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Abstract—Scientific workflows, which capture large compu-
tational problems, may be executed on large-scale distributed
systems such as Clouds. Determining the amount of resources
to be provisioned for the execution of scientific workflows isa
key component to achieve cost-efficient resource management and
good performance. In this paper, a performance prediction model
is presented to estimate execution time of scientific workflows
for a different number of resources, taking into account their
structure as well as their system-dependent characteristics. In
the evaluation, three real-world scientific workflows are used to
compare the estimated makespan calculated by the model with
the actual makespan achieved on different system configurations
of Amazon EC2. The results show that the proposed model can
predict execution time with an error of less than 20% for over
96.8% of the experiments.

I. I NTRODUCTION

In many scientific domains, a workflow, typically modelled
as a Directed Acyclic Graph (DAG), is used to abstract
complex computational jobs and describe data dependencies
between them [1]. Large-scale distributed systems, such as
clusters and grids, have been widely used to execute workflow
applications [2], [3]. Recently, the use of cloud computing
infrastructures is gaining popularity by offering users several
options and benefits compared to traditional high performance
environments, especially when it comes to provisioning re-
sources on demand.

A challenge that arises in a cloud computing environment
is to determine the number of resources (or slots) to allocate
for the cost-efficient execution of scientific workflows. Using a
large number of resources may result in small execution time,
however, at the expense of a high monetary cost. In some
cases, a slightly longer execution time may be tolerated if this
comes at a significantly lower monetary cost. Thus, in order
to use a cloud infrastructure efficiently, some ability to predict
the workflow execution time (or makespan) is needed in order
to decide how many resources to provision.

Typically, the makespan is affected by the number of
resources used, the structure of the scientific workflow but
also task and data communication characteristics. For example,
independent tasks may be executed in parallel; then, by allocat-
ing a large number of resources a small application makespan
can be obtained. In other cases where the tasks can only be
executed sequentially, execution time will not be affectedif
additional resources are added.
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In this paper, a model to estimate the makespan of scientific
workflows for a given number of resources is proposed. This
performance model takes into account the structure of the
scientific workflow and the runtime characteristics of its tasks,
using task runtime information from different runs. To capture
the structure of the workflow, alevel-based estimation model,
which divides workflow tasks into levels on the basis of data
dependencies between them and calculates the characteristics
of each level based on task runtimes, is proposed to predict
workflow execution time. As opposed to related work [4], [5]
the main difference of the performance model proposed in
this paper is that it focuses on the structure of the scientific
workflow, which enables prediction using minimal information
about runtime characteristics of the tasks. This is achieved by
assigning (grouping) the tasks of a workflow into levels and
estimating the performance at each level. Thus, knowing the
runtime characteristics of the tasks when executed on a small
number of resources is sufficient to provide good predictions
for cases where a different (and perhaps larger) number of
resources is available to use. This property (of making use of
runtime characteristics for only a small number of resources)
may be particularly useful in a cloud environment. The validity
of the proposed model is demonstrated using a number of
experiments with real-world workflows on Amazon EC2.

The remainder of the paper is structured as follows. Section
2 presents related work. Section 3 describes the problem and
environment. Section 4 presents the proposed model. Section
5 evaluates its performance using real experiments on Amazon
EC2. Finally, Section 6 concludes the paper.

II. RELATED WORK

Performance modeling and analysis of parallel applications
has been a topic with a long history of research [6].

Predicting job runtime for parallel applications has been
the focus of many studies, such as [7], [8], [9], [10], [11],
[12], [13], [14], [15]. In [7], a prediction method for the
runtime of online tasks in high performance computing en-
vironments is presented. The model requires historical data
from different runs at the same configuration of the computing
platform, while the difference from the actual measurements
in the clusters is significant. In [8], an algorithm for duration
forecasting of workflow activities is proposed and evaluated
using both real world examples and simulations. In [9], a
method to predict the runtime of jobs in grids, consisting of
geographically distributed and/or heterogeneous resources, is
developed and evaluated with experiments in real systems. In



[15], a methodology to accurately predict fine-grained task
needs for scientific workflows using an online estimation
process is presented.

