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I. INTRODUCTION

Reproducibility of published results is a cornerstone
in scientific publishing and progress. Therefore, the
scientific community has been encouraging authors and
editors to publish their contributions in a verifiable and
understandable way. Efforts such as the Reproducibility
Initiative [1], or the Reproducibility Projects on Biol-
ogy [2] and Psychology [3] domains, have been defining
standards and patterns to assess whether an experimental
result is reproducible.

In computational science, or in-silico science, repro-
ducibility often requires that researchers make code and
data available to others so that the data can be analyzed
in a similar manner as in the original publication. Code
must be available to be distributed, data must be ac-
cessible in a readable format [4]. However, applications
have been growing in complexity and volume. There-
fore, many scientists now formulate their computational
problems as scientific workflows running on hosted com-
puting infrastructures such as campus clusters, clouds,
and grids [5]. Scientific workflows are an enabler of
complex scientific analyses, composed of heterogeneous
components, potentially designed by multiple scientists.

Workflows are a useful representation for managing
the execution of large-scale computations. This represen-
tation not only facilitates the creation and management of
the computation but also builds a foundation upon which
results can be validated and shared. Since workflows for-
mally describe the sequence of computational and data
management tasks, it is easy to trace the origin of data
produced. Many workflow systems capture provenance at
runtime, which provides the lineage of data products and
as such underpins the whole of scientific data reuse by
providing the basis on which trust and understanding are
built. A scientist would be able to look at the workflow
and provenance data, retrace the steps and arrive at the
same data products. However, this information is not

sufficient for reproducibility.
The need for data and code sharing in computational

science has been widely discussed [6]. Currently, most of
the approaches in computational science conservation, in
particular for scientific workflow executions, have been
focused on data, code, and the workflow description, but
not on the underlying infrastructure—which is composed
of a set of computational resources (e.g. execution nodes,
storage devices, networking) and software components.
We identify two approaches for conserving the envi-
ronment of an experiment, depending on how relevant
this environment is, and the difficulty in obtaining an
equivalent one: physical conservation, where the real
object is conserved due to its relevance and the difficulty
in obtaining a counterpart; and logical conservation,
where objects are described in a way that an equivalent
one can be obtained in a future experiment.

The computational environment (e.g. supercomput-
ers, clusters, or grids) is often conserved by using the
physical approach, where computational resources are
made available for long time period to scientists who
want to perform experiments. As a result, scientists
are able to reproduce their experiments in the same
environment. However, such infrastructures demand a
huge maintenance efforts, and there is no guarantee
that it will not change or suffer from a natural de-
cay process [7]. Furthermore, the infrastructure may be
subjected to organization policies, which restricts its
access to a selective group of scientists, thus limiting the
scalability of the reproducibility. On the other hand, data,
code, and workflow description can be conserved by
using a logical approach that is not subjected to natural
decay processes.

Accordingly, we propose a logical-oriented approach
to conserve computational environments, where the ca-
pabilities of the resources (virtual machines (VM)) are
semantically described. From this description, any sci-
entist, insterested in reproducing an experiment, will



be able to reconstruct the former infrastructure (or an
equivalent one) in any Cloud computing infrastructure
(either private or public). One may argue that would be
easier to keep and share VM images with the community
research through a common repository, however the high
storage demand of VM images remains a challenging
problem [8], [9].

Our approach uses semantic-annotated workflow de-
scriptions to generate lightweight scripts for an experi-
ment management API that can reconstruct the required
infrastructure. We propose to describe the resources
involved in the execution of the experiment, using a set
of semantic vocabularies, and use those descriptions to
define the infrastructure specification. This specification
can then be used to derive the set of instructions that can
be executed to obtain a new equivalent infrastructure.

In this paper, we discuss how this approach could
address some of the reproducibility issues identified in
the computational science field [6], and expose, by a
proof-of-concept experiment, how it has been applied to
real scientific workflow executions.

