
Bringing Scientific Workflow to the Masses via
Pegasus and HUBzero

Michael McLennan, Steven Clark
HUBzero Platform for Scientific Collaboration

Purdue University
West Lafayette, IN, USA

mmclennan@purdue.edu, clarks@purdue.edu

Ewa Deelman, Mats Rynge, Karan Vahi
Information Sciences Institute

University of Southern California
Marina del Rey, CA, USA

deelman@isi.edu, rynge@isi.edu, vahi@isi.edu

Frank McKenna
University of California, Berkeley

Berkeley, CA, USA
fmckenna@ce.berkeley.edu

Derrick Kearney, Carol Song
Purdue University

West Lafayette, IN, USA
dsk@purdue.edu, carolxsong@purdue.edu

Abstract— Scientific workflow managers are powerful tools
for handling large computational tasks. Domain scientists find it
difficult to create new workflows, so many tasks that could
benefit from workflow automation are often avoided or done by
hand. Two technologies have come together to bring the benefits
of workflow to the masses. The Pegasus Workflow Management
System can manage workflows comprised of millions of tasks, all
the while recording data about the execution and intermediate
results so that the provenance of the final result is clear. The
HUBzero platform for scientific collaboration provides a venue
for building and delivering tools to researchers and educators.
With the press of a button, these tools can launch Pegasus
workflows on national computing infrastructures and bring
results back for plotting and visualization. As a result, the
combination of Pegasus and HUBzero is bringing high-
throughput computing to a much wider audience.

Keywords—computation; workflow; collaboratories; user
interfaces; automation

I. INTRODUCTION
Computation has brought about a revolution in science. As

software was created to analyze large amounts of data,
researchers found they could gather even more data, which
necessitated even more software and more computing power.
Today, many analysis tasks require not just a single program or
computer, but dozens of different programs running across
thousands of computational nodes. Handling any one of those
tasks requires a complex orchestration of moving data to
appropriate nodes, finding or staging the executables, starting
jobs, handling data flow dependencies, and overcoming job
failures.

Over the past decade, several frameworks have been
created to support the execution of such large computational
tasks. The Pegasus Workflow Management System (Pegasus
WMS) [1] and its workflow engine, the directed acyclic graph

manager (DAGMan) within HTCondor [2], were built to
manage thousands of jobs in a high-throughput computing
environment. Taverna [3] graphically connects bioinformatics
web services together into a coherent flow. Kepler [4] also
provides graphical user interfaces for workflow composition
and supports different workflow execution models. The
SHIWA simulation platform uses the WS-PGRADE/gUSE
technology to provide workflow interoperability across a
number of systems [5]. Recently, Galaxy [6] is also gaining
popularity in the bioinformatics domain, particularly because it
tailors its environment to their community.

Once a particular workflow has been established, it is
relatively easy for others to execute it. However, creating new
workflows has proven to be an enormous challenge—
especially for domain scientists with very little background in
computer science. Creating a workflow is a lot like writing a
program that calls standard library functions. The author not
only must have a deep understanding of the science but also
must understand the interface for each component of the
workflow, including the data files required and the output files
produced. The output of one component may need format
conversions or additional processing before it can be used by
another component. The author must know what programs are
available to perform conversions, or in some cases, the author
must write little conversion programs (often called “shims”) to
complete the workflow. Components of the workflow may
have limitations or may fail when given certain combinations
of input parameters. The author must understand that too, and
work around such issues.

Several projects have tried to simplify the creation of
workflows by building drag-and-drop editors. Taverna [3],
Kepler [4], Galaxy [6], and GridNexus [7] all allow users to
drag blocks onto a canvas and connect inputs and outputs
together in a flow. But while these applications simplify the
task of expressing a workflow, they do not solve the inherent

This work was supported by the US National Science Foundation through
grants CBET-0941302, CMMI-0927178, OCI-1148515, and OCI-0943705.

problems of understanding components, building shims, or
working around limitations. The Taverna project has taken one
step further and created a web site at MyExperiment.org for
publishing and sharing workflows [8].