Also, research specifically related to performance model-
ing of workflow-based parallel applications when running on
different infrastructures has been done. In [16], job execu-
tion times and data transfer between jobs are considered to
model workflow performance using a probabilistic model. Grid
overheads are also incorporated in the model using a random
variable. A medical image analysis application is used to
evaluate the model, providing insight about the impact of grid
behavior and variability when executing scientific workflows.
In [17], a cost model to be used when scheduling a scientific
workflow in clouds is proposed. The aim is to find the best
configuration of Virtual Machines (VMs) in terms of both
execution time and cost choosing from different choices of
instance types and number of VMs. Performance and cost
benefit analysis is also considered in [18] focusing on the
comparison between commercial and academic clouds.

Finally, prediction of the execution time for parallel work-
flows is the subject in many studies, such as in [4], [5], [19],
[20], [21]. In [4], a machine learning method is proposed that
takes into account application input features and historical data.
A limitation of this work is that systematic selection of thecan-
didate input features and prediction models is required in order
to improve the accuracy of the prediction. Machine learning
models are also used in [5] to predict workflow execution time
in grid systems taking into account input features and system
characteristics. However, the model uses system-performance
attributes and its success depends on the availability of histori-
cal and monitoring data. In [19], a local learning approach for
grid environments is presented weighting application attributes
depending on their impact on workflow runtime, while in [20]
a method to predict workflow makespan online using similarity
templates is proposed. In [21], a framework to predict the
execution time of workflow components is described, with the
emphasis being on connecting the amount of data consumed
and the amount of data produced by components, as opposed
to modeling complex workflow structures.

In this paper, the key difference is that runtime estimation
is based primarily on workflow characteristics and does not
require data from lots of runs on a different number of
available resource slots. We demonstrate that we can still get
good insight into the number of slots to allocate in order to
achieve a desired level of performance when running in cloud
environments.

III. PROBLEM DESCRIPTION

In the target cloud environment setting a user submits a
workflow for execution under a certain system configuration,
where the user specifies the number of resources (or slots
– note that the two terms, resources or slots, are assumed
to be identical in this paper) to be provisioned. As the
execution time and the monetary cost of the workflow depend
on the number of resources used, it is crucial for the user
to determine how many resources should be provisioned to
avoid unnecessary costs and/or wastage of resources. To do
so, the execution time of the workflow when using a specific
number of resources has to be estimated. The runtime of each

task of the application may vary when running on different
cloud environments, but it is assumed that task runtime under a
specific system configuration can be predicted with some good
accuracy. The estimation model can then be used to determine
the number of resources required to achieve a certain level of
performance and calculate the cost associated with the use of
these resources.

Application Model: This paper considers scientific
workflows, applications that comprise inter-related taskswith
data dependencies between them [1]. Workflows can be rep-
resented as DAGs where the nodes represent computational
tasks and the edges data dependencies between them. The
execution of a task can only start after all data transfer from
its predecessors has finished. The time required to execute a
task may vary when running on different cloud systems, but it
is assumed that information about task runtimes on a specific
system is available to the model. The user-defined tasks of the
workflow are assigned to jobs to be submitted for execution.
In some cases a number of tasks are clustered together into a
single job. Task clustering can be done in a number of ways
to meet different optimization criteria [22], [23], [24], [25].

Cloud Model: A cloud model similar to Amazon
Elastic Compute Cloud (EC2) [26] is assumed in this paper,
with VMs of a single instance type being provisioned on
demand. Jobs have exclusive access to VMs consuming all
of their capacity. The number of available slots is equal to
the total number of CPUs of the provisioned VMs, assuming
that VMs are exclusively used for the execution of the jobs
in the workflow. Unused slots remain idle, while a job can be
assigned to a free slot when data dependency constraints are
met, that is, data transfer from its predecessors has finished.
The provider can charge for the use of resources in terms of
the number of slots and the time they were used. However, the
specifics of the pricing model employed are orthogonal to the
proposed performance model in this paper, as the performance
model provides estimates of the workflow execution time
without requiring information related to the pricing model. The
pricing model can be used in addition only if it is necessary to
estimate the monetary cost building on the performance model.