II. SEMANTIC MODELING

As pointed out by Gary King in 1995 [10], the
replication standard “only requires sufficient information
to be provided in the article or book or in some other
publicly accessible form so that the results could in
principle be replicated”. Almost 20 years later, we share
this view and claim that this principle should be applied
to execution environments in computational science.

Many efforts have been carried out to provide infor-
mation about the scientific procedure of an experiment,
by means of workflows and scientific communities for
sharing them, and about the experimental data, both
input data and results. We argue that for a complete
and sufficient description of an experiment, information
about the computational resources involved should be
also provided. Providing these descriptions will allow
the targeted audience, usually another scientist in the
same domain, to understand the underlying components
involved in the execution.

In this work, we argue that semantic technologies fit in
this view as an standard, flexible, and integrable way for
describing and disseminating information. They allow
both, machines and humans, to read and understand what
the resources are, and how they depend on each other.
Based on this information, it is possible to define the set
of steps to be executed for obtaining a new infrastructure,
capable of re-executing a former experiment.

We propose the definition of semantic models for
describing the main domains of a computational in-
frastructure, defining the taxonomy of concepts and the

relationships between them. These models describe the
software components, hardware specifications, and the
computational resources available (in the form of VMs or
cluster nodes). The models also describe the workflow,
and how it is related to the different resources. As a
result, this process facilitates experiment’s reusability
since new experiments, which may reuse parts of the
workflow previously modeled, will benefit from the
infrastructure dependencies already described.

We have identified four main domains of interest for
documenting computational infrastructures. We have de-
veloped a set of models, one for each domain, describing
their main concepts:

• Hardware domain: identifies the most common
hardware information, including CPU, Storage, and
RAM memory, and their capacities.

• Software domain: defines the software components
involved on the execution. It includes the pieces
of executable software (e.g. scripts, binaries, and
libraries) used in the experiment. In addition, de-
pendencies between those components and config-
uration information are also defined, as well as the
required steps for deploying them.

• Workflow domain: describes and relates workflow
fragments (a.k.a transformations) to their depen-
dencies. Therefore, scientists can understand what
are the relevant components for each part of the
workflow.

• Computing resources domain: expresses the infor-
mation about the available computing resources. In
this domain, only virtualized resources are currently
considered (i.e. VMs). It includes the description of
the VM image, its provider, and specifications.

These models have been implemented as ontologies,
conforming the WICUS Ontology Network [11], avail-
able online1. Figure 1 shows the top level ontology of
the network, defining the inter-domain relations between
the four aforementioned models.

Semantic techniques enable scientists to easily in-
tegrate and extend novel models, identified by new
domains of interest, in a systematic way. In particular,
the WICUS models are an ongoing effort as we are
continuously evaluating its expressiveness, and adding
new capabilities based on real experiment examples.

III. ADDRESSING REPRODUCIBLE RESEARCH

In response to the Yale 2009 Declaration [6], our
semantic modeling approach addresses the following

1http://purl.org/net/wicus
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Figure 1. WICUS Ontology Network overview.

challenges on reproducible research in computational
science:

• “The bulk of the actual information required to
reproduce results is not obvious from an article’s
text”;

• “...the complete software environment and the data
generated those results- to be published along with
the findings”;

• “Recommendation 3: Include a statement describ-
ing the computing environment and software version
used in the publication”.

Our semantic models capture the knowledge about the
experiments, expressing the information about the work-
flow descriptions, and the relations and dependencies of
the software components and the underlying infrastruc-
ture. As a result, these models enable the automation
of the process of generating an equivalent execution
environment.

• “A VM Image with compiled code, sources, and
data that can reproduce published tables and fig-
ures would let others explore the parameters around
the publication point, examine the algorithm, and
build on that work their own research”.

The high storage needs of VM images (on the order
of gigabytes) remains a challenging problem [8], [9].
Instead, we propose to describe the experiment resources
using a set of semantic vocabularies, which can then be
used to derive a set of instructions that can be executed
to obtain a new equivalent infrastructure.

