
Integrity Protection for Scientific Workflow Data: Motivation
and Initial Experiences

Mats Rynge
Karan Vahi

Ewa Deelman
Information Sciences Institute - University of Southern

California

Anirban Mandal
Ilya Baldin

RENCI - University of North Carolina, Chapel Hill

Omkar Bhide
Randy Heiland
Von Welch
Raquel Hill

Indiana University

William L. Poehlman
F. Alex Feltus

Clemson University

ABSTRACT
With the continued rise of scientific computing and the enormous in-
creases in the size of data being processed, scientists must consider
whether the processes for transmitting and storing data sufficiently
assure the integrity of the scientific data. When integrity is not
preserved, computations can fail and result in increased computa-
tional cost due to reruns, or worse, results can be corrupted in a
manner not apparent to the scientist and produce invalid science
results. Technologies such as TCP checksums, encrypted transfers,
checksum validation, RAID and erasure coding provide integrity
assurances at different levels, but they may not scale to large data
sizes and may not cover a workflow from end-to-end, leaving gaps
in which data corruption can occur undetected. In this paper we
explore an approach of assuring data integrity - considering ei-
ther malicious or accidental corruption - for workflow executions
orchestrated by the Pegasus WorkflowManagement System. To val-
idate our approach, we introduce Chaos Jungle - a toolkit providing
an environment for validating integrity verification mechanisms
by allowing researchers to introduce a variety of integrity errors
during data transfers and storage. In addition to controlled experi-
ments with Chaos Jungle, we provide analysis of integrity errors
that we encountered when running production workflows.

ACM Reference Format:
Mats Rynge, Karan Vahi, Ewa Deelman, AnirbanMandal, Ilya Baldin, Omkar
Bhide, Randy Heiland, Von Welch, Raquel Hill, William L. Poehlman, and F.
Alex Feltus. 2019. Integrity Protection for Scientific Workflow Data: Motiva-
tion and Initial Experiences. In Practice and Experience in Advanced Research
Computing (PEARC ’19), July 28-August 1, 2019, Chicago, IL, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3332186.3332222

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7227-5/19/07.
https://doi.org/10.1145/3332186.3332222

1 INTRODUCTION AND MOTIVATION
Researchers are utilizing a variety of computing resources to exe-
cute their workflows. It is common to use local resources such as
campus cluster, national distributed cyber-infrastructures such as
XSEDE [31] or Open Science Grid [27][28], or cloud resources such
as Amazon AWS. Executing workflows across different resources
usually means adding additional data transfers and storage solu-
tions to the workflow, which can make it more difficult to ensure
that data was not corrupted in transit or at rest. At the same time,
the operational layers underneath the workflow execution can in-
still a false sense of security. For example, researchers utilizing
workflow technologies might have heard about technologies like
TCP checksums, encrypted transfers, checksum validation, RAID
and erasure coding, which all imply that the data is well protected
from corruption. However, issues such as TCP checksums being
too small for modern data sizes [29], possible gaps between tech-
nologies and implementations, configuration errors, and software
bugs can lead to integrity issues. Here are some examples which
are relevant to scientific workflow users:

• A CERN data integrity white paper [24] highlights low level
data corruption for data at rest on disk systems to have an
error rate at the 10−7 level. A similar study by NEC [11]
found that 1 in 90 SATA drives will experience silent data
corruption.

• Higher level data management tools like Globus Online have
explored data corruption scenarios, including the shortcom-
ings of TCP checksumming, and implemented their own user
space checksumming [23]

• A bug in Internet2 switches affected scientific data transfers
between XSEDE sites [12]: "XSEDE was notified recently by
Internet2 that an error was discovered on the devices that In-
ternet2 uses on its AL2S network that could possibly lead to
data corruption. This error could have affected approximately
0.001% of the data that traversed each AL2S device and was
undetectable by the standard TCP packet checksum."

• Another type of data corruption can take place when interac-
tions between different software systems fail. As an example,
a Pegasus user reported that her workflow had finished after

https://doi.org/10.1145/3332186.3332222
https://doi.org/10.1145/3332186.3332222

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA Rynge, et al.

spending over 10 years of core hours, with the final output
being a zero sized file [19]. The cause of this was a failed
transfer with stashcp [33]. Even though the transfer failed,
stashcp exited with apparent success - i.e. with an exit code
of 0. The faulty exit code signaled success to Pegasus, which
in turn decided to clean up all the intermediate workflow
data, and thus losing data.

Problems such as these motivated the Scientific Workflow In-
tegrity with Pegasus (SWIP) project [7], funded by the National
Science Foundation. A key goal of SWIP is to provide assurance
that any changes to input data, executables, and output data asso-
ciated with a given workflow can be efficiently and automatically
detected. Towards this goal, SWIP has integrated data integrity
protection into the Pegasus WMS. Integrating these protections
into a WMS allows us to take advantage of two aspects of WMSes:
(1) they can automatically handle routine tasks such as generating
and verifying integrity data which human researchers find tedious
and error-prone, and (2) they have a holistic view of a workflow,
allowing for integrity verification from end-to-end, catching errors
that occur between storage and transfer technologies, and other
software systems. We leverage these aspects of WMSes to provide
data integrity via the use of cryptographic hashes.

With the above goals in mind we have added new capabilities
to Pegasus WMS to automatically generate and track checksums
for both when inputs files are introduced and for the files that are
generated during execution. Pegasus 4.9.0 was released on October
31st, 2018. This is the first production release with integrity veri-
fication, enabled by default (opt-out). Existing Pegasus users who
upgrade will automatically receive the benefits from this work.

