A Semantic-Based Approach to Attain
Reproducibility of Computational Environments
in Scientific Workflows: A Case Study

Idafen Santana-Perez!, Rafael Ferreira da Silva?, Mats Rynge?, Ewa Deelman?,
Marfa S. Pérez-Herndndez' and Oscar Corcho!

1 Ontology Engineering Group, Universidad Politécnica de Madrid, Madrid, Spain
{isantana,mperez,ocorcho}@fi.upm.es
2 USC Information Sciences Institute, Marina Del Rey, CA, USA
{rafsilva,rynge,deelman}@isi.edu

Abstract. Reproducible research in scientific workflows is often ad-
dressed by tracking the provenance of the produced results. While this
approach allows inspecting intermediate and final results, improves un-
derstanding, and permits replaying a workflow execution, it does not
ensure that the computational environment is available for subsequent
executions to reproduce the experiment. In this work, we propose de-
scribing the resources involved in the execution of an experiment using
a set of semantic vocabularies, so as to conserve the computational envi-
ronment. We define a process for documenting the workflow application,
management system, and their dependencies based on 4 domain ontolo-
gies. We then conduct an experimental evaluation using a real workflow
application on an academic and a public Cloud platform. Results show
that our approach can reproduce an equivalent execution environment
of a predefined virtual machine image on both computing platforms.

1 Introduction

Reproducibility of results of published scientific experiments is a cornerstone in
science. Therefore, the scientific community has been encouraging researchers
to publish their contributions in a verifiable and understandable way [18]. In
computational science, or in-silico science, reproducibility often requires that
researchers make code and data publicly available so that the data can be ana-
lyzed in a similar manner as in the original work described in the publication.
Code must be available to be distributed, and data must be accessible in a
readable format [20].

In the context of scientific experiments, terms such as reproducibility, replica-
bility, and repeatability are sometimes used as synonymous. Even though there
is no clear consensus on how to define both (definitions may vary over different
scientific areas), in this work we understand them as separated concepts [9]. In
this work, we address the reproducibility of the execution environment for a sci-
entific workflow, as we do not aim to obtain an exact incarnation of the original
one, but rather an environment that is able to support the required capabilities
exposed by the former environment.

Scientific workflows are a useful representation for managing the execution
of large-scale computations. Many scientists now formulate their computational
problems as scientific workflows running on distributed computing infrastruc-
tures such as campus Clusters, Clouds, and Grids [22]. This representation not
only facilitates the creation and management of the computation but also builds
a foundation upon which results can be validated and shared. Since workflows
formally describe the sequence of computational and data management tasks, it
is easy to trace the origin of the data produced. Many workflow systems capture
provenance at runtime, which provides the lineage of data products and as such
underpins the whole of scientific data reuse by providing the basis on which trust
and understanding are built. A scientist would be able to look at the workflow
and provenance data, retrace the steps, and arrive at the same data products.
However, this information is not sufficient for achieving full reproducibility.

Currently, most of the approaches in computational science conservation, in
particular for scientific workflow executions, have been focused on data, code,
and the workflow description, but not on the underlying infrastructure—which
is composed of a set of computational resources (e.g. execution nodes, storage
devices, and networking) and software components. We identify two approaches
for conserving the environment of an experiment: physical conservation, where
the real object is conserved due to its relevance and the difficulty in obtaining a
counterpart; and logical conservation, where objects are described in such a way
that an equivalent one can be obtained in a future experiment.

The computational environment is often conserved by using the physical
approach, where computational resources are made available to scientists over
a sustained period of time. As a result, scientists are able to reproduce their
experiments in the same environment. However, such infrastructures demand
huge maintenance efforts, and there is no guarantee that it will not change or
suffer from a natural decay process [12]. Furthermore, the infrastructure may be
subjected to organization policies, which restricts its access to a selective group
of scientists, thus limiting reproducibility to this restricted group. On the other
hand, data, code, and workflow description can be conserved by using a logical
approach that is not subjected to natural decay processes.