IV. M AKESPAN ESTIMATION

The key idea of the model proposed for estimating the
makespan of a scientific workflow is to take into account the
workflow structure and to divide tasks into levels based on
the data dependencies between them so that tasks assigned to
the same level are independent to each other. Then, for each
level, its execution time (which is equal to the time required
for the execution of the tasks in the level) can be calculated
considering the overall runtime of the tasks of the level (that
is, the sum of the individual task runtimes). The assignment
in levels can be done using either a top-down or a bottom-
up approach that assigns a level to each task by taking into
account the level of its predecessors or successors, respectively.
Once this assignment has taken place, a level-based estimation
model takes into account level characteristics to provide an
overall performance estimate for the workflow.

A. Level Assignment Approaches

The two approaches used to assign levels to the tasks of the
workflow are a top-down and a bottom-up approach, explained



Algorithm 1 Level-based Estimation Model

Require: the workflow with task runtimes and number of available slots
1: procedure RUNTIMEESTIMATION(runtimet, slots)
2: Top-Down or Bottom-Up approach, resp. Eq. 1 and 2⊲ Assign levels to tasks
3: for each levell do
4: tasksByLevell ⊲ the number of tasks in the level
5: runtimel =

∑

t∈l runtimet ⊲ the maximum runtime of the level
6: minRuntimel = maxt∈l{runtimet} ⊲ the minimum runtime of each level
7: maxSlotsl = tasksByLevell ⊲ the maximum number of slots that can be used in the level
8: end for
9: for each levell do

10: Computemakespanl using Equation 3 ⊲ level makespan
11: end for
12: makespanslots =

∑

l makespanl +Delayl ⊲ compute estimated makespan by adding all level makespans
13: return makespanslots ⊲ return the estimated makespan for the given number of slots
14: end procedure

below.

Top-Down Approach (TDA):In a top-down approach
the level of a task is given by the longest path from an entry
node of the workflow. To do so, the tasks of the workflow
are ordered in topological order and the level of each task is
given by Equation 1, where the level of taskt, Levelt, is the
maximum level of its predecessors,predt, increased by 1 with
the level of all entry nodes being 0.

Levelt = maxp∈predt
{Levelp}+ 1 (1)

Bottom-Up Approach (BUA):In a bottom-up approach
the level of each task is given by the longest path from an
exit node of the workflow. More specifically, the level of a
task t is calculated in reverse order as the maximum level of
its successors,succt, increased by 1 with the level of all exit
nodes being 0.

Levelt = maxs∈succt{Levels}+ 1 (2)

Note that other approaches for assigning tasks into levels
may be used. For example, one could use as many levels as
tasks in the longest path from an entry node to an exit node
and then try to make assignments for the remaining tasks in
ways that respect dependencies.

B. Level-based Estimation Model

The model to predict execution time of a workflow when
allocating a certain number of slots is described in Algo-
rithm 1. Firstly, it calls the level assignment algorithm (top-
down or bottom-up approach) to assign levels to the tasks
of the workflow (step 2). Then, the characteristics of each
level are calculated, including the number of tasks assigned
to the level, the maximum runtime of all the tasks of the level
(runtimel), being the total time required to execute the tasks
assigned in the level sequentially, and its minimum runtime
(minRuntimel), which is the longest time a task assigned
to this level requires to run (steps 4-6). Also, the maximum
number of slots that can be used in a level (maxSlotsl) is
equal to the number of tasks assigned to this level (step 7).

As every task of a level can use a maximum of only one slot,
there is no benefit in allocating more slots than the number of
tasks at a level. Step 10 estimates the execution time of each
level given the available slots using the following equation:

makespanl = max(
runtimel

min(slots,maxSlotsl)
,minRuntimel).

