
Training Classifiers to Identify TCP Signatures in
Scientific Workflows

George Papadimitriou∗, Mariam Kiran‡, Cong Wang†, Anirban Mandal†, Ewa Deelman∗

∗Information Sciences Institute, University of Southern California, CA, USA
‡Lawrence Berkeley National Laboratory, CA, USA

†RENCI, University of North Carolina at Chapel Hill, NC, USA

Abstract—Identifying network anomalies is an important mea-
sure to ensure reliability and quality of data transfers among
facilities. Scientific workflows in particular heavily rely on good
network performance to ensure their smooth executions. In this
paper, we present a lightweight classifier system that is able to
recognize anomalous TCP transfers. Using random forest trees
and labeled data sets, we evaluate the classifier with real workflow
transfers for ground truth data. Our studies reveal that various
TCP congestion algorithms behave differently in anomalous
conditions. We show that training classifiers on these separately
can aid detection in network performance deterioration. Results
reveal that our classifiers are able to better predict anomalous
flows for TCP Reno and Hamilton compared to Cubic and BBR,
due to the manner how their congestion control algorithms handle
the anomalies.

Index Terms—TCP congestion algorithms, Cubic, Reno,
Hamilton, BBR, Random forest tree classification

I. INTRODUCTION

Today’s large-scale science workflows often use Transmis-
sion Control Protocol (TCP) as a standard protocol to reliably
transfer data over wide area networks. TCP is designed to cope
with network congestion, to optimize throughput and packet
delivery across large scale, inter-domain networking infras-
tructures [1] [2]. As demand for high-bandwidth increases [3],
it is imperative to monitor and detect degradation in throughput
and possible network bottlenecks causing congestion. One way
to understand if there are network anomalies, is to study
TCP behavior and monitor how it changes throughput and
congestion window sizes to cope in an unfortunate situation.
Passive analysis of TCP traces, such as more retransmission
events, dropped throughput, longer congestion windows and
longer return time to transmits (RTT), can all help provide
indications of network performance problems and help resolve
the issues [4].

Developed as a network-congestion avoidance algorithm,
TCP offers congestion control in the network by signalling to
the sender to slow-down or quicken data transfers depending
on health of the link. TCP variants, such as Cubic, Reno,
Hamilton, and more, have been designed to make TCP robust,
while ensuring high performance [5]. In these techniques, TCP
changes its internal settings (e.g. congestion window sizes,
acknowledgement wait times, to name a few) to prioritize
different metrics, such as high bandwidth (Cubic and Reno)

or minimize loss (Vegas). A recent TCP variant, Google
developed BBR helps achieve 4% higher network throughput
for their YouTube services [6]. All TCP congestion algorithms
are designed to retransmit packets if something wrong is
detected during transfer.

Analyzing TCP behaviors in varying network conditions is
of primary interest for network research. Network anomalies
could cause performance degradation, such as being generated
via sender being slow to transfer, client delaying acknowl-
edgements, or just badly configured network links causing
latency or packet loss [7]. TCP statistics have been explored
to recognize network anomalies [4], predict throughput [8]
or recognize congestion [9]. Current techniques have used
statistical and machine learning approaches to ingest large
amounts of TCP variables and to recognize common features.
However, these techniques often only focus on just one TCP
congestion algorithm and have limited study in how elephant
and mice flows behave with TCP [10]. Additionally, end-
host configurations are usually always hidden from WAN
operators, which makes it difficult to study TCP behavior
without knowing which one is being used.

In this paper, we make a number of novel contributions
to TCP research. Firstly, we investigate in-depth how large
and small file transfers are handled in normal and anomalous
conditions, and secondly, we investigate many TCP-variants.
Thirdly, we utilize random forest trees, a powerful machine
learning technique that uses bagging, to partition large data
sets into commonly identified features, for normal and anoma-
lous conditions. These techniques allows us to address the
following questions: (1) What are the unique behaviors of TCP
variants in large and small file transfers, (2) How do these
behaviors change in normal versus in presence of network
anomalies - packet loss, duplication and reordering, and (3)
can these behaviors be used to accurately identify anomalies
in TCP transfers in other environments. We use random forest
trees as they are a lightweight techniques to output common
features and can easily be deployed. We extend our tests to
TCP traces collected in a data center to test the validity of our
trained classifiers.

We begin by gathering labeled data for our classifiers
with in-house experiments collecting TCP traces of large
(elephant) and small (mice) file transfers with 4 different

TCP variants - Cubic, Reno, Hamilton and BBR. These are
the most commonly explored TCP variants for large science
file transfers. We then test the validity of our classifiers by
collecting additional TCP traces from a data-intensive science
workflow, the 1000 Genome workflow [11], configured using
the Globus service for WAN transfers. These traces also
include artificially induced anomalies to collect behaviors in
anomalous conditions. We evaluate our technique with unseen
workflow transfers to measure the accuracy of our 4 classifiers
- Cubic, Reno, Hamilton and BBR. Additionally, we show our
techniques are able to adapt to unseen network environments
and present results in understanding transfer behaviors in DOE
data centers.

The rest of this paper is organized as follows: Section II
introduces background information, such as TCP variants and
elephant/mice TCP flows. In Section III and Section IV, we
introduce the experimental setup for data collection, and the
initial data analysis. We present the classifiers in Section V,
and their evaluations in Section VI. Sections VII and VIII
provides the discussions and related work. Finally, Section IX
concludes this work.

II. BACKGROUND

A. TCP Variants

TCP provides reliable and error-checked delivery of a data
stream between sender and receiver. Most variants are a re-
search effort into TCP extensions that can allow improvement
of various network anomalies and enable congestion control.