Accordingly, we propose a logical-oriented approach to conserve computa-
tional environments, where the capabilities of the resources (virtual machines
(VM)) are described. From this description, any scientist, interested in repro-
ducing an experiment, will be able to reconstruct the former infrastructure (or
an equivalent one) in any Cloud computing infrastructure (either private or pub-
lic). One may argue that it would be easier to keep and share VM images with
the community research through a common repository, however the high storage
demand of VM images remains a challenging problem [I5/25].

Our approach uses semantic-annotated workflow descriptions to generate
lightweight scripts for an experiment management API that can reconstruct
the required infrastructure. We propose to describe the resources involved in
the execution of the experiment, using a set of semantic vocabularies, and use
those descriptions to define the infrastructure specification. This specification

can then be used to derive the set of instructions that can be executed to obtain
a new equivalent infrastructure. We conduct a practical evaluation for a real
scientific workflow application in which we describe the application and its en-
vironment using a set of semantic models, and use an experiment management
tool to reproduce a workflow execution in two different Cloud platforms.

In this work we entail reproducibility from the execution environment point
of view. For the sake of showing how our approach works, we provide an exam-
ple in which we have also include the data and the workflow execution of the
experiment.

The paper is organized as follows. Section [2] describes our semantic approach
for documenting computational infrastructures. Section [3] presents the practi-
cal evaluation and the description of the tools used to implement the semantic
models and manage the experiment. Section [] presents the related work, and
Section [B] summarizes our results and identifies future works.

2 Semantic Modeling of Computational Resources

Scientific workflows are also used for preserving and sharing scientific experi-
ments in science. Research efforts focused on describing the workflow structure
and the experimental data, both input data and results. In this work, we argue
that the information about the computational resources should be also provided
for achieving full reproducibility. These descriptions allow the target audience,
usually another scientist in the same domain, to understand the underlying com-
ponents involved in a workflow execution.

‘We propose the definition of semantic models for describing the main domains
of a computational infrastructure, and for defining the taxonomy of concepts and
the relationships between them. These models describe the software components,
hardware specifications, and the available computational resources (in the form
of VMs). They also capture infrastructure dependencies of the workflows. As a
result, this process facilitates experiment’s reusability since a new experiment,
which may reuse parts of the workflow previously modeled, or a reproduction of a
workflow, would benefit from the infrastructure dependencies already described.

We have identified four main domains of interest for documenting compu-
tational scientific infrastructures. We have developed a set of models, one for
each domain, and an ontology network that defines the inter-domain relations
between these models (Fig. [1]):

— Hardware domain: identifies the most common hardware information, in-
cluding CPU, Storage and RAM memory, and their capacities.

— Software domain: defines the software components involved on the execu-
tion. It includes the pieces of executable software (e.g. scripts, binaries, and
libraries) used in the experiment. In addition, dependencies between those
components and configuration information are also defined, as well as the
required steps for deploying them.

— Workflow domain: describes and relates workflow fragments (a.k.a transfor-
mations) to their dependencies. Therefore, scientists can understand what
are the relevant infrastructure components for each part of the workflow.

— Computing Resources domain: expresses the information about the avail-
able computing resources. In this domain, only virtualized resources are cur-
rently considered (i.e. VMs). It includes the description of the VM image,
its provider, and specifications.

composedBySwStack
Workflow Software
3
sv\a‘dwa
composedByHwSpec ‘equ'\‘e hasSoftwareStack
Hardware Computing
hasHardwareSpec Resources

Fig. 1. Overview of the ontology network (— denotes inter-domain relation).

3 Reproducibility in Scientific Workflows

In this section, we conduct a practical evaluation through experimentation in
which we instantiate the semantic models aforementioned for a real scientific
workflow application. We study and document the Montage [4] workflow and its
execution environment, which includes the application software components and
the workflow management system. Montage is and astronomy workflow applica-
tion that is widely used by many astronomers to construct large image mosaics
of the sky.