(3)
The rationale of this equation is that the execution time fora
single level (makespanl) cannot be less thanminRuntimel,
that is the time required to run the longest task of the
level. Similarly, it is taken into account that more slots
than the number of tasks at the level will not result in
a performance improvement. Finally, the overall workflow
makespan (makespanslots) is calculated in step 12 by adding
the makespan of each assigned level. To this value a fixed
delay for the workflow may be incorporated into the model
to represent job submission delays that often happen in real
environments.

In the case of different configurations, for example when
resources with a different number of cores per machine are
used, the execution time of each job may vary. Also, the use of
shared resources, such as the memory and network, may result
in an increase in the execution time of the tasks. To deal with
the variation in the execution time of the tasks due to system
overheads and make the model more accurate for different
configuration scenarios, a scaling factor can be introducedin
the calculation of the estimated makespan in Equation 3. For
example, a scaling factor based on the average of the runtime
variation of each task can be used to scale the execution time
of each level. Understanding how to scale execution time is
the subject of future work.

C. Job Submission Delays

In many real-world environments the jobs of a workflow
are submitted through a queue-based system [2]. This may
introduce an additional delay to the execution of the workflow
as jobs are submitted to the queue in a way that preserves
dependencies. For example, to validate the model proposed
in this paper, the Pegasus Workflow Management system
[27] is used to plan and execute the workflows. Pegasus
makes use of DAGMan [28] to manage data dependencies
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(a) DAG

Level min max max Tasksl
Runtimel Runtimel Slotsl

0 13 13 1 0
1 13 29 3 1, 2, 3
2 12 21 2 4, 5
3 10 10 1 6
4 11 11 1 7

(b) TDA

Level min max max Tasksl
Runtimel Runtimel Slotsl

4 13 13 1 0
3 13 22 2 1, 2
2 9 16 2 3, 4
1 12 22 2 5, 6
0 11 11 1 7

(c) BUA

Fig. 1: An example using the two makespan prediction approaches.

between executable jobs, while Condor manages the individual
execution of each job. Job runtimes used as input for the
estimation model are generated using the logs in DAGMan
[28]. However, as the results of the model are compared to
overall workflow runtimes managed by Condor, system delays,
such as Condor/DAGMan delays or queueing time, need to
be accounted for [2]. In the simplest form, these delays can
be approximated through a system-dependent delay added per
level, which will have to be estimated separately for different
environments and platforms. In the evaluation of the model in
this paper, a coarse-grain assumption for a constant delay of
25 seconds per level of the workflow is made.

D. Example

Figure 1a shows an example of how the execution time
prediction is performed for a simple DAG. Every node of
the DAG is annotated with two numbers. The first number
is the task id, the number inside brackets is the estimated task
runtime.

Using TDA and two slots the predicted makespan is:
TDA2slots = 13 + 14.5 + 12 + 10 + 11 = 60.5.
The makespan is reduced for 4 slots to:
TDA4slots = 13 + 13 + 12 + 10 + 11 = 59.
It can be seen that only one slot can be used in level 0 that
contains one task (task 0), while the estimated makespan of
level 1 is reduced to the minimum level makespan, the runtime
of longest task of the level (task 2), in the case of 4 available
slots. In the case of BUA, the predicted makespan for 2 slots
is:
BUA2slots = 13 + 13 + 9 + 12 + 11 = 58.
The same makespan,58, is achieved when using BUA with
4 slots. The predicted makespan differs from the estimation
of TDA, as tasks 3 and 5 are assigned to different levels,
starting from the exit node. The system-dependent delays, in
this example, are considered to be 0. Tables 1b and 1c show
the detailed values used in the calculation of the estimated
makespan according to Equation 3.

It is noted that the two different approaches for assigning
tasks to levels, TDA and BUA, result in a different makespan.
This is because different tasks are assigned to different levels.
Thus, in both BUA and TDA, the top level consists of task
0. Then, TDA assigns tasks into the next levels as follows:
{1, 2, 3}, {4, 5}, {6}, {7}. Conversely, BUA assigns tasks
into levels as follows:{1, 2}, {3, 4}, {5, 6}, {7}. This is also
shown in the last column of Tables 1b and 1c.