Figure 1 describes how the TCP handshake works [4]. The
sniffer or Tstat (TCP statistics) collector is located on both
the Sender and Receiver, recording number of bytes moved,
messages (ACK, FIN) or the time when segments cross. The
sniffer is able to track variables in both directions, estimating
RTT observed at flow start and completion. In addition to
window sizes, number of retransmissions, the sniffer is able to
record (more than) 133 variables per flow during the transfer.
Researchers have used these statistics to classify normal versus
anomalous segments and build classifier systems to recognize
packet loss or alterations [4], [12].

Since the seminal work of Jacobson et al. [13] that es-
tablished implementations of the modern TCP, a number of
variants have been invented, some prioritizing throughput over
loss prevention. In this paper, we focus on 4 of these variants:

1) TCP Cubic: This is used as the current default TCP
algorithm in Linux [14]. Compared to other TCP algorithms,
Cubic modifies the window size using a cubic function such
to improve the throughput scalability over long distance flows.
During normal conditions, Cubic aggressively increases the
window size to allow throughput utilization to rise quickly,
and then slowly as it reaches saturation point. Window growth
is independent of the RTT recorded, allowing Cubic to achieve
equitable allocations between multiple flows on a link.

2) TCP Reno: Incorporating fast retransmit and fast recov-
ery, TCP Reno is known as the dominant congestion control
algorithm in Internet applications [15]. Reno works by cutting
the window size by half when loss is detected. if multiple

Fig. 1: Example of TCP Handshake. Adapted from [4].

ACKs are received, Reno performs fast retransmits, skipping
the slow start phase by halving the congestion window. Similar
to Cubic, Reno also increases window size if no loss occurs,
but, different from Cubic has a shorter slow start phase
allowing it to responds very quickly.

3) TCP Hamilton: Also known as H-TCP, similar to Cubic,
this algorithm aggressively increases TCP throughput on high-
bandwidth links, while maintaining RTT for smaller flows.
Hamilton is seen to aggressively reduce congestion window
whenever loss occurs, allowing it to recover quickly. New
flows are seen to converge faster to optimal throughput under
Hamilton than other algorithms [16], [17].

4) TCP BBR: This attempts to create a balance between
fast re-transmits and fairness among flows on the same link.
Rather than reacting on packet loss, as the previous versions
do, BBR reacts on actual congestion and network models of
the available bandwidth. Google introduced BBR to improve
download speeds on internal networks [6]. It calculates RTT
and bottleneck capacity and uses this to estimate its delivery
rate. The values of RTT and bottleneck capacity are indepen-
dently managed and BBR attempts to stay within this range.

Cubic is a far more efficient protocol for high-speed flows
but not as aggressive as Reno and Hamilton. However these
three versions are seen to utilize a much less available through-
put as compared to BBR.

B. Network Anomalies that affect TCP Behavior

Network anomalies can create bogus traffic on the link
causing network congestion and utilization in a router, im-
pacting customer experience. Identifying these is imperative
to improving network operations. Similar to designing TCP
congestion algorithm, most efforts focus on early detection
on packet loss and allowing the network to react. In TCP,
congestion window size and RTT can give an indication of
how throughput is performing, and as seen earlier, different
TCP variants handle these differently. For example, Cubic is
less aggressive on the congestion window size, calculating

the size as a cubic function of time from the moment loss
is observed. This results in two portions, the first being a
concave, where the window rapidly grows until before the loss
event occurred, and the convex region keeps probing for more
bandwidth slowly at first and then rapidly. Cubic eventually
reaches a stability between the concave and convex regions
before looking for more bandwidth and growing its throughput
[13]. This allows TCP to exhibit the wave behavior between
the slow start, ramping up and coming down again.

Other than loss, there is significant effort to recognize
congestion conditions such as overflowing buffers [2], [18].
However, there are commonly occurring network anomalies
which can seriously impact user experience. Described by [4],
[7], [19], there are three common network anomalies:

• Packet Loss: This occurs when one or more packets fail
to reach their destination. These could either be caused
by errors in transmission or too much congestion on link,
causing routers to randomly drop packets.

• Packet Duplication: This occurs when the sender re-
transmits packets, thinking that the previous packets have
not reached their destination. This is commonly seen
when loss happen and retransmits increase.

• Packet Reordering: This is defined when arrival order
of packets or sequence number is completely out-of-
order. This is of particular relevance to real-time media
streaming application, which show network instability.

C. Elephant and Mice (Long vs Short Transfers)

Internet and WAN network traces are seen to contain a mix-
ture of flow characteristics. These can normally be divided into
two groups - Elephant and Mice flows. For instance, a mice
flow or small file transfers, are usually bursty and latency-
sensitive, whereas big file transfers or longer (elephant) flows,
are throughput-sensitive. If not managed efficiently, elephant
flows can fill network buffers, causing queuing delays, packet
drops and loss. On the other hand, mice flows are more
difficult to predict and more dynamic in nature and can
easily congest the network. Traffic engineering methods have
explored separating these flows on different links to prevent
congestion patterns and studying flow completion times [10].

D. Random Forest Trees

Random forest trees are a variant of decision tree classifiers
that allow to recursively partition data sets into a rule space.
The tree constructs a root that follows binary rules (true or
false), to determine which rules are satisfied denoted by tree
nodes and leaves. As we explore the tree, rules are extracted
leading to terminal or decision nodes. Random forest allows
to partition data samples on most distinguishing feature sets
into purest samples possible. This measurement of purity is
determined by the gini index or entropy function. In this study
we use the gini index in our classification tree,

1−
t=1∑
t=0

P 2
t (1)

where P denotes the probability of the sample belonging to
a particular class. The summation in the equation represents
two classes, but can be extended to multiple sample classes.
The gini index is our cost function used to evaluate the class
splits. During classification, the lower the gini index, means
most samples belong to one class label.