3.1 Scientific Workflow Execution

Scientific workflows allow users to easily express multi-step computational tasks,
for example retrieve data from an instrument or a database, reformat the data,
and run an analysis. Scientific workflows are described as high-level abstraction
languages which conceal the complexity of execution infrastructures to the user.
In most cases workflows are described as directed acyclic graphs (DAGs), where
the nodes represent individual computational tasks and the edges represent data
and control dependencies between tasks. Workflow interpretation and execution
are handled by a workflow management system (WMS) that manages the exe-
cution of the application on the distributed computing infrastructure.

In this work, we use the Pegasus WMS [§] as our workflow engine. The
Pegasus WMS can manage workflows comprised of millions of tasks, recording
data about the execution and intermediate results. In Pegasus, workflows are
described an abstract workflows, which do not contain resource information, or

the physical locations of data and executables. The abstract workflow description
is represented as a DAX (DAG in XML), capturing all the tasks that perform
computation, the execution order of these tasks, and for each task the required
inputs, expected outputs, and the arguments with which the task should be
invoked. During a workflow execution, the Pegasus WMS translates an abstract
workflow into an executable workflow, determining the executables, data, and
computational resources required for the execution. Pegasus maps executables
to their installation paths or to a repository of stageable binaries defined in a
Transformation Catalog (TC). A workflow execution includes data management,
monitoring, and failure handling. Individual workflow tasks are managed by a
task scheduler (HTCondor [23]), which supervises their execution on local and
remote resources.

3.2 Reproducibility Tools

To conduct the experimental evaluation, we use the WICUS framework, which
comprises the semantic models described in Section [2] and a set of tools for
annotating and consuming data, and the PRECIP [2] experiment management
tool to manage the experiment. Below, we describe each of these tools in detail.

WICUS. We introduce here the Workflow Infrastructure Conservation Using
Semantics ontology (WICUS), an OWL2 [I7] (Web Ontology Language) ontology
network that implements the semantic models introduced in Section This
ontology network is available onlineﬂ and it is a continuous effort to discover and
define the relevant and required properties for describing scientific computational
infrastructures.

Besides the ontology network, WICUS has a set of modules that facilitates
the annotation of the resources involved on the execution of a scientific workflow.
These tools are not fully automated yet, but represent a first step on helping
users to define the requirements of their experiments. Fig. [2| shows the main
modules, their flow and intermediate results involved in the process for achieving
reproducibility, and describes the process of data generation and consumption.

Fig. 2. WICUS annotation modules and flow.
!nttp://purl.org/net/wicus

http://purl.org/net/wicus

1. DAX Annotator. This tool parses a DAX (Pegasus’ workflow description)
and generates a set of annotations, using the terms of the WICUS vocabulary,
representing workflow transformations and the workflow infrastructure require-
ments.

2. Workflow annotations. An RDF file containing the description of the work-
flow and its infrastructure requirements.

3. WMS annotations. An RDF file containing the information of the WMS
component and its dependencies. This information will be added to the Software
Components Catalog.

4. Transformation Catalog Annotator. This tool parses the Pegasus Trans-
formation Catalog (which describes the binaries involved on the workflow exe-
cution and their locations) and the WMS annotations file, to generate two set
of annotations: the Software Components Catalog and the Workflow & Config-
uration Annotation files.

5. Software Components Catalog. An RDF file containing the set of an-
notations about the binaries, dependencies, deployment plans and scripts, and
configuration information of the software involved in the experiment.

6. Workflow & Configuration Annotation File. An RDF file containing
the same information as in 2, but enriched with the configuration information
for each workflow execution step, as specified in the transformation catalog.

7. Scientific Virtual Appliances Catalog. An RDF file describing available
VM appliances. Information about the related infrastructure providers and the
VM images that compose an appliance are included in this dataset.

8. Infrastructure Specification Algorithm. This process reads files 5, 6, and
7, and generates a configuration file (e.g. a PRECIP script), which describes VMs
and software components to be created and deployed.

9. PRECIP script. This script creates a PRECIP experiment, which runs
a VM, copies the required binaries, and executes deployment scripts to set the
environment for the workflow execution. It also contains the PRECIP commands
from the original experiment in order to re-execute it.