In addition to integrity protection, the SWIP project has devel-
oped Chaos Jungle - a toolkit that provides a controlled environment
for integrity experiments by allowing researchers to introduce a
variety of predictable network errors. This work is done to vali-
date our integrity protection work, both in terms of functionality
and in impact in terms of cost. Functionally, integrity protection
can be hard to test since it is easy to mistake a well-functioning
system from one that fails to detect errors. Chaos Jungle allows us
to predictably introduce errors, ensure that our integrity protec-
tion is working, and assess how the protection mechanisms impact
performance.

The rest of the paper is organized as follows. In section 2 we
detail changes to Pegasus WMS for integrity checking. In sections
3 we give an overview of Chaos Jungle. In section 4, we detail per-
formance overheads of Chaos Jungle evaluated using ExoGENI [15]
testbed using Chaos Jungle to inject errors. In section 5 we report
back real-world integrity errors detected in production workflows.
We end the paper with related work in section 6, future work and
and conclusions in section 7 and 8.

2 PEGASUS WORKFLOWMANAGEMENT
SYSTEM

Pegasus WMS provides a means for representing the workflow
of an application in an abstract form that is independent of the
resources available to run it and the location of data and executa-
bles. It plans these abstract workflows into an executable form by

querying information catalogs. During this planning phase, Pega-
sus adds data management tasks, which are responsible for staging
in input data from user specified locations, moving intermediate
data between compute environments, and staging out outputs to
a user defined file server. Pegasus also adds data cleanup nodes
that remove input and generated output data once the data is no
longer needed in the workflow. Pegasus WMS leverages a variety of
existing data management tools to do the transfers, dependent on
where the data is located, and transfer interfaces available on the
compute resources. Tasks on remote compute nodes are managed
by lightweight Pegasus instances called PegasusLite. PegasusLite is
responsible for staging in the input data for the task to the compute
node, launching the task and then staging-out the outputs to the
workflow staging site.

The executable workflows are deployed on local or remote dis-
tributed resources using the HTCondor DAGMan [30] workflow
engine, and often consume tens of thousands CPU hours and in-
volve transfer of terabytes of data. While some data management
tools provide checksum-checking capabilities (ensuring that check-
sum on transferred file is same as that on source), many of the
transfer tools do not. Since existing Pegasus users rely on a variety
of storage solutions, data access mechanisms, and transfer tools,
we have opted to implement end-to-end integrity verification at
the Pegasus level whereby the system tracks checksums of every
file used and generated as part of the workflow in its information
catalog.

2.1 Changes to Pegasus to Implement Integrity
Generation and Verification

During the process of planning an abstract workflow to an exe-
cutable workflow we now add checksum computation and integrity
checking steps. We have made extensions to our compute task
launching tool pegasus-kickstart to generate and publish sha256
checksums for output files created by a task in its provenance record.
The generated checksums are populated in Pegasus workflow-
monitoring catalog. Users are allowed to specify, along with the
file locations, sha256 checksums for raw input data in the replica
catalog. A new tool called pegasus-integrity-check computes check-
sums on files and compares them against existing checksum values.
PegasusLite has been modified to invoke pegasus-integrity-check
before launching any computational task. We also have extended
our transfer tool pegasus-transfer to invoke pegasus-integrity-check
after completing the transfer of files. Using these new tools and
extensions, we have been able to implement integrity checks in the
workflows at three levels:

(1) after the input data has been staged to staging server - pegasus-
transfer verifies integrity of the staged files.

(2) before a compute task starts on a remote compute node - This
ensures that checksums of the data staged in match the
checksums specified in the input replica catalog or the ones
computed when that piece of data was generated as part of
previous task in the workflow.

(3) after the workflow output data has been transferred to user
servers - This ensures that output data staged to the final
location was not corrupted in transit.

Integrity Protection for Scientific Workflow Data: Motivation and Initial ExperiencesPEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

Figure 1: Pegasus integrity verification in non-shared filesystem mode. Note how Pegasus has added integrity verification to
the PegasusLite wrapper, after the data transfer to the compute node (2,2’), right before the user specified code is executed.
After the code has completed, the produced data is immediately checksummed and the checksum is added to the workflow
metadata set, for use in subsequent checksum validations. Checksum validation also happens when input files are staged to
the staging server (1) and and after the outputs have been staged to the output site (3)

Figure 1 illustrates the points at which integrity verifications
are implemented. In our approach, the reference checksums for the
input files for a job are sent to the remote node where a job executes
using built-in HTCondor file transfer mechanism. This transfer
channel, in theory, may itself suffer from the same limitations of
data corruption that is used for data transfers. However, we believe
that any corruption in checksum data during transfer will result
in a job failing and not erroneously succeeding, which is what we
are trying to avoid. For a job to erroneously succeed, both input
checksum data has to be corrupted and the actual data file has
to be corrupted such that the computed checksum on the remote
node for the input file transferred matches the corrupted reference
checksum.

2.2 Changes to Capture Overhead of Checksum
Calculations

Adding checksum computation and integrity checks to the work-
flow can result in measurable overheads that affect both the work-
flow walltime (time to completion of a workflow as seen from
workflow submit node) and the total computational CPU units con-
sumed on remote resources. The amount of overhead depends on
data set size, workflow structure, data access patterns and the ratio
between amount of data and amount of computation.

To better understand these overheads and make the information
easily available to our users, we have updated Pegasus monitoring
infrastructure to parse this data (the time it takes to compute or ver-
ify the checksums) automatically and populate it in the provenance
database[32]. The data is captured and aggregated at a job level.
For each job, Pegasus records the total time spent on computing
checksum or verifying checksum for input and output files, and any

failures and retries that happen in the workflow because of caught
integrity errors. The data is available via the command line tool
pegasus-statistics. See section 4.3 for an example. Our motivation
to provide this information is two-fold. First, we want to present
to our users a clear understanding of the overheads incurred by
integrity verifications. Second, we want to communicate to users
the benefits incurred by capturing job failures because of corrupted
data that may have passed undetected earlier.

