tasks until the heuristic chooses a task that
requires more than the available storage space. At that point,
the algorithm adds one or more cleanup tasks to remove all
intermediate data that is no longer required. It is important to
note that this algorithm does not guarantee that the restructured
workflow will run in the minimum storage space possible.
Instead, it guarantees that, if it is able to find a valid solution
for the given storage constraint, then the restructured workflow
will not use more storage than the constraint value. If the
algorithm does not find a valid schedule for a given constraint
then it will not return a solution. The pseudo code for the
storage constraints algorithm is shown in Algorithm 1.

The number of cleanup tasks added and the minimum
storage constraint for which a solution can be found, depends
on the heuristic employed to select which candidate task from
the queue to execute next. We implemented several differ-
ent heuristics for the GETNEXTCANDIDATETASK procedure
based on the amount of storage space that can be freed after
executing a task, and the amount of storage space consumed by
the task. Max Freed is a simple heuristic that selects the task
that maximizes the amount of disk space that can be freed. Min

Algorithm 1 Storage-constrained algorithm.
Require: W : workflow with task data size estimates; and S: storage constraint

1: procedure SIMULATE(W,S)
2: used disk ← 0
3: avail space← S
4: while there are tasks to run do
5: t← GETNEXTCANDIDATETASK(W )
6: if avail space ≥ t.req space then
7: mark task t as executed
8: avail space← avail space− t.req space
9: else

10: U ← ADDCLEANUPTASKS(W )
11: avail space← avail space + storage freed(U)
12: if avail space < t.req space then
13: stop workflow execution and return no solution
14: end if
15: end if
16: end while
17: add a cleanup task to remove all remaining data
18: end procedure

Required is another simple heuristic that selects the task that
has the smallest storage space required. The Max Required
heuristic is the opposite of Min Required. The heuristic selects
the task with the largest storage space required, since these
tasks are the most difficult to accommodate. The Balance
Factor heuristic selects the task with the largest balance factor,
which is defined as the difference between the storage space
that can be freed when the task completes and the space
consumed by the task when executed. The balance factor can
be viewed as an estimate of the impact of running the task
on available storage space. If none of the candidate tasks free
any storage space, then the task with the largest balance factor
is equivalent to the task with the smallest space required. If
multiple tasks have the same balance factor, then the one with
the smallest required space is chosen.

Inserting cleanup tasks has the potential to create bottle-
necks in the workflow that reduce parallelism and increase
the workflow’s makespan. To investigate this issue we imple-
mented several different strategies for adding cleanup tasks
in the ADDCLEANUPTASKS procedure. The Single Task
approach adds a single cleanup task to the workflow, sets the
parents of the cleanup task to be the non-cleanup tasks that use
the data that is cleaned up, and sets the children of the cleanup
task to be all of the currently queued tasks. The Queued Tasks
approach adds cleanup tasks up to the number of tasks in the
queue (i.e. candidate tasks for execution), sets the parents of
the cleanup tasks to be the non-cleanup tasks that use the data
that is cleaned up, and sets the children of the cleanup tasks
to be all of the currently queued tasks. The Random Tasks
approach adds a random number of cleanup tasks between 1
and the number of tasks in the queue. The Resources Tasks
approach adds cleanup tasks up to the number of resources
available for execution. Both Random Tasks and Resources
Tasks approaches follow the same rules to set the parents and
children tasks for the cleanup tasks. Note that cleanup tasks
are balanced by the size of the data to be removed, except
for the Single Task approach, which is composed by a single
cleanup task.

Regardless of the cleanup strategy used, after all the non-
cleanup tasks have been processed, the algorithm adds a final
cleanup task to the workflow to remove all remaining data.
This final cleanup task appears as a sink node in the graph
and depends on all of the non-cleanup, leaf nodes.

Figure 1 illustrates a simple example with a storage con-
straint of 200 units using the Balance Factor heuristic with a
Single Task cleanup strategy. Tasks 1 to 4 have been marked as
executed because there is enough space to run them without
any cleanup tasks. A storage constraint violation is detected
when there is not enough space to run the next queued task
selected by the Balance Factor heuristic, which would be
Task 7 (Figure 1a). At that point, the algorithm adds one
cleanup task to remove all data not required for the remainder
of the workflow. In our example, intermediate data between
tasks (1, 2), (1, 3), and (3, 4) are removed releasing 110 units
(Figure 1b). The queued candidate tasks become children of
the cleanup task, and tasks 2, 3, and 4 (which use the data
being cleaned up) become parents of the cleanup task. A final
cleanup task is added as a sink node for the entire workflow to
ensure that all intermediate data is removed from the execution
site when the workflow finishes (Figure 1c).
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(b) A cleanup task is inserted to remove all
data that is no longer required
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(c) A final cleanup task is inserted to ensure
that all intermediate data is removed

Fig. 1: A sample execution of the proposed algorithm with the storage limit set to 200 units using the Single Task approach.
Note that this algorithm runs during the planning phase and that tasks marked as executed have not actually executed; they have
merely been marked as executed in the simulated run.
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Fig. 2: Workflow from Figure 1 using Singh’s cleanup algo-
rithm. In this case, Singh’s algorithm adds a cleanup task for
almost every non-cleanup task.