PRECIP. The Pegasus Repeatable Experiments for the Cloud in Python (PRE-
CIP) [2] is a flexible experiment management control API for running experi-
ments on all types of Clouds, including academic Clouds such as FutureGrid [11],
and commercial Clouds such as Amazon EC2 [I]. In PRECIP, interactions with
the provisioned instances are done by tagging. When an instance is provisioned,
the scientist can add arbitrary tags to that instance in order to identify and
group the instances in the experiment. API methods such as running remote
commands, or copying files, all use tags to specify which instances to target.
PRECIP does not force the scientist to use a special VM image, and no PRE-
CIP components need to be pre-installed in the image. Scientists can use any
basic Linux image and PRECIP will bootstrap instances using SCP and SSH

commands. PRECIP provides functionality to run user-defined scripts on the
instances to install/configure software and run experiments, and also manages
SSH keys and security groups automatically.

In this work, PRECIP usage is twofold. First, the tool is used to describe
and perform a workflow execution using the Pegasus WMS on a predefined VM
image. Second, the WICUS annotation modules use PRECIP to generate a script
able to reproduce the execution environment of the former experiment, and run
it on different Cloud platforms.

3.3 Experimental Evaluation

The goal of this experiment is to reproduce an original workflow execution in two
different Cloud infrastructures: FutureGrid [II] and Amazon EC2 [I]. Future-
Grid is an academic Cloud test-bed facility that includes a number of computa-
tional resources at distributed locations. Amazon Web Services EC2 is a public
infrastructure provider and the de facto standard for IaaS Cloud platforms.

Generating Semantic Annotations. Fig. [3| shows a simplified overview of
the annotations generated for the Montage workflow using the WICUS ontology
network.

Workflow Software

Evegasus wMs

HTCondor

centos 6
mProject | | mbiffFit mDiff ‘
Hardware

¥

U :

AWS Cents 6 C- Resources |
RAM o AWSCemOSE |)
t1micro H

DisK
CentOS 6 SVA

T

:
T FG Cent0S 6 :
m1 large H

DIsK i | Aws centos s Focentoss | |

Fig. 3. Annotations for the Montage workflow using the WICUS ontology network.

As shown in Fig.[2] the first step in the process of documenting a workflow is
the annotation of the workflow DAX file. We use the Workflow domain ontology
to describe the Montage workflow as 1) an individual that represents the top
level workflow, and 2) another 9 individuals representing its sub-workflows, one
for each transformation. We also generate 10 requirements, one for the top level
workflow, which specifies the WMS requirements, and the remaining for defining
the software components required by each transformation. At this point, these
requirements are empty, as they are not yet related to their software components.

In this experiment, we address two types of components: the WMS and the
application related components. The WMS components include the workflow
engine, in our case the Pegasus WMS, and its dependencies. Pegasus uses HT-
Condor as task manager, and also depends on Java. We use the Software domain
ontology to describe these components as individuals, and to represent their de-
pendencies. The 3 components also depend on the operating system, which in
our case is CentOS.

To describe the deployment of the WMS components, we studied their in-
stallation processes according to their documentation. We then defined a set
of installation bash scripts for each of them. These scripts are included on the
deployment plans of the components along with their configuration information.

Application components are described from the Montage workflow’s Transfor-
mation Catalog, where the binary file, version, and destination path are defined.
These components are also described as individuals using the Software domain
ontology. We use this information to generate the configuration parameters of
the deployment script, which in this case is the same for all components. The
script downloads the binary files from an online repository and copies them to
the specified destination path. This process identified 59 software components
for the Montage workflow that are annotated and included in the Software Com-
ponents Catalog. Then, the Transformation Catalog Annotator module relates
each transformation requirement, defined using the Workflow domain ontology,
to the application component, and therefore to the deployment information. In
this experiment, we define 9 Montage components that are linked to the require-
ments, and another two sub-components that are defined as dependencies in the
software catalog (mDiffFit depends on the mDiff and mFitPlane components).

To describe computational resources we use the Computing Resources and
Hardware domain ontologies. The Scientific Virtual Appliances Catalog includes
the description of two virtual machine images, one for FutureGrid and another
for Amazon EC2. These two images are conceptually equivalent, as they both
provide CentOS 6 operating system. Therefore, we generate two Image Appli-
ances (FG CentOS 6 and AWS CentOS 6) that are grouped into one single
Scientific Virtual Appliance (CentOS 6 SVA). Depending on which providers
are available, one or the other will be selected.