3 CHAOS JUNGLE / TESTBED
One of the challenges we faced was how we could reliably and
repeatably test integrity protections introduced in Pegasus. For
that purpose, we decided to leverage the ExoGENI testbed [15]
for creating virtual infrastructure, and then introduce deliberate
impairments into the virtual infrastructure to test integrity pro-
tection for workflows. ExoGENI allows users to create mutually
isolated slices of interconnected infrastructure from multiple in-
dependent providers (compute, network, and storage) by taking
advantage of existing virtualization mechanisms and integrating
various resources together, including Layer-2 dynamic-circuit net-
works, software defined networks, and private clouds.

The goal of the Chaos Jungle software [3] is to introduce differ-
ent kinds of impairments into the virtual infrastructure - network,
compute, storage. In this work, we execute the Chaos Jungle soft-
ware on virtual infrastructure provisioned by ExoGENI, e.g. on
virtual ExoGENI compute nodes used for workflow computations.
In this section, we describe how we use Chaos Jungle to introduce
a specific kind of impairment - network impairments for data trans-
fers. More specifically, we describe how we mangle data packets
during data transfers between virtual compute nodes such that the

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA Rynge, et al.

checksums still remain valid but data is already corrupted when it
reaches the receiver compute node.

We leverage the Linux eBPF (extended Berkeley Packet Filters)
functionality [4] for this purpose. eBPF programs can be inserted
into various points in a running kernel: kprobe, uprobe, and various
portions of the networking stack (TC [5], XDP [10] etc.). The kernel
needs to support this feature and many modern kernels do. The
eBPF programs can be used to perform various kinds of profiling
unobtrusively e.g. tracing system calls, I/O behavior, network be-
havior etc. Before being inserted into the kernel, the eBPF programs
are checked by a verifier to ensure termination. eBPF programs are
written in a language that mimics a subset of C. The BCC toolkit [1]
makes it easy to write eBPF programs by combining Python and
eBPF programs written in C. The BCC toolchain handles the tasks
of compilation and insertion into the kernel.

In our setup, we use either the TC hook or the XDP hook to load
an eBPF program into a running kernel at the receiving host. This
eBPF program performs the packet mangling. It inspects received
packets and modifies some of those that match given flow descrip-
tors described by a common tuple consisting of source, destination
IP addreses, protocol number and TCP or UDP port, without af-
fecting the appropriate checksums. The packets thus look valid
on the receiving end, however contain invalid data. The difference
between attaching to TC hook versus the XDP hook is that while
using the TC hook, the eBPF program sees the packets after it
enters the networking stack, and hence can leverage the sk_buff
data structure. While using the XDP hook, the eBPF program sees
the packets much earlier - between the network driver and the
networking stack, and hence is faster to use; however, it has the
disadvantage of a limited NIC driver compatibility, as it requires
the driver to pass the received frame in as a single memory page.

4 EVALUATION
In order to validate our implementation for integrity verification
in Pegasus we decided on a two-pronged approach. We leveraged
the Chaos Jungle to do a series of controlled workflow experiments
to demonstrate that as we increase rate of data corruption, the
number of job failures that are detected increase. We also deployed
a version of Pegasus that had integrity verifications enabled for a
subset of our users running large workflows on Open Science Grid,
to check if integrity errors are detected in the wild, and determine
the overhead on a real science workflow. We first describe the
performance overheads of Chaos Jungle in 4.1, before describing
the experiments conducted to validate our approach in 4.2. We also
evaluate the overhead of checksum calculations in 4.3.

4.1 Performance Overheads of Chaos Jungle
In this section, we present our evaluation of the performance over-
heads of the Chaos Jungle software itself. We ran the experiments
using two VMs on an ExoGENI rack, which were connected by a
link of varying bandwidths. The link bandwidth was varied from
100Mb/s to 2000Mb/s. One of the VMs acted as the sender of packets
and the other acted as a receiver. The Chaos Jungle software, when
used, was executed on the receiver VM to mangle incoming packets.
We used the nuttcp tool [6] to perform the data transfers, with the
nuttcp server running on the receiver VM and the nuttcp client

System CPU utilization for different bandwidths

100 Mb/s 500 Mb/s 1000 Mb/s 1500 Mb/s 2000 Mb/s

Transfer bandwidth

0

2

4

6

8

10

12

%
 C

P
U

 U
ti
liz

a
ti
o

n
 (

s
y
s
te

m
)

Without Chaos Jungle

With Chaos Jungle

Figure 2: System CPU Utilization overheads of packet man-
gling with and without Chaos Jungle for different band-
widths.

running on the sender VM. We used the sar tool [9] to measure the
system CPU utilization on the receiver VM. There were no other
activities running on the VMs. We repeated each experiment 10
times. We measured the system CPU utilization during the data
transfers for both cases, once with Chaos Jungle enabled and once
with Chaos Jungle disabled.

Figure 2 shows the plots of system CPU utilization for different
bandwidths, with and without Chaos Jungle enabled. We observed
that the system CPU utilization increases with increasing band-
width for both cases. This is expected because the kernel networking
functions are performing more work as the bandwidth increases.
The more important observation is that the overhead of using the
Chaos Jungle software is minimal, which is the height difference
between the blue and the yellow bars. We observe that the Chaos
Jungle overhead is between 1.4 to 3.8% for bandwidths 500 Mb/s and
beyond. The overhead is about 19% for 100Mb/s, but with very low
absolute values of system CPU utilization, which can be ignored
for practical purposes. Hence, we can infer from this result that
using the Chaos Jungle software during the experiments described
in the following sections, doesn’t by itself introduce any significant
overheads.

4.2 Chaos Jungle Workflow Experiments
The Chaos Jungle was used to validate and experiment with the
Pegasus integrity implementation. The goal was two-fold:

• ensure that Pegasus would detect corrupted data files, and
• handle those failures in a graceful manner.