In general, the level assignment approach may be chosen
based on the scheduling scenario, taking into account the
workflow structure and the scheduling algorithm to be used
to allocate the tasks on the available resources. For example,
BUA assigns tasks to the levels according to the successors
of the tasks starting from the exit node, while TDA assigns
the levels based on the level assignment of the predecessors
starting from the root. As a result, BUA may be more suitable
when the scheduling aims at exploiting the latest finish time
of the tasks, while TDA may be chosen when the scheduling
aims at executing the tasks as early as possible.

As already mentioned, a good reason for having a workflow
execution estimation model for a cloud platform is to assessex-
ecution time against the monetary cost for using the resources.
To illustrate this, we apply a simple pricing model to the
example DAG and the estimation results above. In this pricing
model, the monetary cost is proportional to the overall timethat
slots were used, which corresponds to the overall value of the
makespan. More specifically, an upper bound on the monetary
cost to execute the workflow on a number of slots,slots, can
be computed based on the estimated makespan. The cost of
provisioning a slot,r, for a period equal to the scheduling
makespan,makespanslots, is computed as

Costr = p ∗makespanslots, (4)

with the slot being charged at a pricep per time unit. The
overall cost required for the execution of the workflow is the
sum of the provisioning cost of each slot used, with an upper
bound of

CostBoundslots = Costr ∗ slots, (5)



when using the available number ofslots.

In the case of the example, assume that each resource
used is charged at the price of $1 for each time unit. Then,
the cost incurred by the user is expected to be $58*2=$116
for BUA and $60.5*2=$121 for TDA, when two resources
are provisioned. The cost is expected to increase when pro-
visioning a larger number of resources. Indeed, when using
four resources, the monetary cost is $58*4=$232 for BUA
and $59*4=$236 for TDA. This assessment suggests that a
slight delay in workflow execution may be tolerated to avoid
a significant increase in the monetary cost and strike a good
balance between the execution time and application cost for
using the cloud resources.

V. EVALUATION

A. Experimental Setup

To validate the model, experiments on Amazon EC2 using
three real-world workflows were carried out. The configuration
used to execute the workflows on EC2 is described next.

Firstly, a submit host runs outside the cloud to manage
the workflows and set up the execution environment using
the Pegasus Workflow Management system [27]. The Nimbus
Context Broker [29] is also installed to provision and configure
the virtual cluster, consisting of the configured VMs. To do
so, worker nodes to execute the workflow jobs inside the
cloud are deployed on Amazon EC2 using the c1.xlarge and
m1.xlarge instance types in the experiments. The c1.xlarge
instance type is configured with an eight-core 2.33-2.66 GHz
Xeon processor, 7.5 GB RAM and 1680 GB local disk storage
and the m1.xlarge instance type is configured with two dual-
core 2.0-2.6 GHz Opteron processors, 15 GB RAM and 1680
GB local disk storage. For the execution of the workflows
different storage systems running inside the cloud are used
in the experiments to store the input and output data of

the workflow jobs, including Amazon S3 [30], NFS [31],
GlusterFS [32], PVFS [33], P2P file sharing and local disk
usage.

Amazon S3 [30] is a distributed system that provides stor-
age for objects, such as files, through web service interfaces.
The network file system NFS [31] uses a centralized node,
a file server, connected to a group of machines in order to
provide access to files over the network. GlusterFS [32] is
a distributed storage system with client and server compo-
nents in each node, supporting various configurations (such
as non-uniform file access and distributed configurations).
Each remote server exports a local volume and merges it
with the volumes of the other machines in order to compose
the final volume, while a hashing algorithm can be used in
the configuration to distribute the files to the nodes more
uniformly. In the case of the parallel file system PVFS [33],
data striping is used to distribute file data across multiple
nodes and provide parallel access by the tasks. Software RAID
(RAID 0) is also used to improve I/O performance by striping
data across the available ephemeral storage devices [3].