Reproducing Workflow Executions. The last step on the process for achiev-
ing reproducibility in scientific workflows (Fig.|2) is to execute the Infrastructure
Specification Algorithm (ISA). The ISA combines the annotated data based on
the 4 domain ontologies in order to find a suitable infrastructure specification
that is able to run the workflow. The algorithm retrieves and propagates the
WMS requirements of the top-level workflow (Workflow domain ontology) to
its related sub-workflows. Requirements and software components are matched,
and a dependency graph is built based on the relation between the require-
ments and the component dependencies. This graph is then used to compute
the intersection between the set of software components from the SVA and the
dependency graph of each sub-workflow. ISA selects the intersection where the

value is maximized for each sub-workflow. Software components already avail-
able in the SVA are then removed from the chosen graph. To reduce the number
of SVAs, the algorithm attempts to merge sub-workflows requirements into a
single SVA. Requirements can be merged if all their software components are
compatible. Finally, ISA generates a PRECIP script with the set of required
instructions to instantiate, configure, and deploy the computational resources
and software components.

In this experiment, we execute ISA over the annotated data in a scenario
where FutureGrid is the only available platform for resource provisioning, and
in a scenario where the available platform is Amazon EC2. In both cases, the
algorithm is able to obtain a PRECIP script for each infrastructure. Each gen-
erated script is composed by the following main sections:

— FExperiment Creation: generates a new experiment using the given VM image
ID and the user credentials for the selected infrastructure provider;

— Software Deployment: executes the set of instructions defined on the deploy-
ment plan of each software component to install and configure the required
software to execute the workflow. In this section, both the workflow man-
agement system and the application are deployed with their dependencies;

— User Setup: creates a user account on the VM (if it does not exist) and
configures the necessary SSH keys to enable file transfers and execution.
This account will be used to run the workflow;

— Data Stage and Workflow Execution: stages all the input data of the Montage
workflow on the VM, and launches the workflow execution. Since our work
is focused on infrastructure reproducibility, data and workflow management
are not covered in our approach.

Note that all the configuration and deployment commands (first 3 sections)
require superuser privileges on the VM. The workflow execution, however, is
performed under the user account created in the third section.

We executed the scripts on their corresponding platforms. Both executions
succeeded on deploying and running the Montage workflow, the Pegasus WMS,
and their dependencies. We also performed the same execution of the Montage
workflow in a predefined VM image, where the execution environment is already
in place. Results show that the VM execution environments deployed by both
scripts are equivalent to the former one. In addition, we used a perceptual hash
tooﬂ to compare the resulting image (0.1 degree image of the sky) generated
by both executions against the one generated by the baseline execution. We
obtained a similarity factor of 1.0 (over 1.0) with a threshold of 0.85, which
means the images are identical. Therefore we are obtaining the same results
as the original workflow. In this work we do not aim to reproduce either the
performance or the execution time of the original experiment.

All the original and generated scripts are available as part of the experi-
mental material included in the Research Object (RO) [3] associated with this

2 pHash - http://www.phash.org

http://www.phash.org

paperﬂ This RO also contains pointers to the software and resources used in
this experiment.

4 Related Work

A computational experiment involves several elements that must be conserved to
ensure reproducibility. Most of the works addresses the conservation of data and
the workflow description, however the computational environment is often ne-
glected. An study to evaluate reproducibility in scientific workflows is conducted
n [24]. The study evaluates a set of domain-specific workflows, available in the
myExperiment [I9] collaborative environment, to identify causes of workflow de-
cays. The study shows that nearly 80% of the workflows cannot be reproduced,
and that about 12% are due to the lack of information about the execution
environment, and that 50% are due to the use of third-party resources such as
web services and databases. Note that some of those third-party resource issues
could be also considered as execution environment problems.