Random forest classification [20] is a labeled machine
learning technique that requires labeled data sets. Once trained,
given a test data set, the classification can help predict labels
for each test sample as it was trained.

III. EXPERIMENTAL ENVIRONMENT

To generate our labeled data set we used the ExoGENI
testbed [21], which is a federated cloud testbed designed for
experimentation and computational tasks. ExoGENI is orches-
trated over a set of independent cloud sites located across US
and connected via national research circuit providers through
their programmable exchange points. By using a controlled
experiment environment, we ensure that any system interfer-
ence is minimized, and importantly, synthetically generated
interference affects specific performance metrics targeted for
evaluation. For our experiments, we created two types of
environments (slices) on ExoGENI. The first was used to
capture mice and elephant TCP flows, and the second one
was used to capture real-like traces of a scientific workflow
execution.

Figure 2 gives an overview of the first environment,
which has one source-node, one forwarding-node and one
destination-node. Each node has 4 2.2 Ghz vCPUs, 10 GB
RAM and 75 GB storage, but all of them reside in a different
ExoGENI region. The nodes are connected via a high speed
layer 2 VLAN, and the round-trip time between source and
destination is at ~21ms, while the forwarding-node is forward-
ing packets between the source and destination nodes.

Figure 3 presents an overview of the second environment,
for real workflow executions on ExoGENI. This setup consists
of one data-node, one forwarding-node, one master-node and
four compute (worker) nodes (Figure 3). Each node has 4
2.2 Ghz vCPUs, 10 GB of RAM and 75 GB storage. Both
compute and master nodes are co-located on the same site,
while the data-node is spawned on a site in another region.
The master and compute nodes communicate via the intra-
site switch, while the data-node is connected over a high
speed layer 2 VLAN, and the rountrip-time between master-
node and data-node is at ~26ms. To facilitate the workflow
execution, we configure our slice with HTCondor [22] and
Pegasus WMS [11] on the master-node. Globus endpoints
[23], [24] are created on both master-node and data-node to
accommodate WAN transfers. Finally, the forwarding-node,
forwards packets between the master and data nodes.

In both cases we use the Linux Traffic Control (TC) tool-
set [25] to introduce synthetic network and I/O anomalies,
such as delay, packet loss and jitter, by configuring the Linux
kernel packet scheduler. During the mice and elephant flow
experiments we introduce these anomalies on both of the
forwarding-node’s interfaces. However, in the case of the real

Fig. 2: Experimental setup on the ExoGENI testbed. SFTP
tests for mice and elephant flows.

Fig. 3: Experimental setup on the ExoGENI testbed. Workflow
tests using Globus.

scientific data transfers, we apply the anomalies on both the
master and the data node, instead of the forwarding-node. To
capture low level TCP statistics, we used the Tstat tool1 to
capture network traces on the source node in Figure 2, and on
the data node of Figure 3.

A. Elephant and Mice Transfers

To generate labeled TCP data under normal and anomalous
conditions for mice and elephant transfers we used the setup
of Figure 2.

Mice flow. For the mice flows we aimed for 1000 SFTP
transfers with a transfer size between 80MB and 120 MB, the
link bandwidth is set to 1 Gbps among all the nodes.

Elephant flow. For the elephant flows we aimed for 300
SFTP transfers with a transfer size between 1 and 1.2 GB, the
link bandwidth is set to 100 Mbps among all the nodes.

Table II summarizes the total number of flow samples
collected for all TCP congestion algorithms for mice and
elephant flows.

B. 1000 Genome Workflow Transfers

In addition to elephant and mice flow experiments, we col-
lected traffic traces from a real science workflow named 1000-
Genome project workflow that reconstructs genomes of 2,504
individuals across 26 different populations [26]. This workflow
identifies mutational overlaps in data from the 1000 genomes
project, providing a null distribution for rigorous statistical
evaluation of potential disease-related mutations [27]. In our
experiment, we recorded TCP statistics during this workflow
setup phase shown in Figure 3. Table I summarizes the number
of samples collected in our data-set.

C. Building the Training Data-set

Tstat collects 133 variables of TCP behavior in both direc-
tions: client-to-server and server-to-client. These features are

1http://tstat.polito.it/

Type
TCP Congestion Algorithm

Cubic Reno Hamilton BBR
Normal 257 265 258 221

Loss 1% 273 257 277 225
Loss 3% 281 277 289 0
Loss 5% 285 277 273 0
Dupl. 1% 265 265 265 225
Dupl. 5% 265 265 265 217

Reord. 25% 265 269 264 217
Reord. 50% 269 253 302 217

TABLE I: Number of flows generated at Data Node under
normal and anomalous conditions.

Type
TCP Congestion Algorithm

Cubic Reno Hamilton BBR
M E M E M E M E

Normal 1000 300 1000 300 1000 300 1000 300
Loss 0.1% 1000 300 1000 300 1000 300 1000 300
Loss 0.5% 1000 300 1000 300 1000 300 1000 300
Loss 1% 1000 300 999 300 998 300 1000 300
Dupl. 1% 1000 300 1000 300 1000 300 1000 300
Dupl. 5% 1000 300 1000 300 1000 300 1000 300

Reord. 25% 1000 300 1000 300 1000 300 1000 300
Reord. 50% 1000 300 1000 298 1000 297 1000 299

TABLE II: Number of Mice and Elephant flows generated to
train the classifiers under normal and anomalous conditions.
M: Mice, E: Elephant.

listed on Tstat’s documentation with their descriptions [28].
Using the bytes transferred and completion time traces, we
can calculate the throughput in both directions.