B. Workflows

Three real scientific workflows were used in the experi-
ments, namely Montage [34], Epigenome [35] and Broadband
[36]. The basic structure of the three workflows is shown in
Figure 2.

Montage is a scientific workflow that generates image
mosaics of the sky and can be characterized as I/O intensive
[3], [37]. Most of the jobs in Montage have low CPU utilization
and short runtime, spending their execution time mainly on
I/O operations to read and write files. A simple example of
the structure of Montage is shown in Figure 2a. The number
of the jobs in each level may vary depending on the size of
the generated workflow and the number of clusters used. A

(a) Montage (b) Epigenome (c) Broadband

Fig. 2: The structures of the workflows used.



Montage workflow with 10429 tasks was generated and used
in the experiments. The tasks were clustered to create a total
of 31, 55, 103-104, 152, 248, 440 and 823 jobs when using
4, 8, 16, 32, 64, 128 and 256 clusters per level, respectively.
The jobs can be divided into 13 levels taking into account data
dependencies between them.

The Epigenome workflow maps the epigenetic state of
human cells and can be classified as a CPU-bound application
[3], [37] with several parallel jobs operating in independent
data files, as shown in Figure 2b. Most of the jobs are compu-
tationally intensive, while only a few jobs, that split/convert
the input files to multiple/formatted output files, have low
CPU utilization. As a result, most of the runtime is spent in
the CPU and only a small amount of time is spent on other
operations. An Epigenome workflow of 529 tasks was used in
the experiments, with the tasks clustered to create a total of
50-51, 83, 147, 275 and 529-531 jobs using 8, 16, 32, 64 and
128 clusters per level, respectively. The Epigenome workflow
consists of 11 job levels.

Broadband is a data-intensive workflow application with
high memory utilization that integrates earthquake motion
simulation codes [3], [37]. Jobs with high memory require-
ments (more than 1 GB of memory) have the longest runtime
consuming more than 75% of the total execution time of the
workflow, while some data are being accessed several times. In
the experiments, a workflow of 768 tasks was generated which
was executed using 770 jobs (one task per job including two
extra jobs to create the working directory and copy the files
to it) in 6 levels.

C. Results

To evaluate the model, experiments on Amazon EC2 using
the three workflows (and task clustering as mentioned), differ-
ent storage configurations and running on 4, 8, 16, 32, or 64
slots were carried out. In total, there were 35 experiments for
Montage, 25 experiments for Epigenome and 35 experiments
for Broadband.

a) Comparison of estimated makespan with actual mea-
surements:To validate the accuracy of the model, individual
job runtimes obtained from actual workflow runs for a given
number of slots were used as input to the model to come up
with estimations of the workflow execution time (makespan)
according to Algorithm 1. The error between the estimated and
the real (actual) makespan was calculated using the equation:

ǫ =

∣

∣

∣

∣

makespanreal −makespanpred

makespanreal

∣

∣

∣

∣

. (6)

In the case of Montage 33 out of 35 experiments gave
an error,ǫ, less than 10%. The prediction accuracy is lower
for Epigenome with an error less than 10% in 17 out of
the 25 experiments. The results are identical regardless of
whether TDA or BUA is used to assign levels. In the case
of Broadband, the accuracy of the model is higher using TDA
with 27 out of 35 experiments resulting in an error of less
than 10%. Using BUA 25 out of 35 experiments had an error
of less than 10%. This is due to Broadband’s structure, which
results in a significantly different level assignment depending
on whether TDA or BUA is used. For all three workflows
(35+25+35 = 95 experiments) there were only 2 experiments
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Fig. 3: Execution time prediction compared with real measure-
ments.



in Epigenome and 1 experiment in Broadband where the error
was higher than 20%. In all three cases, it appears that the
model overestimates, which suggests that there was minimal
job submission delays in these three cases. Overall, in 92 out
of 95 (or 96.8%) experiments, the model gives an error of less
than 20%, while in 77 out of 95 (or 81%) experiments there
was an error of less than 10%. In this exercise, the accuracy of
the model was evaluated for the case of perfectly accurate task
runtime estimates. To do this, we used the actual task runtimes
of a given run to predict the workflow makespan of that run and
compared the estimated makespan with the actual makespan
of the run. Later (in paragraph c) we deal with inaccurate
predictions, as estimated and actual task runtimes may varyin
practice.