Chaos Jungle was configured similar to setup described in the pre-
vious section, but with one master node, four worker nodes, and a
data node that hosted the input data for the workflows. The mas-
ter and worker nodes constituted the HTCondor pool used by the
workflows. Chaos Jungle was executed on the worker nodes. The
worker nodes fetched the input data from the data node and were
the data receivers in this experiment.

For driving the testing, we used a modified version of a pro-
duction workflow: OSG-KINC [25] [17] from the Feltus group at
Clemson University. OSG-KINC is a systems biology workflow that
inputs N ×M floating point gene expression matrices, calculates
condition-specific gene correlations for billions of pairwise gene

Integrity Protection for Scientific Workflow Data: Motivation and Initial ExperiencesPEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

Figure 3: The number of workflows finishing successfully
for each Chaos Jungle error rate, and with the number of
job tries set to 3.

combinations, and outputs a gene correlation graph that represents
complex interaction patterns of biological molecules. The workflow
was configured to use http for getting data to the jobs, and scp to
store data back to the staging site. The choice of protocols here is
important, as different protocols have different amounts of built-in
protection against low level TCP errors. http has no extra built in
protection, while scp terminates connections with TCP errors due
to the end-to-end encryption algorithm. Thus, the errors in this
experiment were all due to errors in the data fetching over http.
Even though we knew the scp based transfers would not add to the
experiment, the workflow was kept in this configuration as it is the
way some users run the workflow in cloud execution environments
and we wanted to mimic a real world production setup as far as
possible.

We devised six experiments. The first two were baseline runs
without any Chaos Jungle error injection, with Pegasus integrity
checking enabled and disabled. The remaining four experiments
were for the different error injection rates 1/10000, 1/5000, 1/2000
and 1/1000. For example, 1/10000 means that Chaos Jungle would
mangle 1 packet out of 10000. For each experiment, 5 workflows
were executed, each containing 686 jobs. Pegasus was configured
to retry failed jobs a maximum of 3 times.

The purpose of these experiments was to look for error rates
for which Pegasus is able to overcome the problem by retrying the
failed jobs and as a result executing the workflow to completion
successfully, and then error rates for which even retries would not
be able to make the workflow complete. Figure 3 and Figure 4 show
the results of the experiments. The former shows the 5 workflow
executions for each case, and how Pegasus has no problem finishing
all 5 runs for the two base line cases and the 1/10000 case. At 1/5000,
only 2 out of the 5 workflows manage to succeed, and at 1/2000 and
1/1000 no workflows are able to finish.

Figure 4 highlights averages of the numbers of successful, retried
and failed jobs across the 5 runs. The baseline cases only contain
successful jobs. The 1/10000 case finished successfully, after an
average of 12 job retries. For 1/5000, which is the breakover case of
2 out of 5 workflows finishing, we have an average of 39 job retries,
and 1 job failing 3 times. As expected, the 1/2000 and 1/1000 cases
have even higher job retries (67 and 172) and failed jobs (4 and 34).

Figure 4: The average number of successful, retried and
failed jobs for each Chaos Jungle error rate, and with the
number of job tries set to 3. 1/5000 is the breakover case
for which 39 of 686 jobs had to be retried and 1 of those ex-
hausted all 3 tries to make the workflow ultimately fail.

Figure 5: By increasing the number of allowed job tries, the
workflows can bemade to finish successfully even under the
higher error injection rates.

With these results in mind, we used Chaos Jungle to explore
another dimension of the tests. By increasing the number of allowed
job tries, workflows could be made successful even under the higher
error injection rates. These results can be seen in Figure 5. Note
that for production workflows, we do not recommend high job
retries settings, as there are many reason a job could be retried,
and integrity errors are just one of the reasons. In most cases, it is
better for the workflow to stop execution after a small number of
retries, and have the user examine the problem. This is easily done
with the included pegasus-analyzer tool, and if it is determined that
the workflow should be given more retries, the workflow can be
restarted from the current state but with a new set of retries with
the pegasus-run command.

4.3 Overhead of Checksum Calculations
A concern when augmenting a workflow with additional steps for
calculating and verifying the checksums is the introduced execution
time overhead. For synthetic workflows, we can see an overhead of
7%. However, in production workflows which has a much higher
compute time to data size ratio, we have found the overhead to be
much lower than 1%. To illustrate this point, consider the results

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA Rynge, et al.

from a 1,000 job OSG-KINC production workflow. The results from
pegasus-statisitcs on this run can be found in Listing 1.

For this workflow, 14 minutes of computing time was used com-
puting and comparing checksums for the files referred to in the
workflow in contrast to 17 days and 23 hours of computing time to
run the workflow. This results in an overhead of 0.054% incurred
by the integrity verification.

A second example is Ariella Gladstein’s population modeling
workflow [20]. A 5,000 job workflow used up 167 days and 16
hours of core hours, while spending 2 hours and 42 minutes doing
checksum verification, with an overhead of 0.068%.

A smaller example is the Dark Energy Survey Weak Lensing
Pipeline [16] with 131 jobs. It used up 2 hours and 19 minutes of
cumulative core hours, and 8 minutes and 43 seconds of checksum
verification. The overhead was 0.062%.

While we believe the examples above are representative of av-
erage compute intensive workflows, the overhead will vary from
user to user due to factors like workflow structure, and the ratio of
compute time to data size.