IV. INITIAL ANALYSIS

A. Retransmissions

Figure 4 and 5 show the amount of retransmitted bytes,
while using different TCP congestion algorithms and under
non-anomalous and anomalous conditions in elephant and
mice flows, respectively. The retransmitted bytes are seen to
increase in packet loss experiments. In particular, they can be
easily clustered among 0.1% (green), 0.5% (orange) and 1%
(blue) packet loss rates in the case of elephant flows, while the
cluster boundaries are vague in the case of mice flows. This
is because elephant flow transfers are long enough to reflect
the probability of packet loss events.

B. Throughput

Figures 6 and 7 depict the throughput of the transfers while
using different TCP congestion algorithms and under non-
anomalous and anomalous conditions in elephant and mice
flows. In elephant flows, Cubic (Fig. 6a), Reno (Fig. 6b) and
Hamilton (Fig. 6c), present a decreasing throughput as packet
loss is introduced, while BBR’s throughput is not affected
(Fig. 6d). In mice flows, the graphs show loss and reordering
affect throughput greatly in all TCP variants. This implies that
TCP congestion algorithms perform better for elephant flows
rather than mice flows. This behavior could be attributed to
TCP’s slow-start phase, not giving enough time to mice flows
to reach a steady state.

 0

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

 1.4x107

 0 50 100 150 200 250 300N
u

m
b

er
 o

f
B

yt
es

 R
et

ra
n

sm
it

te
d

Sample

Normal
Loss 0.1%
Loss 0.5%

Loss 1%
Duplicate 1%
Duplicate 5%

Reorder 25%
Reorder 50%

(a) Cubic

 0

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

 1.4x107

 0 50 100 150 200 250 300N
u

m
b

er
 o

f
B

yt
es

 R
et

ra
n

sm
it

te
d

Sample

Normal
Loss 0.1%
Loss 0.5%

Loss 1%
Duplicate 1%
Duplicate 5%

Reorder 25%
Reorder 50%

(b) Reno

 0

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

 1.4x107

 0 50 100 150 200 250 300N
u

m
b

er
 o

f
B

yt
es

 R
et

ra
n

sm
it

te
d

Sample

Normal
Loss 0.1%
Loss 0.5%

Loss 1%
Duplicate 1%
Duplicate 5%

Reorder 25%
Reorder 50%

(c) Hamilton

 0

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

 1.4x107

 0 50 100 150 200 250 300N
u

m
b

er
 o

f
B

yt
es

 R
et

ra
n

sm
it

te
d

Sample

Normal
Loss 0.1%
Loss 0.5%

Loss 1%
Duplicate 1%
Duplicate 5%

Reorder 25%
Reorder 50%

(d) BBR

Fig. 4: Retransmissions in Elephant Flows.

 0
 200000
 400000
 600000
 800000

 1x106
 1.2x106
 1.4x106
 1.6x106
 1.8x106

 0 100 200 300 400 500 600 700 800 900 1000N
u

m
b

er
 o

f
B

yt
es

 R
et

ra
n

sm
it

te
d

Sample

Normal
Loss 0.1%
Loss 0.5%

Loss 1%
Duplicate 1%
Duplicate 5%

Reorder 25%
Reorder 50%

(a) Cubic

 0

 500000

 1x106

 1.5x106

 2x106

 2.5x106

 0 100 200 300 400 500 600 700 800 900 1000N
u

m
b

er
 o

f
B

yt
es

 R
et

ra
n

sm
it

te
d

Sample

Normal
Loss 0.1%
Loss 0.5%

Loss 1%
Duplicate 1%
Duplicate 5%

Reorder 25%
Reorder 50%

(b) Reno

 0
 200000
 400000
 600000
 800000

 1x106
 1.2x106
 1.4x106
 1.6x106
 1.8x106

 2x106

 0 100 200 300 400 500 600 700 800 900 1000N
u

m
b

er
 o

f
B

yt
es

 R
et

ra
n

sm
it

te
d

Sample

Normal
Loss 0.1%
Loss 0.5%

Loss 1%
Duplicate 1%
Duplicate 5%

Reorder 25%
Reorder 50%

(c) Hamilton

 0
 200000
 400000
 600000
 800000

 1x106
 1.2x106
 1.4x106
 1.6x106
 1.8x106

 0 100 200 300 400 500 600 700 800 900 1000N
u

m
b

er
 o

f
B

yt
es

 R
et

ra
n

sm
it

te
d

Sample

Normal
Loss 0.1%
Loss 0.5%

Loss 1%
Duplicate 1%
Duplicate 5%

Reorder 25%
Reorder 50%

(d) BBR

Fig. 5: Retransmissions in Mice Flows.