b) Using the model to make predictions for different
number of slots: In this exercise, we used individual job
runtimes from each experiment (on a given number of slots)
to predict the workflow makespan for 4, 8, 16, 32 and 64
slots. This gives a range of predictions (one prediction for
every experiment used) for each number of available slots,
out of which we considered the minimum and the maximum
values. These values, along with the real measurements for
every workflow and every different number of slots are shown
in Figure 3. The triangular symbols (normal and upside
down) indicate the maximum and minimum predicted values,
respectively, while the dots correspond to real measurements
on EC2. Execution time is normalized using the sum of the
runtimes of the jobs (equivalent to the time needed to run
all jobs on one slot). This is because, even with the same
number of slots, task runtime performance may vary when
using different storage systems [3]. It can be seen that the real
measurements are within the prediction range. The variation
between the minimum and maximum prediction is different for
each workflow and it is more profound in the case of Montage.
This is expected and it is due to the impact of storage systems
on workflow I/O activity. Montage processes many files and
a large amount of data is processed and generated resulting
in high I/O utilization, which means that the storage system
performance has a big impact on workflow performance. In
contrast, storage systems affect the performance of Epigenome
less, as this is a CPU-intensive workflow where most of the
time is spent operating data in memory, not on I/O. Finally, in
Broadband the variation is small as the workflow involves a lot
of input data, but relatively little output data; much of theinput
data is common, so the workflow makes more effective use of
the file system cache than Montage. Clearly, as data storage
systems influence execution time, predictions can be improved

if they are estimated for every storage system separately (this
is demonstrated later in this section).

c) Model performance evaluation with inaccurate job
runtimes:So far, we used as an input of the model actual (mea-
sured) job runtimes. In reality, the individual job runtimes used
as an input to the model may deviate from actual runtimes.
Although the assumption that the runtimes of the jobs can be
adequately predicted may be reasonable (see for example the
large body of work focusing on job runtime prediction and/or
workflow characterization [8], [9], [10], [11], [12], [37]), in
reality these models may overestimate or underestimate the
execution time of the jobs, especially as there have been
cases where job performance appear to vary even for cloud
instances of the same type from the same cloud provider [38].
In order to investigate the impact of inaccurate individual
job runtimes on the overall workflow makespan predicted by
the model, job runtimes (rt for short) were varied using a
random error in the range of±5%, ±10% and±15%. We
generated 100 random values for each of the three ranges and
for each of the (35+ 25+ 35 = 95) experiments for the three
workflows. The error,ǫ, between estimated makespan by the
model and actual values on EC2 was computed in each case.
Then, the percentage of the experiments withǫ being less
than 10%, 15% and 20% using TDA or BUA is presented
in Table I. These percentages relate to 3500 error values
for each case in Montage (35 experiments× 100 random
values), 2500 error values for each case in Epigenome and
3500 error values for Broadband. It can be seen that even when
there is inaccuracy in individual job runtime estimates used
by the model, the performance of the model is not different
to the results obtained with accurate job runtime estimates.
As noted in the first paragraph of this section (comparison
of estimated makespan with actual measurements), in 33 out
of 35 experiments (or 94.28%) for Montage, in 17 out of
25 experiments (or 68%) for Epigenome and in 27 out of
35 experiments (or 77.14%) for Broadband (using TDA) the
model gave a prediction error of less than 10%. The first two
rows of the table (corresponding toǫ < 10%) suggest that
even a small inaccuracy in job runtimes does not affect the
performance of the model significantly.

d) Estimating workflow execution time in practice:
In the previous paragraphs, we evaluated different aspectsof
the model and compared actual measurements with model
predictions. In reality, the model may be used with some
individual job estimates to predict the workflow execution
time for a number of slots for which there are no actual
workflow runs. Such a prediction may be important in order