5 INTEGRITY ISSUES DETECTED IN
PRODUCTIONWORKFLOWS

When the SWIP project was initiated, an open question was how
frequent real-world integrity errors would be detected. One ex-
treme outcome could be that the integrity issues would always
be caught by the infrastructure, and Pegasus would never be the
one detecting the issues. Due to this concern, we selected a set of
friendly users to start executing with the new version of Pegasus.
The users were selected based on their workload (large number of
jobs in a distributed execution environment, resulting in a large
number of data transfers), as well as the data transfer protocols
used (no encryption to aid the infrastructure detecting integrity
issues, plain http for example). Using these early adopters, we have
been able to detect a set of real-world integrity issues.

One user affected is the Feltus group at Clemson University,
running the OSG-KINC [25] and OSG-GEM [26] workflows on
Open Science Grid. OSG-GEM calculates the floating point matrix
input for OSG-KINC from multi-GB DNA deep sequence datasets.
We have found two production instances where Pegasus detected
integrity problems.

The first instance, kinc-1522378583, was executed in April 2018. It
had 50,606 jobs, ran for 3 days, and used up almost 4 years of cumu-
lative CPU core hours. The workflow finished successfully after 224
automatic job retries. Of those job retries, 60 were from detected
integrity checksum errors. The 60 integrity errors all happened
across 3 compute nodes:

• 1 input file error at University of Colorado.
• 3 input file (kinc executable) errors at University of Nebraska.
The timespan across the failures was 16 seconds.

• 56 input file errors on a different compute node at University
of Nebraska. The timespan across the failures was 1,752
seconds.

The grouping of the errors, both spatial and temporal, can be
explained by the data transfer tools used in this case, stashcp and
CVMFS [33]. Data is cached at the node level, compute site level,
and in regional caches. As CVMFS does checksumming during the

data transfers, we suspect that cache corruption is to blame, at least
for case 2 and 3. That would explain why the same file kept failing
on the same node for a short period of time. However, definite proof
of this theory was impossible to obtain as the problematic files had
been purged from the cache when the error analysis took place.

A second production workflow failed in May of 2018. This time it
was OSG-GEM (instance osg-gem-1525147773), an even larger work-
flow with 168,678 jobs and over 3.2 million data transfers. Pegasus
detected 331 integrity errors and, just like the previous workflow,
the errors are grouped in a manner which implies cache corruption.
171 errors were on the same site, same file, with the same corrupt
checksum (that is, the same broken file was downloaded over and
over again), over a time span of 5 hours and 20 minutes. The re-
maining 160 errors are slightly more spread out, but still has some
patterns to them. For example, 93 of those were at at University
of Connecticut. In that set, the files and checksum differed, but
being clustered like that at one site points to a local infrastructure
problem.

It is important to point out that stashcp and using CVMFS for
data distribution like this is something still under active develop-
ment on the Open Science Grid. We have brought these findings to
the developers. It is unclear if we have hit the same bug over and
over again in the system, or if the errors shows a larger infrastruc-
ture problem in the distribution and caching of the data. The take
away message is that by turning on integrity verification, Pegasus
protected the researcher’s data by detecting the errors, enabling
the workflow to continue using job retries, and providing a report
of the issues encountered on a run which, from the point of view
of the researcher, was a successful workflow execution.

Another user, Nepomuk Otte from the VERITAS project [13], is
using the Open Science Grid to compare the recorded images from
the VERITAS telescope with simulated ones to find out if a shower
was produced by an actual gamma ray or a cosmic ray, which would
be a background event. One difference compared to the Feltus’
workflows, is that intermediate files in the workflow are stored in
a CEPH object store, and accessed via the provided S3-compatible
interface [2]. Similar to the stashcp transfer, S3 in this setup is using
plain http, but there is no caching of the data. Therefore, we do not
see the same grouping and the related clues when integrity errors
do happen. The errors are more evenly distributed. For example, one
workflow consisting of 120,000 jobs, detected 48 integrity errors.
This comes out to a 0.04% error rate, or about 1 in 2,500 transfers
failing. Due to the size of these workflows, it takes time until enough
have been run to gather statistically significant numbers. Thus, we
consider these interesting anecdotal data points, but there is not
yet enough data to draw specific conclusions about infrastructure
wide failure rates. Regarding the cause of the issues, there are
a set of possibilities such as corruption introduced in the plain
http stream or bugs in the CEPH S3 gateway or the pegasus-s3
command line tool. Determining, diagnosing and reporting the
causes to infrastructure operators or developers will be addressed
in a project follow-on, but in the meantime, note that just like the
previous example, the 48 errors were properly detected and handled
with job retries, resulting in a successful workflow execution.

Integrity Protection for Scientific Workflow Data: Motivation and Initial ExperiencesPEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

Type Succeeded F a i l e d Incomp l e t e To t a l R e t r i e s To t a l + R e t r i e s
J ob s 1606 0 0 1606 31 1637

Workflow wa l l t ime : 7 hrs , 59 mins
Cumula t ive j ob wa l l t ime : 17 days , 23 hr s
I n t e g r i t y Me t r i c s
3944 f i l e s checksums compared with t o t a l d u r a t i o n o f 9 mins , 18 s e c s
1947 f i l e s checksums gene r a t ed with t o t a l d u r a t i o n o f 4 mins , 37 s e c s
I n t e g r i t y E r r o r s
F a i l u r e s : 0 j o b s encoun te red i n t e g r i t y e r r o r s

Listing 1: Output of the pegasus-statistics tool showing the checksum overhead

6 RELATEDWORK
This project touches on several broad topics: data integrity, work-
flows, testing environments, software security, etc., each of which
has a significant amount of related work. For example, secure hash-
ing algorithms, used to ensure data integrity, have evolved for over
30 years. However, for the specific combination of topics that we
address, there seems to be little related work. In a prototype project
involving the Kepler scientific workflow engine [21], a data in-
tegrity check was added consisted of “on-hash” and “post-hash”
operations; the former when data is being used, the latter when the
workflow terminates. In related work, the authors assessed the run-
time overhead of their approach [22]. However, to our knowledge,
the integrity checking was never incorporated into Kepler itself.