The Executable Paper Grand Challenge [10] and the SIGMOD conference in
2011 [5] highlighted the importance of allowing the scientific community to reex-
amine an experiment execution. The conservation of virtual machine (VM) im-
ages emerges as a way of preserving the execution environment [6/13]. However,
the high storage demand of VM images remains a challenging problem [I5l25].
Moreover, the cost of storing and managing data in the Cloud is still high, and
the execution of high-interactivity experiments through a network connection to
remote virtual machines is also challenging. A list of advantages and challenges
of using VMs for achieving reproducibility is exposed in [I4]. ReproZip [7] is a
provenance-based tool that tracks operating system calls to identify the libraries
and data dependencies, as well as the configuration parameters involved in an
experiment. The tool combines all these dependencies into a single package that
can be used to reproduce an experiment. Although this approach avoids storing
VM images, it still requires storing the application binaries and their dependen-
cies. Instead, our work uses semantic annotations to describe these dependencies.

Software components cannot be preserved just by maintaining their binary
executable code, but by guaranteeing the performance of their features. In [16],
the concept of adequacy is introduced to measure how a software component be-
haves relatively to a certain set of features. Our work is based on this same con-
cept, where we build a conceptual model to semantically annotate the relevant
properties of each software component. Then, we use scripting to reconstruct an
equivalent computational environment using these annotations.

A recent and relevant contribution to the state of the art of workflow preser-
vation is being developed within the context of the TIMBUS project [2I]. The
project aims to preserve and ensure the availability of business processes and
their computational infrastructure, aligned with the enterprise risk and the
business continuity managements. They also propose a semantic approach for

3 http://pegasus.isi.edu/publications/reppar

http://pegasus.isi.edu/publications/reppar

describing the execution environment of a process. Even though TIMBUS has
studied the applicability of their approach to the eScience domain, their approach
is mainly focused on business processes.

5 Conclusion and Future Work

In this work, we proposed a semantic modeling approach to conserve compu-
tational environments in scientific workflow executions, where the resources in-
volved in the execution of the experiment are described using a set of semantic
vocabularies. We defined and implemented 4 domain ontologies, aggregated in
the the WICUS ontology network. From these models, we defined a process for
documenting a workflow application (Montage), a workflow management system
(the Pegasus WMS), and their dependencies. We then used the PRECIP exper-
iment management tool to describe and execute the experiment. Experimental
results show that our approach can reproduce an equivalent execution environ-
ment of a predefined VM image on an academic and a public Cloud platforms.

The semantic annotations of the computational environment combined with
the scripting functionality provided by PRECIP is a powerful approach for
achieving reproducibility of computational environments in future experiments,
and at the same time addresses the challenges of high storage demand of VM
images. The drawback of our approach is that it assumes the application and
the workflow management system binaries are publicly available.

In the future we plan to apply our approach in a larger set of scientific
workflows and involve users from different scientific areas, aiming to automate
the generation process of the semantic annotations to describe both the workflow
application and the workflow management system. We also plan to extend the
WICUS ontology network to include new concepts and relations such as software
variants, incompatibilities, and user policies for resource consumption.

Acknowledgements

This material is based upon work supported in part by the National Science Foundation under
Grant No. 0910812 to Indiana University for “FutureGrid: An Experimental, High-Performance Grid
Test-bed”, the FPU grant from the Spanish Science and Innovation Ministry (MICINN), and the
Ministerio de Economia y Competitividad (Spain) project ”"4V: Volumen, Velocidad, Variedad y
Validez en la Gestién Innovadora de Datos” (TIN2013-46238-C4-2-R). We also thank Gideon Juve
and Karan Vahi for their valuable help.