 0
 10

 20
 30

 40
 50
 60

 70
 80

 90
 100

Normal Loss
0.1%

Loss
0.5%

Loss
1%

Dupl.
1%

Dupl.
5%

Reor.
25%

Reor.
50%

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Anomaly Type

(a) Cubic

 0
 10

 20
 30

 40
 50
 60

 70
 80

 90
 100

Normal Loss
0.1%

Loss
0.5%

Loss
1%

Dupl.
1%

Dupl.
5%

Reor.
25%

Reor.
50%

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Anomaly Type

(b) Reno

 0
 10

 20
 30

 40
 50
 60

 70
 80

 90
 100

Normal Loss
0.1%

Loss
0.5%

Loss
1%

Dupl.
1%

Dupl.
5%

Reor.
25%

Reor.
50%

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Anomaly Type

(c) Hamilton

 0
 10

 20
 30

 40
 50
 60

 70
 80

 90
 100

Normal Loss
0.1%

Loss
0.5%

Loss
1%

Dupl.
1%

Dupl.
5%

Reor.
25%

Reor.
50%

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Anomaly Type

(d) BBR

Fig. 6: Throughput of Elephant Flows. (Link speed: 100Mbps)

 0

 50

 100

 150

 200

 250

 300

 350

Normal Loss
0.1%

Loss
0.5%

Loss
1%

Dupl.
1%

Dupl.
5%

Reor.
25%

Reor.
50%

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Anomaly Type

(a) Cubic

 0
 20

 40
 60

 80
 100
 120

 140
 160

 180
 200

Normal Loss
0.1%

Loss
0.5%

Loss
1%

Dupl.
1%

Dupl.
5%

Reor.
25%

Reor.
50%

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Anomaly Type

(b) Reno

 0

 50

 100

 150

 200

 250

 300

 350

Normal Loss
0.1%

Loss
0.5%

Loss
1%

Dupl.
1%

Dupl.
5%

Reor.
25%

Reor.
50%

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Anomaly Type

(c) Hamilton

 0

 50

 100

 150

 200

 250

 300

 350

Normal Loss
0.1%

Loss
0.5%

Loss
1%

Dupl.
1%

Dupl.
5%

Reor.
25%

Reor.
50%

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Anomaly Type

(d) BBR

Fig. 7: Throughput of Mice Flows. (Link speed: 1Gbps)

Fig. 8: Building Classifier for each TCP congestion variant.

V. BUILDING CLASSIFIER

Figure 8 presents how the random forest classifiers were
build. Because Cubic, Reno and Hamilton show similarities

in how they behave under loss conditions, it is difficult to
distinguish between them. As a result we build 4 individual
classifiers (one for each TCP variant being investigated) and
test each TCP variant separately.

A. Pruning the Trees

Constructing a tree with all possible decision rules is an
NP-complete problem [29] and results in an overfitted tree.
We combat this by using a greedy approach and limiting the
tree to an optimum depth, number of leaf nodes and number
of samples per leaf. This process is known as pruning the tree
and is done to allow only important rules recognized in earlier
tree branches, rather than letting it grow to less important leaf
nodes2. We tuned the trees for each classifier by using 80%

2We used Scikit-learn’s RandomForestTreeClassifier() to generate the trees.

of elephant and mice flows to achieve optimal classification
accuracy.

B. Data Leakage

Data leakage is a common issue with building classifiers,
when a particular feature shares same values between the train-
ing and test data. This feature causes 100% of training data
to be partitioned into labeled classes, preventing the classifier
to be generalizable for test data. In our initial training, we
found that TCP features were recognizing specific value ranges
distinguishing elephant and mice flows. This caused over-
fitting to the test data, giving bad accuracy results. To combat
this, we added randomly generated data to form 10% of the
training data-set. This essentially turned the pure elephant and
mice flow training data into impure data samples, but reduced
the over-fitting problem of the classifiers, and improved their
generalizability factor to test other flows.

VI. EVALUATION

Figures 9 and 10 present the classification results on unseen
elephant and mice flows, while Figure 11 shows the the
results of the test workflow Tstat files. Each figure contains a
subfigure for every classifier (Cubic, Reno, Hamilton, BBR),
which presents the percentage of test data that were predicted
as Normal, Loss, Duplication or Reordering (y-axis), given the
anomaly type of test data (x-axis).

A. Testing data: Unseen Elephant and Mice flows

Elephant flow identification. Our initial analysis has re-
vealed clear behavior distinctions when anomalies are found
for elephant flows. While the BBR classifier is able to recog-
nize all cases exactly (Fig. 9d), we find that Cubic and Reno
classifiers are unable to recognize packet duplication cases
(Fig. 9a and 9b). On the other hand, the Hamilton classifier
recognizes only some (Fig. 9c). While loss is well recognized,
due to the number of retransmits, packet duplication is not
recognized in Tstat data. For reordering, we find that these
flows have higher retransmission rates from the server side,
being able to recognize 99% of reordered flows.

Mice flow identification. Mice flows are able to recognize
duplication better than elephant flows. While Reno and Hamil-
ton perform better here (Fig. 10b and 10c), Cubic and BBR
are able to find 50% of the flows in the test data (Fig. 10a
and 10d). This is because mice flows are able to record much
higher retransmission in duplications, and quicker response
than in elephant flows.

B. Testing data: Unseen Workflows transfers

Reno and BBR classifiers are not able to recognize loss and
duplication, mistaking most for normal transfers (Fig. 11b and
11d). On the other hand, Cubic is able to classify flows under
correct classes but also mark most as normal (Fig. 11a). The
classifier for Hamilton is the best performing, but does not
recognize reordering cases (Fig. 11c).

C. Testing data: Accuracy

Accuracy. In Figure 12 we have computed the accuracy of
each classifier, and based only on the mice and elephant flows,
the BBR classifier has a slight edge over the rest. However,
taking the workflow data into consideration, the Hamilton
classifier becomes the best performing one.

D. Testing with DTN Transfers

The classifiers were also tested against Tstat data collected
at an OSG data-node3 while transferring files to NERSC via
the Globus service. All the classfiers, except Reno, predicted
only reordering in the flows. On the other hand, Reno labeled
some (~10%) of the flows as normal. Upon further investi-
gation, we found that the DTN was configured to use TCP
Reno as its TCP congestion algorithm, and despite the fact
that the Reno classifier didn’t recognize the majority of the
flows as normal traffic, this result warrants further research
and will form the basis of our future research direction on
whether classifiers can be used to identify TCP algorithms.