Montage Epigenome Broadband
ǫ Model rt± 5% rt± 10% rt± 15% rt± 5% rt± 10% rt± 15% rt± 5% rt± 10% rt± 15%

< 10% TDA 94.49 89.94 79.94 68.28 68.08 65.40 77.40 80.31 80.51
BUA 94.37 89.89 79.29 68.24 68.08 65.80 71.98 74.26 77.26

< 15% TDA 98.34 98.23 97.03 79.76 79.96 79.64 88.77 88.89 88.57
BUA 98.49 98.51 97.20 80.20 80.20 79.92 85.54 86.51 86.66

< 20% TDA 100.00 100.00 99.86 90.88 89.64 89.04 97.14 97.03 96.91
BUA 100.00 100.00 99.91 90.44 90.20 89.52 97.14 96.83 96.46

TABLE I: Percentage of experiments within a certain prediction accuracy.



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

4 8 16 32 64 128 256

E
x
e
c
u
ti
o
n
 T

im
e
 (

N
o
rm

a
liz

e
d
)

Slots

Real Values
Avg Estimated Value

(a) Montage - GFS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

4 8 16 32 64 128 256

E
x
e
c
u
ti
o
n
 T

im
e
 (

N
o
rm

a
liz

e
d
)

Slots

Real Values
Avg Estimated Value

(b) Epigenome - NFS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

4 8 16 32 64 128 256

E
x
e
c
u
ti
o
n
 T

im
e
 (

N
o
rm

a
liz

e
d
)

Slots

Real Values
Avg Estimated Value

(c) Broadband - Amazon S3

Fig. 4: Execution time prediction for different slots and a single
storage system.

to determine in a cost-efficient manner the number of slots
to provision for every different workflow. In this exercise,we
considered for each workflow the measurements on a specific
storage system and we tried to estimate the performance for
any different number of slots. To do this, we run the model
multiple times using as an input individual job runtimes with
a random variation of±10%. More specifically, we used
as a starting point individual job runtimes from: 9 different
measurements for Montage using GFS on 16, 32 and 64
slots; 7 different measurements for Epigenome using NFS on
8, 16, 32, and 64 slots; and 4 different measurements for
Broadband using Amazon S3 on 8, 16, 32, and 64 slots. For
each of these measurements 100 values with a variation of
±10% were generated for individual job runtimes and used as
input to the model. The predicted workflow execution times
(900 predictions for Montage, 700 predictions for Epigenome
and 400 predictions for Broadband) were averaged for each
workflow and number of slots and the results are shown in
Figure 4. It can be seen that the (average) estimated values fit
well with the measurements we had, also giving a prediction
for a number of slots from 4 to 256. These predictions also
indicate that there is no performance improvement for Montage
if more than 64 slots are used or for Epigenome and Broadband
if more than 128 slots are used. Having this information in
practice is important for the user to decide what number of
slots to provision.

VI. CONCLUSION

In this paper we considered the problem of execution
time prediction for scientific workflows. A model to estimate
workflow makespan based on information about the workflow
structure and individual job characteristics is describedusing
two different approaches to assign levels to the jobs. The per-
formance of the model was evaluated and compared with real
experiments on Amazon EC2 using three scientific workflows.
The results show that the model has good prediction accuracy.

Future work could improve the accuracy of the model using
more elaborate estimates for system overheads or job runtimes,
for instance estimating runtimes in relation to the number of
slots used, introducing a scaling factor for the variation of the
execution time of the tasks. Another interesting observation is
that other level assignment approaches can be developed for
workflow structures where several tasks can be distributed in
more than one levels sometimes without affecting the level
assignment of their predecessors and successors. For example,
in such cases tasks with long execution time may be distributed
in more than one level or tasks with short runtimes can be
assigned to different levels depending on the structure of the
workflow. Level assignment approaches to deal with these
cases is another future direction to be followed. Finally, the
proposed model can be used to estimate operational costs and
find cost-efficient configurations.
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