References

1. Amazon Elastic Compute Cloud: Amazon EC2, http://aws.amazon.com/ec2

2. Azarnoosh, S., Rynge, M., et al.: Introducing precip: an api for managing repeat-
able experiments in the cloud. In: 2013 IEEE 5th International Conference on
Cloud Computing Technology and Science. CloudCom, vol. 2, pp. 19-26 (2013)

3. Belhajjame, K., Corcho, O., , et al.: Workflow-centric research objects: First class
citizens in scholarly discourse. In: Proc. Workshop on the Semantic Publish-
ing (SePublica). Proc. Workshop on the Semantic Publishing (SePublica), Crete,
Greece (2012)

http://aws.amazon.com/ec2

10.
11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Berriman, G.B., Deelman, E., et al.: Montage: a grid-enabled engine for delivering
custom science-grade mosaics on demand. In: SPIE Conference on Astronomical
Telescopes and Instrumentation. vol. 5493, pp. 221-232 (2004)

Bonnet, P., Manegold, S., et al.: Repeatability and workability evaluation of sig-
mod. SIGMOD Rec. 40(2), 45-48 (2011)

Brammer, G.R., Crosby, R.W., et al.: Paper mache: Creating dynamic reproducible
science. Procedia Computer Science 4(0), 658 — 667 (2011), proceedings of the
International Conference on Computational Science

Chirigati, F., Shasha, D., Freire, J.: Reprozip: Using provenance to support com-
putational reproducibility (2013)

Deelman, E., Singh, G., et al.: Pegasus: A framework for mapping complex scientific
workflows onto distributed systems. Scientific Programming 13(3) (2005)
Drummond, C.: Replicability is not reproducibility: Nor is it good science. In:
Proceedings of the Evaluation Methods for Machine Learning Workshop at the
26th TCML (2009)

Executable paper grand challenge (2011), http://www.executablepapers.com/
Futuregrid, http://portal.futuregrid.org

Gavish, M., Donoho, D.: A universal identifier for computational results. Procedia
Computer Science 4, 637 — 647 (2011), proceedings of the ICCS’11

Gorp, P.V., Mazanek, S.: Share: a web portal for creating and sharing executable
research papers. Procedia Computer Science 4(0), 589 — 597 (2011), proceedings
of the International Conference on Computational Science, {ICCS} 2011

Howe, B.: Virtual appliances, cloud computing, and reproducible research. Com-
puting in Science Engineering 14(4), 36-41 (2012)

Mao, B., Jiang, H., et al.: Read-performance optimization for deduplication-based
storage systems in the cloud. Trans. Storage 10(2) (2014)

Matthews, B., Shaon, A., et al.: Towards a methodology for software preservation
(2009)

Owl 2 web ontology language, http://wuw.w3.org/TR/owl2-overview/
Reproducible research: Addressing the need for data and code shar-
ing in computational science. http://www.stanford.edu/~vcs/Conferences/
RoundtableNov212009/RoundtableOutputDeclaration.pdf| (2009)

Roure, D.D., Goble, C., Stevens, R.: Designing the myexperiment virtual research
environment for the social sharing of workflows. In: Proceedings of the Third IEEE
International Conference on e-Science and Grid Computing. pp. 603-610 (2007)
Stodden, V., Leisch, F., Peng, R.D. (eds.): Implementing Reproducible Research.
Chapman & Hall (2014)

Strodl, S., Mayer, R., Antunes, G., Draws, D., Rauber, A.: Digital preservation of
a process and its application to e-science experiments (2013)

Taylor, I., Deelman, E., et al.: Workflows for e-Science. Springer (2007)

Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: The
condor experience: Research articles. Concurr. Comput. : Pract. Exper. 17(2-4),
323-356 (2005)

Zhao, J., Gomez-Perez, J.M., et al.. Why workflows break - understanding and
combating decay in taverna workflows. 2012 IEEE 8th International Conference
on E-Science 0, 1-9 (2012)

Zhao, X., Zhang, Y., et al.: Liquid: A scalable deduplication file system for virtual
machine images. IEEE Trans. on Paral. and Distr. Syst. PP(99) (2013)

http://www.executablepapers.com/
http://portal.futuregrid.org
http://www.w3.org/TR/owl2-overview/
http://www.stanford.edu/~vcs/Conferences/RoundtableNov212009/RoundtableOutputDeclaration.pdf
http://www.stanford.edu/~vcs/Conferences/RoundtableNov212009/RoundtableOutputDeclaration.pdf

	A Semantic-Based Approach to Attain Reproducibility of Computational Environments in Scientific Workflows: A Case Study