Our approach takes workflow yet another step further by
delivering live simulation tools embodying workflows to the
masses via a web browser. These tools are powered by
Pegasus WMS running on Open Science Grid [9], DiaGrid
[10], and XSEDE resources [11]. The tools are created by the
few skilled users within a community, but wrapped in graphical
user interfaces with integrated plotting and visualization, and
delivered to the masses via the HUBzero software platform.
There are now more than 40 hubs covering a wide range of
scientific disciplines, including nanotechnology, earthquake
mitigation, manufacturing, healthcare, pharmaceuticals,
volcanoes, and climate change. There is also a hub for the
HUBzero community at http://hubzero.org, which includes a
list of known hubs. All together, these hubs have served more
than 850,000 visitors from 172 countries worldwide—not over
all time, but during the calendar year 2012 alone. Pegasus and
HUBzero act as a conduit for these users, giving them fingertip
access to national Grid computing infrastructures.

II. THE PEGASUS WORKFLOW MANAGEMENT SYSTEM
The Pegasus Workflow Management System (or Pegasus)

manages the execution of scientific workflows on desktops,
private clusters, campus clusters, grids, and academic and
commercial clouds. It automatically locates the necessary input
data and computational resources needed for workflow
execution; thus, it allows scientists to specify their workflows
at a high-level of abstraction (devoid of resource information)
and then maps/plans this description onto the available
execution resources. Next, Pegasus reliably executes this plan.
As a result, Pegasus workflows are easy to compose and are
portable across heterogeneous cyberinfrastructure.

Pegasus is capable of executing workflows on a single
resource or across resources. Even a single workflow
description can be distributed and executed across the
cyberinfrastructure. Pegasus has been used to run workflows
ranging from just a few computational tasks up to millions.
When errors occur, Pegasus tries to recover when possible by
retrying tasks, by retrying the entire workflow, by providing
workflow-level checkpointing, by re-mapping portions of the
workflow, by trying alternative data sources for staging data,
and, when all else fails, by providing a rescue workflow
containing a description of only the work that remains to be
done [1]. Thus, it tries what it can to shield the user from
errors and intermittent issues with the computing resources. It
cleans up storage as the workflow is executed so that data-
intensive workflows have enough space to execute on storage-
constrained resources [12]. Pegasus keeps track of what has
been done (provenance) including the locations of data used
and produced, and which software was used with which
parameters [13],[14].

In order to support the abstract workflow specifications,
which let scientists concentrate on their science rather than on
the operational aspects of the cyberinfrastructure, mapping
technologies are needed to automatically interpret and map
user-defined workflows onto the available resources. The

workflow mapping process involves finding the appropriate
software, data, and computational resources required for
workflow execution. The mapping process can also involve
restructuring the workflow to optimize performance and adding
transformations for data management and provenance
information generation. DAGMan, Pegasus’s workflow engine,
relies on the resources (compute, storage and network) defined
in the executable workflow to perform the necessary actions.
Individual workflow tasks are managed by a task scheduler
(Condor), which supervises their execution on local and remote
resources.

III. HUBS FOR SCIENTIFIC COMMUNITIES

A. Building a Community on nanoHUB.org
In 2002, the US National Science Foundation created the

Network for Computational Nanotechnology (NCN), a
collection of universities engaged in simulation and modeling
for the nanotechnology community [15]. NCN established a
web presence at nanoHUB.org and offered an array of
simulation and modeling tools, along with seminars, tutorials,
courses, and other supporting materials. Over the years,
nanoHUB.org evolved into a software platform supporting
collaboration in private group areas, discussion forums, ratings
and reviews, and most importantly, deployment of new
simulation tools via its unique middleware. In 2007, the
underlying software for nanoHUB.org was spun off as a
separate project, the HUBzero® Platform for Scientific
Collaboration [16]. Since then, it has been used to create
similar hubs for many other scientific areas—all supported by
the same underlying middleware and content management
system.

nanoHUB grew from 10 tools and 1,000 users in 2002 to
more than 260 tools and 250,000 users today [17]. User
contributions were key to that growth. Each new tool, seminar,
or tutorial brought new users to the site, some of whom
contributed their own new content. This virtuous cycle was
fueled by an open content management system that enabled
users to upload and deploy their own content according to their
own schedule, with minimal intervention from the nanoHUB
team.

Uploading and publishing a single document or PowerPoint
presentation is one thing; uploading and deploying a simulation
tool is quite another. Tools have hundreds of individual source
code files; they must be compiled and tested within the hub
environment; and all of this must be done by untrusted users
with minimal intervention. The HUBzero infrastructure was
designed to support this activity. Researchers upload their code
into private project areas with a Subversion [18] repository for
source code control; they compile, test, and modify their code
within a secure execution container managed by OpenVZ [19]
running on a cloud of execution hosts; and they approve tools
for deployment via a Web-based content management system.
All of this enables their code to be separated from the system
and from other users, and yet deployed in a secure and scalable
manner.