Data integrity for data at rest has seen plenty of research and
implementations, such as for ZFS [34] and cloud object stores [14].
Integrity of data in transit has been explored for example by the
Globus Online team [18] as well as integrated into the secure file
copy (scp) tool. What we are arguing in this paper is that having
trustworthy storage and transfers are just pieces of the puzzle -
what computational scientists need are end-to-end solutions during
the full lifetime of the scientific data.

Large scientific collaborations such as LIGO Scientific Collabora-
tion recognize the importance of data integrity and have taken steps
to build checksumming[8] into their frame file format that is used
to describe the data coming from the LIGO detectors. LIGO analysis
code checks for checksum when working with these frame files.
Checksums are computed and similarly enforced only for some
(but not all) intermediate and derived data products generated by
the analysis pipelines, but not for the executables or workflow
metadata.

7 FUTUREWORK
In this paper we have shown that data integrity can be a major issue
for computational based research. We have implemented an end-to-
end solution in the Pegasus WMS, provided experimental data from
our testbed, and analysis of data integrity problems of real world
production workflows. Contemplating these issues, implementing,
and testing our approach has been a wonderful mix of computer
science and software engineering. We are aware that there is still
much work to be done.

Our work so far has raised some interesting questions:
What is the impact of these integrity errors? It is an interesting

intellectual exercise to contemplate what the impact of these errors

could have been on the workflow if they were not detected by Pega-
sus. There is no guarantee that the code would even have detected
the issue. The error detected when downloading the executable
could have been in, for example, a conditional section or function
which would not have been executed with the given options and
data. Or, corruption could have lead to a fatal exception. Worst
case would have been a silent error which affected the computation.
Similarly, input data corruption could have been detected by the
code, not had any impact, or introduced faulty data which could
have produced faulty results silently.

How should responsibility for integrity be distributed? Ulti-
mately, the goal is to provide data integrity protection for the
entirety of a research workflow. While a WMS can provide such
protections for the portions of the workflow it manages, many scien-
tific workflows will have aspects that are beyond the control of the
WMS. This implies the responsibility must be shared between the
researcher and the CI provider. If so, the delineation for this respon-
sibility is not clear at this time, meaning there are potential gaps
in workflows where responsibility for data integrity is not clear. In
so far as data integrity is a necessary aspect of reproducibility, this
implies a risk to reproducibility.

How does one diagnosis an integrity error? An open question
we are contemplating is how much effort to put into diagnosing
the source of integrity errors. Our goal is to provide integrity of
workflow data, but as a side effect we are detecting what may be
serious issues in the underlying infrastructure which ideally would
be reported to an appropriate operator to be addressed. However our
real world experience has demonstrated, as described in section 5,
more data is needed to diagnose the source of a problem as opposed
to simply retrying when a problem is detected. Hence, we plan
to develop an integrity analysis framework that collects integrity
relevant data from the infrastructure and applications, and utilizes
offline and online ML-based algorithms to automatically detect,
analyze and pinpoint source of integrity anomalies. To develop
the framework, we plan to engage in an integrated approach of
testbed experimentation,MLmodel training usingworkflow data on
testbeds, and ML model validation on production CI for real world
workflows. We plan to integrate more features into Chaos Jungle to
enable experimentation with data corruption at multiple layers and
within multiple subsystems. As our investigation demonstrated, it is
important to test and validate all elements of the infrastructure for
resilience to data corruption, thus requiring a complex environment
that allows us to perform repeatable experiments with different
combinations of conditions.

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA Rynge, et al.

At this point, Pegasus can do integrity verification for workflows
executed in non-shared filesystem deployments, where jobs are
launched using the lightweight job wrapper Pegasus Lite on the re-
mote worker node. However, Pegasus Lite is not used to launch jobs
in certain shared filesystem deployments such as when launching
MPI jobs. For such scenarios, we plan to update Pegasus to add
separate data integrity check jobs to the workflow. This will allow
compute jobs to start in parallel with data integrity jobs, and a
workflow failure will be triggered if any of the data integrity jobs
fail.

8 CONCLUSION
Our work has added integrity protection to the Pegasus WMS and
demonstrated data integrity errors occurring on cyberinfrastructure.
This raises a question about the extent to which cyberinfrastucture
can guarantee data integrity and, if it cannot, what the impact of
data integrity flaws will be and how responsibility for data integrity
should be distributed between researchers and cyberinfrastructure
operators.

ACKNOWLEDGMENTS
The Scientific Workflow Integrity with Pegasus (SWIP) Project is
supported by the National Science Foundation under grant 1642070,
1642053, and 1642090. Pegasus is funded by The National Science
Foundation under OAC SI2-SSI program, grant 1664162. This re-
search was done using resources provided by the Open Science
Grid [27] [28], which is supported by the National Science Founda-
tion award 1148698, and the U.S. Department of Energy’s Office of
Science. The views expressed do not necessarily reflect the views
of the National Science Foundation or any other organization.

REFERENCES
[1] [n. d.]. BPF Compiler Collection (BCC). https://github.com/iovisor/bcc.
[2] [n. d.]. CEPH Object Gateway. http://docs.ceph.com/docs/mimic/radosgw/.
[3] [n. d.]. Chaos Jungle. https://github.com/RENCI-NRIG/chaos-jungle.
[4] [n. d.]. Linux Enhanced BPF (eBPF) Tracing Tools. http://www.brendangregg.

com/ebpf.html.
[5] [n. d.]. Linux Traffic Control. https://www.tldp.org/HOWTO/html_single/

Traffic-Control-HOWTO/.
[6] [n. d.]. nuttcp. https://www.nuttcp.net/.
[7] [n. d.]. Scientific Workflow Integrity with Pegasus project. https://cacr.iu.edu/

projects/swip/.
[8] [n. d.]. Specification of a Common Data Frame Format for Interferometric

GravitationalWaveDetectors (IGWD). https://dcc.ligo.org/LIGO-T970130/public/
main.