Figure 2 illustrates the cleanup jobs that Singh’s algorithm
would add for the same workflow. In this case, since each
intermediate file is only used as input to a single task, Singh’s
algorithm would add a cleanup task for almost every non-
cleanup task in the workflow.

V. EVALUATION

This section presents experiments that evaluate the perfor-
mance of our storage-constrained algorithm and its impact on
the storage footprint and makespan of workflow executions.
The algorithm was implemented in the Pegasus Workflow
Management System as an alternative to the built-in cleanup
algorithm [3].

A. Experiment Conditions

Two real scientific workflow applications are used in the
experiments. Montage [14] is an astronomy application that is
used to construct science-grade astronomical image mosaics.
The workflow re-projects images to a common plane, adjusts
their brightness, and adds them together. CyberShake [15] is
a seismology application used in probabilistic seismic hazard
analysis. The workflow computes seismic hazard curves by
computing the effects of many scenario earthquakes on ground
motions at a given geographic site. Figures 3 and 4 illustrate
small examples of the Montage and CyberShake workflows
before cleanup tasks are added, and Table I shows their main
characteristics.

We collected execution traces, including scheduling over-
heads and task runtimes, from real runs of the two workflow
applications [6], [16]. These traces were used as input to the
workflow generator toolkit [17]–[19] to create a collection of
synthetic workflows. The workflow generator uses information
gathered from real workflow executions to construct realistic
synthetic workflows. For each workflow application, we gen-
erated a set of 100 synthetic workflows with 1000 tasks each.
The storage required to execute the largest task (total size of
inputs and outputs) is used as a lower bound on the minimum
amount of storage space required to execute a workflow. Note
that this value is an absolute lower bound and may not be
achievable in practice. For Montage workflows, the largest task
uses approximately 31% of the total storage required by the
workflow, and for the CyberShake workflows, the largest task
uses approximately 24% of the total.

Three sets of experiments were conducted to evaluate
our storage-constrained algorithm and compare it with the
algorithm developed by Singh et al. All experiments were
performed using a version of Pegasus that was modified to



Fig. 3: Small example of the Montage workflow colored by
task type.

Fig. 4: Small example of the CyberShake workflow colored
by task type.

Application Jobs Avg. Exec. Time Avg. Data Size
Montage 158 11.60s ∼4 MB
CyberShake 1675940 460840.60s ∼132 MB

TABLE I: Characteristics of the workflow applications.

include the new algorithm. Experiment 1 evaluates the effect of
storage constraints on the number of cleanup tasks added to the
workflow, the impact of the number of resources on the work-
flow’s makespan, and whether storage constraints are met when
the number of resources is varied. Experiment 2 evaluates the
effects of using different heuristics for the GETNEXTCAN-
DIDATETASK procedure on the workflow’s makespan and the
peak storage space actually used by the workflow. Experiment
3 evaluates the impact of using different strategies for inserting
cleanup tasks in the ADDCLEANUPTASKS procedure on the
workflow’s makespan.

After planning the synthetic workflows with our modi-
fied version of Pegasus, a simulator based on the CloudSim
toolkit [20] was used to simulate the execution of the synthetic
workflows. The simulator prioritizes cleanup tasks over non-
cleanup tasks to ensure that storage is freed as soon as possible.
The choice of the next task to execute, from a ready task
set with the highest priority, is random. The simulator also
takes into account scheduling overheads by using overhead
values measured in [12]. Scheduling overhead accounts for

approximately 25% of the makespan of the Montage workflow,
and approximately 12% of the makespan of the CyberShake
workflow. The simulator uses these values to estimate the
overhead when scheduling a task.

B. Results and Discussion

Experiment 1. This experiment set is composed of three
sub-experiments for each application. The first experiment
evaluates the impact of storage constraints on the number of
cleanup tasks added to the workflow. The storage constraint
is set to be a percentage of the total storage required by all
tasks in the workflow. Initially, the storage constraint is set to
100% (i.e. no cleanup tasks would be required to execute the
workflow), and it is decreased until the storage constrained
algorithm is unable to find a solution. Note that the storage
constraint has no impact on the behavior of Singh’s algorithm.