VII. DISCUSSION

Overall our classifiers are able to recognize packet reorder-
ing and loss well, but have struggled with duplication. We also
found that the size of the file matters, giving different accuracy
results between elephant and mice flows. The workflows and
OSG transfers to NERSC were done using Globus, which
converted the transfers to act similar to mice flows (due to the
imposed parallelism), which was picked up by the classifiers.

Five most important features. Studying each of the trees
in detail reveal the important features recognizing anomalous
characteristics in all 4 classifiers. These were in the order of
importance:

1) Actual throughput achieved during the transfer.
2) SACK option setting by the server and the client.
3) Standard deviation of RTT.
4) Number of segments with ACK field set to 1 by client.
5) First ACK segment (no SYN) recorded by server.
Unlike most current research only focusing on RTT and

throughput, the classifiers are able find other features to help
identify network problems.

VIII. RELATED WORK

Machine learning approaches are very useful to observe
recurring phenomena (normal) and extract non-stationary tran-
sition patterns (anomalies) [19], [30]. For example, Mellia
et al. [4] used passive TCP measurements to classify TCP
anomalies, calculating high-level heuristics such as impact of
flow length, return time observed and minimum RTT. Here,
7 possible causes of anomalies were recognized. Sundaresan
et al. [9] showed that monitoring RTT during the slow start
period and the difference between maximum and minimum
RTT, can robustly identify loss congestion with 90% accu-
racy. Dukkipati et al. [10] argued that monitoring just flow

3Globus Endpoint of the OSG node used is osgconnect#stash

 0

 20

 40

 60

 80

 100

Normal Loss Duplicate Reorder

P
re

d
ic

ti
o

n
 (

%
)

Test Data

Predicted Normal
Predicted Loss

Predicted Duplication
Predicted Reordering

(a) Cubic

 0

 20

 40

 60

 80

 100

Normal Loss Duplicate Reorder

P
re

d
ic

ti
o

n
 (

%
)

Test Data

Predicted Normal
Predicted Loss

Predicted Duplication
Predicted Reordering

(b) Reno

 0

 20

 40

 60

 80

 100

Normal Loss Duplicate Reorder

P
re

d
ic

ti
o

n
 (

%
)

Test Data

Predicted Normal
Predicted Loss

Predicted Duplication
Predicted Reordering

(c) Hamilton

 0

 20

 40

 60

 80

 100

Normal Loss Duplicate Reorder

P
re

d
ic

ti
o

n
 (

%
)

Test Data

Predicted Normal
Predicted Loss

Predicted Duplication
Predicted Reordering

(d) BBR

Fig. 9: Predictions for Elephant Flows.

 0

 20

 40

 60

 80

 100

Normal Loss Duplicate Reorder

P
re

d
ic

ti
o

n
 (

%
)

Test Data

Predicted Normal
Predicted Loss

Predicted Duplication
Predicted Reordering

(a) Cubic

 0

 20

 40

 60

 80

 100

Normal Loss Duplicate Reorder

P
re

d
ic

ti
o

n
 (

%
)

Test Data

Predicted Normal
Predicted Loss

Predicted Duplication
Predicted Reordering

(b) Reno

 0

 20

 40

 60

 80

 100

Normal Loss Duplicate Reorder

P
re

d
ic

ti
o

n
 (

%
)

Test Data

Predicted Normal
Predicted Loss

Predicted Duplication
Predicted Reordering

(c) Hamilton

 0

 20

 40

 60

 80

 100

Normal Loss Duplicate Reorder

P
re

d
ic

ti
o

n
 (

%
)

Test Data

Predicted Normal
Predicted Loss

Predicted Duplication
Predicted Reordering

(d) BBR

Fig. 10: Predictions for Mice Flows.

 0

 20

 40

 60

 80

 100

Normal Loss Duplicate Reorder

P
re

d
ic

ti
o

n
 (

%
)

Test Data

Predicted Normal
Predicted Loss

Predicted Duplication
Predicted Reordering

(a) Cubic

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Normal Loss Duplicate Reorder

P
re

d
ic

ti
o

n
 (

%
)

Test Data

Predicted Normal
Predicted Loss

Predicted Duplication
Predicted Reordering

(b) Reno

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Normal Loss Duplicate Reorder

P
re

d
ic

ti
o

n
 (

%
)

Test Data

Predicted Normal
Predicted Loss

Predicted Duplication
Predicted Reordering

(c) Hamilton

 0

 20

 40

 60

 80

 100

Normal Loss Duplicate Reorder

P
re

d
ic

ti
o

n
 (

%
)

Test Data

Predicted Normal
Predicted Loss

Predicted Duplication
Predicted Reordering

(d) BBR

Fig. 11: Predictions for the 1000 Genome Workflow Transfers.

 0

 0.2

 0.4

 0.6

 0.8

 1

Cubic Reno Hamilton BBR

A
cc

u
ra

cy
 R

at
e

Classifier

Elephant Flows
Mice Flows

1000Genome Workflow

Fig. 12: Prediction Accuracy Rate.

completion time alone, can help improve congestion control
in long lived TCP flows.

Network traces are often unlabeled data-sets and unsu-
pervised feature extraction methods are more suitable [31].
However, to build correct classifier, one needs labeled data.
Iglesias et al. [32] built a multistage feature selection method
using filters and stepwise regression wrappers, to analyze 41
traffic features. Zanero et al. [33] used an unsupervised self
organizing maps to identify patterns for intrusion detection on
TCP payload. Others used TCP to predict throughput to detect
bad behavior [8].