[9] [n. d.]. SYSSTAT Utilities. http://sebastien.godard.pagesperso-orange.fr/
documentation.html.

[10] [n. d.]. XDP - eXpress Data Path. https://prototype-kernel.readthedocs.io/en/
latest/networking/XDP/.

[11] 2009. Silent data corruption in disk arrays: A solution. Technical Report. https:
//www.necam.com/docs/?id=54157ff5-5de8-4966-a99d-341cf2cb27d3

[12] 2012. XSEDE Network Status. Technical Report. https://portal.xsede.org/
user-news/-/news/item/6390

[13] V. A. Acciari, M. Beilicke, G. Blaylock, S. M. Bradbury, J. H. Buckley, V. Bugaev, Y.
Butt, O. Celik, A. Cesarini, L. Ciupik, P. Cogan, P. Colin, W. Cui, M. K. Daniel, C.
Duke, T. Ergin, A. D. Falcone, S. J. Fegan, J. P. Finley, G. Finnegan, P. Fortin, L. F.
Fortson, K. Gibbs, G. H. Gillanders, J. Grube, R. Guenette, G. Gyuk, D. Hanna, E.
Hays, J. Holder, D. Horan, S. B. Hughes, M. C. Hui, T. B. Humensky, A. Imran,
P. Kaaret, M. Kertzman, D. B. Kieda, J. Kildea, A. Konopelko, H. Krawczynski, F.
Krennrich, M. J. Lang, S. LeBohec, K. Lee, G. Maier, A. McCann, M. McCutcheon,
J. Millis, P. Moriarty, R. Mukherjee, T. Nagai, R. A. Ong, D. Pandel, J. S. Perkins,
M. Pohl, J. Quinn, K. Ragan, P. T. Reynolds, H. J. Rose, M. Schroedter, G. H.
Sembroski, A. W. Smith, D. Steele, S. P. Swordy, A. Syson, J. A. Toner, L. Valcarcel,
V. V. Vassiliev, S. P. Wakely, J. E. Ward, T. C. Weekes, A. Weinstein, R. J. White,
D. A. Williams, S. A. Wissel, M. D. Wood, and B. Zitzer. 2008. Observation of

Gamma-Ray Emission from the Galaxy M87 above 250 GeV with VERITAS. The
Astrophysical Journal 679, 1 (2008), 397. https://doi.org/10.1086/587458

[14] M. F. Al-Jaberi and A. Zainal. 2014. Data integrity and privacymodel in cloud com-
puting. In 2014 International Symposium on Biometrics and Security Technologies
(ISBAST). 280–284. https://doi.org/10.1109/ISBAST.2014.7013135

[15] Ilya Baldin, Jeff Chase, Yufeng Xin, Anirban Mandal, Paul Ruth, Claris Castillo,
Victor Orlikowski, Chris Heermann, and Jonathan Mills. 2016. ExoGENI: A
multi-domain infrastructure-as-a-service testbed. In The GENI Book. Springer,
279–315.

[16] Chihway Chang, MichaelWang, and Scott et al Dodelson. 2019. A unified analysis
of four cosmic shear surveys. Monthly Notices of the Royal Astronomical Society
482, 3 (2019), 3696–3717. https://doi.org/10.1093/mnras/sty2902

[17] Stephen P. Ficklin, Leland J. Dunwoodie, William L. Poehlman, Christopher
Watson, Kimberly E. Roche, and F. Alex Feltus. 2017. Discovering Condition-
Specific Gene Co-Expression Patterns Using Gaussian Mixture Models: A Can-
cer Case Study. Scientific Reports 7, 1 (2017), 8617. https://doi.org/10.1038/
s41598-017-09094-4

[18] I. Foster. 2011. Globus Online: Accelerating and Democratizing Science through
Cloud-Based Services. IEEE Internet Computing 15, 3 (May 2011), 70–73. https:
//doi.org/10.1109/MIC.2011.64

[19] Ariella Gladstein and Mats Rynge. 2017. Personal email communication.
[20] Ariella L Gladstein and Michael F Hammer. 2018. Substructured population

growth in the Ashkenazi Jews inferred with Approximate Bayesian Computation.
(2018). https://doi.org/10.1093/molbev/msz047

[21] D. Kim and M. A. Vouk. 2015. Securing Scientific Workflows. In 2015 IEEE
International Conference on Software Quality, Reliability and Security - Companion.
95–104. https://doi.org/10.1109/QRS-C.2015.25

[22] Donghoon Kim and Mladen A Vouk. 2016. Assessing Run-time Overhead of
Securing Kepler. Procedia Computer Science 80, C (2016), 2281–2286.

[23] S. Liu, E. S. Jung, R. Kettimuthu, X. H. Sun, and M. Papka. 2016. Towards op-
timizing large-scale data transfers with end-to-end integrity verification. In
2016 IEEE International Conference on Big Data (Big Data). 3002–3007. https:
//doi.org/10.1109/BigData.2016.7840953

[24] Bernd Panzer-Steindel. 2007. Data Integrity. Technical Report.
https://indico.cern.ch/event/13797/contributions/1362288/attachments/
115080/163419/Data_integrity_v3.pdf

[25] W. L. Poehlman, M. Rynge, D. Balamurugan, N. Mills, and F. A. Feltus. 2017.
OSG-KINC: High-throughput gene co-expression network construction using
the open science grid. In 2017 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM). 1827–1831. https://doi.org/10.1109/BIBM.2017.8217938