Figure 5a shows the average number of cleanup tasks
for the Montage workflow. The minimum storage constraint
achieved by the storage-constrained algorithm is 40%, while
Singh’s algorithm reaches 35% (the lower bound is no less
than 31%). The storage-constrained algorithm requires only
2 cleanup tasks to guarantee the storage constraint for the
majority of constraint values, and 3 cleanup tasks are required
only when the constraint is below 55%. As Singh’s algorithm
does not consider storage constraints, the number of cleanup
tasks remains constant at 340 tasks regardless of the constraint
specified. Figure 6a shows the number of cleanup tasks for the
CyberShake workflow. The lowest storage constraint achieved
by the storage-constrained algorithm is 30%, while Singh’s
algorithm reaches 25% (the lower bound is no less than 24%).
Similarly, our proposed algorithm significantly reduces the
number of cleanup tasks from 1001 generated by Singh’s
algorithm to only 2 for the majority of constraint values. As the
constraint decreases, the storage constrained algorithm cleans
up more frequently (adding up to 6 cleanup tasks) until it is
finally unable to find a solution.

The second experiment evaluates the impact of the number
of resources on the workflow’s makespan. The number of
resources ranges from 4 to 256, and the storage constraint is
fixed at 75%. For comparison, the results include the makespan
for runs without cleanup tasks (No-Cleanup). Note that runs
without cleanup tasks and those using Singh’s algorithm will
violate the storage constraint for some cases in this experiment
since both do not consider storage constraints, but runs using
the storage-constrained algorithm will not.

For the CyberShake workflow (Figure 6b), the storage-
constrained algorithm produces smaller makespans than
Singh’s algorithm in all cases. This performance advantage is
simply a result of the storage-constrained algorithm generating
fewer cleanup tasks to execute. For the Montage workflow
(Figure 5b), the storage-constrained algorithm yields smaller
makespans in cases where fewer resources are available, while
Singh’s algorithm yields smaller makespans in cases where
more resources are available. This is likely due to the way
in which the storage-constrained algorithm adds dependencies
between cleanup tasks and non-cleanup tasks, which tends to
reduce the parallelism of the workflow. In comparison, Singh’s
algorithm always adds cleanup tasks as leaf nodes in the
task graph, so it has no negative impact on the parallelism
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100 workflows composed of 1000 tasks each.
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of the workflow. In cases where resources are scarce, the
storage constrained-algorithm performs better because it adds
fewer cleanup tasks, but when resources are plentiful, Singh’s
algorithm performs better because it is able to execute more
tasks in parallel.

The last experiment evaluates whether storage constraints
are met when the number of resources available to execute the
workflow increases from 1 to 256. In this experiment the stor-
age constraint is set to the lowest value for which the storage-
constrained algorithm was able to find a solution, which is
40% for Montage, and 30% for CyberShake. Figures 5c and
6c show the peak storage space actually used by the workflow
at runtime. For comparison, the figures also include the storage
constraint (dotted red line) and the average space required for
the largest task in the workflow (dotted black line), which is a
lower bound on the amount of storage required to execute the
workflow.

The figures show that using the storage-constrained algo-
rithm results in disk usage that does not exceed the storage
constraint, while Singh’s algorithm exceeds the constraint
when the number of resources exceeds a certain threshold
(around 32 in the case of Montage and around 4 in the case
of CyberShake). Since the simulation prioritizes cleanup tasks
over non-cleanup tasks, Singh’s algorithm is able to stay under
the storage constraint for low numbers of resources, because
only a few non-cleanup tasks are able to generate data before a
higher-priority cleanup task is released to remove data. When
the number of resources increases, more non-cleanup tasks
are able to run in parallel, and the cleanup tasks are not
able to maintain lower levels of disk usage. In comparison,
the storage-constrained algorithm is able to keep disk usage
below the constraint regardless of the number of resources
available to execute the workflow, because the dependencies
added by the algorithm prevent a task from running until
sufficient storage space has been freed for its outputs.

Experiment 2. This experiment set is composed of two
sub-experiments for each application. The first experiment
evaluates the impact of using different heuristics to select a
candidate task from the queue on the workflow’s makespan.
The number of resources ranges from 4 to 256, and the storage
constraint is fixed to the lowest value achieved by our storage-
constrained algorithm (40% for the Montage workflow, and
30% for the CyberShake workflow).

For the Montage workflow (Figure 7a), the Balance Factor
approach produces slightly smaller makespans when resources
are scarce (4 to 16 resources). For larger amounts of resources
the impact on the produced makespans is negligible indepen-
dently of the heuristic used. Similarly, for the CyberShake
workflow (Figure 8a), the Balance Factor approach produces
slightly smaller makespans in all cases. This insignificant
difference in the workflow’s makespans is likely due to the
way extra edges are added between the cleanup tasks and the
subsequent computational tasks, which tends to be the same
regardless of the selected candidate task.