• “Unfortunately, archived code can become
unusable—sometimes quickly—due to changes in
software and platform dependencies”.

• “Goal 9: ...Without maintenance, changes beyond
individual’s control (computer hardware, operating
system, libraries, programming languages, and so
on) will break reproducibility”.

Semantical descriptions of software and infrastructure re-
lations and dependencies empowers scientists to rapidly
identify components that would be affected by changes
on the infrastructure or software.

• “Goal 6: require authors to describe their data us-
ing standardized terminology and ontologies. This
will greatly streamline the running of various codes
on data sets and a uniform interpretation of re-
sults”.

In this work, we do not only propose to describe the
data used in an experiment, but we also claim that by
describing the software and infrastructure relations and
dependencies, the reusability of an experiment would be
significantly improved.

IV. BRINGING THE SEMANTIC VISION TO FRUITION

Figure 2 shows an overview of the use case scenario
in which we have applied the principles of our work. In
this experiment, we performed a run of the Montage
workflow [12] with the Pegasus Workflow Manage-
ment System (WMS) [13] on FutureGrid [14]. From
the execution logs, we generated annotations about the
software components (binaries) and their dependencies,
as well as the workflow by using the WICUS ontolo-
gies. We then removed all the binaries from the VM
image and generated its corresponding annotations. This
data represents an infrastructure specification, which is
then translated into a PRECIP [15] script to build an
equivalent infrastructure. The script describes the process
to create a new virtual machine, to deploy the required
binaries, and to re-execute the experiment.

One of the key points of our approach is to allow
scientists to make the knowledge about their tools ex-
plicit and available. This knowledge is built upon the
information about the available resources in an assisted
manner. In this use case scenario, semantic annotations
are generated from the resources descriptions provided
by the Pegasus WMS. We summarize hereafter the main
steps and components (tools and files) of the process
used for the Montage workflow as shown in Figure 2:

1. DAX Annotator. This tool parses a DAX XML
(Pegasus’ workflow description) and generates a set of
annotations, using the terms of the WICUS vocabulary,
representing the steps of the workflow and its related
infrastructure requirements.

2. Workflow annotations. An RDF file containing
the description of the workflow and its infrastructure
requirements.

3. Transformation Catalog Annotator. This tool
queries the Pegasus Transformation Catalog (which de-
scribes the binaries for the Montage distribution and
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Figure 2. Overview of the reprodubility process for Montage.

their locations), to generate two set of annotations: the
Software Components Catalog and the Workflow &
Configuration Annotation file.

4. Software Components Catalog. An RDF file
containing the set of annotations about the binaries,
dependencies, deployment plans, and configuration in-
formation about the software from Montage. In this
experiment, we identified 59 components from the Mon-
tage software toolkit. Only 11 out of the 59 components
take part on the execution of the Montage workflow.

5. Workflow & Configuration Annotation File. An
RDF file containing the same information as in 2, but
enriched with the configuration information for each
step, as specified in the transformation catalog.

6. Scientific Virtual Appliances Catalog. An RDF
file describing available VM images. So far, we have
only documented one virtual appliance, which is the
same image as the one used in the original experiment
(but without the Montage binaries).

7. Infrastructure Specification Algorithm. This pro-
cess reads files 4, 5, and 6 and generates a configuration
file (e.g. a PRECIP script), which describes VMs and
software components to be created and deployed.

8. PRECIP script. This script creates a PRECIP ex-
periment, which runs a VM, copies the required binaries,
and executes deployment scripts to set the environment
for the workflow execution. It also contains the PRECIP
commands from the original experiment in order to re-

execute it.
We have been able to reproduce the same output

results from an execution where the Montage software
was already in place, on a VM built from our semantic
models. This first experimental result gives an insight on
how semantic modeling can improve reproducibility in
scientific workflows. Scripts and documentation used in
this experiment are available online2
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