In their seminal work, Lakhina et al. [34] discussed how
difficult diagnosing anomalies are, due to large amounts of
high-dimensional and noisy data. Using principal component

analysis, the authors showed how relational measurements can
be used to isolate anomalous from normal traffic behaviors.
The authors showed that on average anomalous traffic will
have higher volumes when compared to their normal counter-
parts. Wang et al. [35] designed a multistage feature extraction
method to filter information entropy from data through multi-
ple stages to filter abnormal traffic. The authors improve false
alarm rate hugely using this. Further, [36] used signal analysis
of outages, flash crowds, attacks and measurement failures,
based on IP and SNMP measurements. [37] used SVMs to
predict anomalies in real time to work with DTNs and detect
slow transfers, while [38] used genetic algorithms to select
important features in TCP/IP packets.

Similar TCP signatures were detected by [39] by correlating
flows and Markov models [40], while [9] developed TCP
congestion signatures to identify self-induced and external
congestion. [41] developed network signatures to correlate
detection and unauthorized modifications. In recent works, [7]
develop TCP classification for P4, but also found difficulty in
identifying Reno and Cubic behaviors.

Effective modeling of TCP traffic can help differentiate
normal and abnormal patterns. Carrascal et al. [42] used a
combination of approaches, self organizing map and learning
vector quantization to build intrusion detection systems. How-
ever, to the best of our knowledge, all current approaches focus

on small number of features to build classifiers. In this work,
we aim to use most of TCP variables.

IX. CONCLUSION

Studying TCP behavior can lead to develop new TCP con-
gestion algorithms which may be game-changing for improv-
ing network transfer reliability [43]. Using random forest trees,
our initial results show insights by identifying binary rules
for key features. Being a white box approach, random forest
reveals how the classifiers make decisions, showing features
other than throughput, congestion window or completion time,
can help identify anomalous transfers. Our experiments reveal
that one needs to build separate classifiers for each TCP
algorithm tracking and can help identify which algorithm is
being used by the host machine. However, requiring more
analysis, in future, we will extend the classifiers to identify
TCP configurations and explore deep neural networks to help
identify the feature relationships in TCP statistics.

ACKNOWLEDGMENT

This work was funded by DOE contract number #DE-
SC0012636M, “Panorama 360: Performance Data Capture and
Analysis for End-to-end Scientific Workflows”. Any opinions,
findings, or conclusions in this article are of the authors and
do not necessarily reflect views of the sponsor.

REFERENCES

[1] E. Dart, L. Rotman, B. Tierney, M. Hester, and J. Zurawski, “The science
DMZ: A network design pattern for data-intensive science,” Conf. on
High Performance Computing, Networking, Storage and Analysis, 2013.

[2] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-to-host
congestion control for tcp,” Commun. Surveys Tuts., vol. 12, pp. 304–
342, July 2010.

[3] Cisco, “Trending analysis.” https : / / www . cisco . com / c / en / us /
solutions/collateral/service-provider/visual-networking- index-vni/vni-
hyperconnectivity-wp.html, 2019.

[4] M. Mellia, M. Meo, L. Muscariello, and D. Rossi, “Passive analysis of
tcp anomalies,” Comput. Netw., vol. 52, pp. 2663–2676, Oct. 2008.

[5] T. V. Lakshman and U. Madhow, “The performance of tcp/ip for net-
works with high bandwidth-delay products and random loss,” IEEE/ACM
Trans. Netw., vol. 5, pp. 336–350, June 1997.

[6] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“Bbr: Congestion-based congestion control,” Queue, vol. 14, pp. 50:20–
50:53, Oct. 2016.

[7] M. Ghasemi, T. Benson, and J. Rexford, “Dapper: Data plane perfor-
mance diagnosis of tcp,” in Symposium on SDN Research, (New York,
NY, USA), pp. 61–74, ACM, 2017.

[8] M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A machine learning
approach to tcp throughput prediction,” IEEE/ACM Trans. Netw., vol. 18,
pp. 1026–1039, Aug. 2010.

[9] S. Sundaresan, A. Dhamdhere, M. Allman, and k. claffy, “Tcp conges-
tion signatures,” in App. Net. Research Wksp., pp. 18–18, 2018.

[10] N. Dukkipati and N. McKeown, “Why flow-completion time is the
right metric for congestion control,” SIGCOMM Comput. Commun. Rev.,
vol. 36, pp. 59–62, Jan. 2006.

[11] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger,
“Pegasus: a workflow management system for science automation,”
Future Generation Computer Systems, vol. 46, pp. 17–35, 2015.

[12] M. Trevisan, A. Finamore, M. Mellia, M. Munafo, and D. Rossi, “Traffic
analysis with off-the-shelf hardware: Challenges and lessons learned,”
Comm. Mag., vol. 55, pp. 163–169, Mar. 2017.

[13] V. Jacobson, “Congestion avoidance and control,” in Sym. Proc. Com-
munications Architectures and Protocols, pp. 314–329, 1988.

[14] S. Ha, I. Rhee, and L. Xu, “Cubic: A new tcp-friendly high-speed tcp
variant,” SIGOPS Oper. Syst. Rev., vol. 42, pp. 64–74, July 2008.

[15] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling tcp reno
performance: a simple model and its empirical validation,” IEEE/ACM
Transactions on Networking, vol. 8, pp. 133–145, April 2000.

[16] T. Lukaseder, L. Bradatsch, B. Erb, R. W. Van Der Heijden, and F. Kargl,
“A comparison of tcp congestion control algorithms in 10g networks,”
in Conf. on Local Computer Networks, pp. 706–714, Nov 2016.