The second experiment evaluates the impact of the various
heuristics for selecting the candidate task on the peak storage
space actually used by the workflow. Figure 7b shows the
average peak storage used (in % of maximum) for a given
storage constraint for the Montage workflow (error bars are
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Fig. 7: Experiment 2: results for the Montage application with
100 workflows composed of 1000 tasks each.

not shown as they are under 1%). In addition to the 4 proposed
heuristics, we also implemented first-come first-served (FCFS)
and random heuristics. Results show that when the storage
constraint is lax, all heuristics behave the same. For stricter
constraint values, a small difference is observed: the FCFS
heuristic consumes a larger storage footprint, while the Max
Freed heuristic has a smaller footprint. Figure 8b shows
the average peak storage used for the CyberShake workflow.
Similar to the Montage experiment, the difference in the
peak storage space used is negligible in most cases, with a
slight increase in the peak value observed when using the
FCFS heuristic, and a smaller footprint with the Max Freed
heuristic.

Experiment 3. Figures 9 and 10 show the average makespan
for a given number of resources when using different strategies
for adding cleanup tasks. For the Montage workflow (Figure 9),
the variation in the workflow’s makespan is negligible regard-
less of the strategy used. Since cleanup tasks are often added
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Fig. 8: Experiment 2: results for the CyberShake application
with 100 workflows composed of 1000 tasks each.

into one of the pipelines (see Montage workflow structure on
Figure 3), the gain from parallelizing cleanup tasks is minimal
when compared to the overall workflow’s makespan. However,
for the CyberShake workflow (Figure 10), the Resources
Tasks approach yields speedup values up to a factor of 2
when compared to the Single Task approach. Using mul-
tiple cleanup tasks increases the parallelism of the workflow
when compared to the Single Task strategy. Since the
Queued Tasks and Random Tasks strategies are driven
by the number of queued tasks, which is often higher than the
number of available resources, the amount of cleanup tasks
added by these strategies adds a significant overhead to the
workflow execution. Queued Tasks and Random Tasks
might produce similar results to the Resources Tasks
strategy when the number of available resources is similar to
the number of queued tasks.
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Fig. 9: Experiment 3: average makespan for a given number
of resources with a storage constraint of 40% for the Montage
application with 100 workflows composed of 1000 tasks each.
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Fig. 10: Experiment 3: average makespan for a given number
of resources with a storage constraint of 30% for the Cyber-
Shake application with 100 workflows composed of 1000 tasks
each.

VI. CONCLUSIONS

In this work, we proposed, implemented, and experimen-
tally validated a novel and simple algorithm to implement
storage constraints for scientific workflows modeled as a task
graph. This algorithm inserts data cleanup tasks into the
workflow task graph to guarantee that the storage footprint of
the workflow’s execution never exceeds a user-supplied limit,
regardless of the scheduling algorithm used. We implemented
this algorithm in the Pegasus workflow management system,
but it can be applied to any workflow system that models
workflows as a directed acyclic task graph.

The algorithm was evaluated through simulation using
synthetic workflows based on two real workflow applications.
The experimental results show that our algorithm guarantees
that storage constraints are met regardless of the number



of resources available to execute the workflow. In addition,
the results show that, in comparison to an existing cleanup
algorithm that does not implement storage constraints, the new
algorithm significantly reduces the number of cleanup tasks
inserted into the workflow, and does not cause an increase in
workflow makespan for the majority of cases examined. In fact,
the makespan is reduced in many cases due to the reduction
in the number of cleanup tasks.

We also proposed and evaluated several simple heuristics to
select which candidate task from the queue to execute, and we
varied strategies for adding cleanup tasks. Experimental results
show that the workflow’s makespan and footprint have no
impact regardless of the heuristic used to select the candidate
task. However, the makespan is significantly impacted by the
number of cleanup tasks inserted.

Although the current algorithm achieves the primary goal
of implementing storage constraints, there are several ways
in which it could be improved. The current implementation
assumes that the workflow runs on a single execution site, but
in practice workflows are sometimes executed across several
sites. Addressing this use-case would require extensions to
the algorithm to support cross-site optimization. In addition,
the algorithm’s decisions depend heavily on the number of
cleanup tasks added. Future work is required to investigate
alternative strategies that may result in better parallelism
and improved makespan. For example, it may be possible
to improve parallelism by analyzing the data flow to reduce
dependencies between cleanup and non-cleanup tasks. It may
also be useful to select only a subset of the unused data for
cleanup, instead of removing all of it, which could result in
shorter duration cleanup tasks and more parallelism. Finally,
we plan to integrate a version of this algorithm into a future
production release of Pegasus WMS.
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