[26] William L. Poehlman, Mats Rynge, Chris Branton, D. Balamurugan, and Frank A.
Feltus. 2016. OSG-GEM: Gene Expression Matrix Construction Using the Open
Science Grid. Bioinformatics and Biology Insights 10 (2016), BBI.S38193. https:
//doi.org/10.4137/BBI.S38193

[27] Ruth Pordes, Don Petravick, Bill Kramer, Doug Olson, Miron Livny, Alain Roy,
Paul Avery, Kent Blackburn, Torre Wenaus, Frank WÃĳrthwein, Ian Foster, Rob
Gardner, Mike Wilde, Alan Blatecky, John McGee, and Rob Quick. 2007. The
Open Science Grid. Journal of Physics: Conference Series 78, 1 (2007), 012057.
https://doi.org/10.1088/1742-6596/78/1/012057

[28] I. Sfiligoi, D. C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi, and F. Wurthwein.
2009. The Pilot Way to Grid Resources Using glideinWMS. In 2009 WRI World
Congress on Computer Science and Information Engineering, Vol. 2. 428–432. https:
//doi.org/10.1109/CSIE.2009.950

[29] J. Stone, M. Greenwald, C. Partridge, and J. Hughes. 1998. Performance of
checksums and CRCs over real data. IEEE/ACM Transactions on Networking 6, 5
(Oct 1998), 529–543. https://doi.org/10.1109/90.731187

[30] Douglas Thain, Todd Tannenbaum, andMiron Livny. 2005. Distributed computing
in practice: the Condor experience. Concurrency - Practice and Experience 17, 2-4
(2005), 323–356.

[31] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood,
S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-
Diehr. 2014. XSEDE: Accelerating Scientific Discovery. Computing in Science &
Engineering 16, 5 (Sept.-Oct. 2014), 62–74. https://doi.org/10.1109/MCSE.2014.80

[32] K. Vahi, I. Harvey, T. Samak, D. Gunter, K. Evans, D. Rogers, I. Taylor, M. Goode,
F. Silva, E. Al-Shkarchi, G. Mehta, A. Jones, and E. Deelman. 2012. A General
Approach to Real-Time Workflow Monitoring. In 2012 SC Companion: High
Performance Computing, Networking Storage and Analysis. 108–118. https://doi.
org/10.1109/SC.Companion.2012.26

[33] Derek Weitzel, Brian Bockelman, Dave Dykstra, Jakob Blomer, and Ren Meusel.
2017. Accessing Data Federations with CVMFS. Journal of Physics: Conference
Series 898, 6 (2017), 062044. https://doi.org/10.1088/1742-6596/898/6/062044

[34] Yupu Zhang, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. 2010. End-to-end Data Integrity for File Systems: A ZFS Case
Study. In FAST.

https://github.com/iovisor/bcc
http://docs.ceph.com/docs/mimic/radosgw/
https://github.com/RENCI-NRIG/chaos-jungle
http://www.brendangregg.com/ebpf.html
http://www.brendangregg.com/ebpf.html
https://www.tldp.org/HOWTO/html_single/Traffic-Control-HOWTO/
https://www.tldp.org/HOWTO/html_single/Traffic-Control-HOWTO/
https://www.nuttcp.net/
https://cacr.iu.edu/projects/swip/
https://cacr.iu.edu/projects/swip/
https://dcc.ligo.org/LIGO-T970130/public/main
https://dcc.ligo.org/LIGO-T970130/public/main
http://sebastien.godard.pagesperso-orange.fr/documentation.html
http://sebastien.godard.pagesperso-orange.fr/documentation.html
https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/
https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/
https://www.necam.com/docs/?id=54157ff5-5de8-4966-a99d-341cf2cb27d3
https://www.necam.com/docs/?id=54157ff5-5de8-4966-a99d-341cf2cb27d3
https://portal.xsede.org/user-news/-/news/item/6390
https://portal.xsede.org/user-news/-/news/item/6390
https://doi.org/10.1086/587458
https://doi.org/10.1109/ISBAST.2014.7013135
https://doi.org/10.1093/mnras/sty2902
https://doi.org/10.1038/s41598-017-09094-4
https://doi.org/10.1038/s41598-017-09094-4
https://doi.org/10.1109/MIC.2011.64
https://doi.org/10.1109/MIC.2011.64
https://doi.org/10.1093/molbev/msz047
https://doi.org/10.1109/QRS-C.2015.25
https://doi.org/10.1109/BigData.2016.7840953
https://doi.org/10.1109/BigData.2016.7840953
https://indico.cern.ch/event/13797/contributions/1362288/attachments/115080/163419/Data_integrity_v3.pdf
https://indico.cern.ch/event/13797/contributions/1362288/attachments/115080/163419/Data_integrity_v3.pdf
https://doi.org/10.1109/BIBM.2017.8217938
https://doi.org/10.4137/BBI.S38193
https://doi.org/10.4137/BBI.S38193
https://doi.org/10.1088/1742-6596/78/1/012057
https://doi.org/10.1109/CSIE.2009.950
https://doi.org/10.1109/CSIE.2009.950
https://doi.org/10.1109/90.731187
https://doi.org/10.1109/MCSE.2014.80
https://doi.org/10.1109/SC.Companion.2012.26
https://doi.org/10.1109/SC.Companion.2012.26
https://doi.org/10.1088/1742-6596/898/6/062044

	Abstract
	1 Introduction and Motivation
	2 Pegasus Workflow Management System
	2.1 Changes to Pegasus to Implement Integrity Generation and Verification
	2.2 Changes to Capture Overhead of Checksum Calculations

	3 Chaos Jungle / Testbed
	4 Evaluation
	4.1 Performance Overheads of Chaos Jungle
	4.2 Chaos Jungle Workflow Experiments
	4.3 Overhead of Checksum Calculations

	5 Integrity Issues Detected in Production Workflows
	6 Related Work
	7 Future Work
	8 Conclusion
	References