[17] D. Miras, M. Bateman, and S. Bhatti, “Fairness of high-speed tcp
stacks,” in Int. Conf. on Adv. Information Networking and Applications,
pp. 84–92, March 2008.

[18] A. Parichehreh, S. Alfredsson, and A. Brunstrom, “Measurement anal-
ysis of tcp congestion control algorithms in lte uplink,” Network Traffic
Measurement and Analysis Conf., 2018.

[19] M. Ahmed, A. Mahmood, and J. Hu, “A survey of network anomaly
detection techniques,” Journal of Network and Computer Applications,
vol. 60, pp. 19–31, 2016.

[20] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32,
Oct 2001.

[21] I. Baldine, Y. Xin, A. Mandal, P. Ruth, C. Heerman, and J. Chase, “Ex-
ogeni: A multi-domain infrastructure-as-a-service testbed,” in Testbeds
Research Infrastructure. Development of Networks Communities, 2012.

[22] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in prac-
tice: the condor experience.,” Concurrency - Practice and Experience,
vol. 17, no. 2-4, pp. 323–356, 2005.

[23] www.globus.org, globus, 2018 (accessed February 24, 2019). https:
//www.globus.org.

[24] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu,
I. Raicu, and I. Foster, “The Globus striped GridFTP framework and
server,” in ACM/IEEE Conference on Supercomputing, 2005.

[25] B. Hubert, T. Graf, G. Maxwell, R. van Mook, M. van Oosterhout,
P. Schroeder, J. Spaans, and P. Larroy, “Linux advanced routing & traffic
control,” in Ottawa Linux Symposium, vol. 213, 2002.

[26] 1000 Genomes Project Consortium, “A global reference for human
genetic variation,” Nature, vol. 526, no. 7571, pp. 68–74, 2012.

[27] R. Ferreira da Silva, R. Filgueira, E. Deelman, E. Pairo-Castineira, I. M.
Overton, and M. Atkinson, “Using simple pid controllers to prevent
and mitigate faults in scientific workflows,” in Workflows in Support of
Large-Scale Science, pp. 15–24, 2016.

[28] Telecommunication Networks Group - Politecnico di Torino, “Tstat: Log
tcp complete,” 2016.

[29] R. Quinlan, Learning efficient classification procedures, Machine Learn-
ing: an artificial intelligence approach. Morgan Kaufmann, 1983.

[30] F. Palmieri and U. Fiore, “Network anomaly detection through nonlinear
analysis,” Computers & Security, vol. 29, no. 7, pp. 737–755, 2010.

[31] S. Zanero, “Analyzing tcp traffic patterns using self organizing maps,”
in Image Analysis and Processing, pp. 83–90, 2005.

[32] F. Iglesias and T. Zseby, “Analysis of network traffic features for
anomaly detection,” Machine Learning, vol. 101, pp. 59–84, Oct 2015.

[33] S. Zanero, “Analyzing tcp traffic patterns using self organizing maps,”
in Int. Conf. on Image Analysis and Processing, pp. 83–90, 2005.

[34] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic
anomalies,” in SIGCOMM, pp. 219–230, 2004.

[35] H. Wang, Z. Gong, Q. Guan, and B. Wang, “Detection network anoma-
lies based on packet and flow analysis,” Int. Conf. on Networking, 2008.

[36] P. Barford, J. Kline, D. Plonka, and A. Ron, “A signal analysis of net-
work traffic anomalies,” in SIGCOMM Work. on Internet Measurement,
pp. 71–82, 2002.

[37] A. Syal, A. Lazar, J. Kim, A. Sim, and K. Wu, “Automatic detection
of network traffic anomalies and changes,” in Systems and Network
Telemetry and Analytics, (New York, NY, USA), pp. 3–10, ACM, 2019.

[38] T. Shon, X. Kovah, and J. Moon, “Applying genetic algorithm for
classifying anomalous tcp/ip packets,” Neurocomputing, vol. 69, no. 16,
pp. 2429 – 2433, 2006. Brain Inspired Cognitive Systems.

[39] G. Fernandes and P. Owezarski, “Automated classification of network
traffic anomalies,” in Security and Privacy in Communication Networks,
pp. 91–100, 2009.

[40] G. Münz, H. Dai, L. Braun, and G. Carle, “Tcp traffic classification using
markov models,” in Traffic Monitoring and Analysis, pp. 127–140, 2010.

[41] K. Tan and B. Collie, “Detection and classification of tcp/ip network
services,” in Annual Computer Security App. Conf., 1997.

[42] A. Carrascal, J. Couchet, E. Ferreira, and D. Manrique, “Anomaly de-
tection using prior knowledge: application to tcp/ip traffic,” in Artificial
Intelligence in Theory and Practice, pp. 139–148, Springer US, 2006.

[43] K. Winstein and H. Balakrishnan, “Tcp ex machina: Computer-generated
congestion control,” in SIGCOMM, pp. 123–134, 2013.

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.globus.org
https://www.globus.org

	Introduction
	Background
	TCP Variants
	TCP Cubic
	TCP Reno
	TCP Hamilton
	TCP BBR

	Network Anomalies that affect TCP Behavior
	Elephant and Mice (Long vs Short Transfers)
	Random Forest Trees

	Experimental Environment
	Elephant and Mice Transfers
	1000 Genome Workflow Transfers
	Building the Training Data-set

	Initial Analysis
	Retransmissions
	Throughput

	Building Classifier
	Pruning the Trees
	Data Leakage

	Evaluation
	Testing data: Unseen Elephant and Mice flows
	Testing data: Unseen Workflows transfers
	Testing data: Accuracy
	Testing with DTN Transfers

	Discussion
	Related Work
	Conclusion
	References