 End users find a tool on a hub and press a button to launch
it. The tool is launched in a Linux/X11 environment within a
secure container on the “cloud of execution hosts,” and the

graphical output from the session is piped through the Web to
the user’s browser via VNC [20]. The result is a live,
interactive simulation tool running in a secure environment,
capable of running workflows on national computing
infrastructure, and accessible to any user via a Web browser
without any special software installation.

There are many other gateway frameworks, including the
Distributed Application Runtime Environment [21], Open Grid
Computing Environments [22], and WS-PGRADE/gUSE [5],
but none provide direct access to interactive tools and scientific
visualization. This is a distinct advantage of the HUBzero
platform.

There are many different users that work together within
each hub community, and their interactions are mediated by the
HUBzero platform. A hub owner creates a new hub and
engages others in the community to seed the site with initial
content. Users browse the site and take advantage of
interesting content, perhaps by watching a seminar or running a
simulation tool. Users also contribute their own content to the
site, including new workflows and simulation tools. Hub
administrators help to compile and stage new simulation tools
and ultimately approve all content before it is released.

B. NEES.org and OpenSees Laboratory
Other hubs leverage the same HUBzero infrastructure to

support different toolsets for their own community. In 2009,

the NSF George E. Brown Network for Earthquake
Engineering Simulation (NEES) moved operations to Purdue
and created a hub for the civil engineering community. Today,
NEES.org offers more than 65 simulation and data analysis
tools used to understand the damage caused by earthquakes and
improve building design. One of these tools leverages an open
source code, the Open System for Earthquake Engineering
Simulation (OpenSees) [23], to provide a collection of utilities
for structural and geotechnical engineers.

One of the utilities within this OpenSees Laboratory tool
[24] is the Moment Frame Earthquake Reliability Analysis.
This tool is intended to demonstrate to engineers the
importance of uncertainty in their models and the need to use
probabilistic methods when determining important response
measures. The tool prompts the user for the material properties
including probability distributions, building layout, and then a
list of earthquake ground motion records. On submission, the
tool automatically builds and executes a Pegasus workflow.
The workflow manages several hundred to tens of thousands of
separate OpenSees jobs on the Open Science Grid (OSG),
which together perform a reliability analysis of the building
frame under seismic loads, as shown in Fig. 1. The resulting
plots will show the variation in roof displacement, interstory
drift, and base shear given the uncertainty in the materials for
each of the earthquake motions specified. A single dot in red
for each earthquake shows the engineer what would happen if

Fig. 2. The BLASTer tool on DiaGrid.org manages the execution of BLAST programs on DiaGrid. NCBI sequence databases are kept up to date on shared

storage, so they do not need to be transferred for each run.

Fig. 1. The OpenSees Laboratory on NEES.org, like all tools managed by HUBzero, uses a graphical user interface to prompt for input values and plot

results. Tool sessions run within secure containers on an execution host, and can submit individual runs or Pegasus workflows out to remote sites.

only the mean value had been used for the material properties
for that earthquake. The advantage of using Pegasus and the
OSG for such a workflow is that Pegasus recognizes that most
of the computation can be performed in parallel and the OSG
permits concurrent job submission and execution. As a
consequence, the resulting time spent obtaining these results
can be a few minutes and hours instead of many hours, weeks
and even months that would be required if the results were
obtained from a series of sequential analyses.

To date, OpenSees Laboratory has served 950 simulation
users from the US, China, Canada, Italy, Japan, and other
countries all over the world. About a third of these users are
coming from academic institutions. All of them are driving
OpenSees through a graphical user interface, perhaps without
even knowing if and when they are launching complex
workflows.

C. DiaGrid.org and BLASTer, SubmitR
DiaGrid is a high-throughput computing resource utilizing

the Condor system, with more than 50,000 cores from
machines at Purdue University and 9 other campuses. Since its
inception in 2005, DiaGrid has handled more than 90,000,000
simulation jobs.

In 2011, Purdue established a hub at DiaGrid.org to provide
more widespread access to the underlying DiaGrid execution
pool. DiaGrid.org offers a tool called BLASTer [25], which
can be used to run BLAST (Basic Local Alignment Search
Tool) [26], a bioinformatics tool for analyzing DNA sequence
data. Users upload a query file containing one or more
nucleotide sequences and search against standard databases
from the National Center for Biotechnology Information
(NCBI), or against their own custom databases. The run for a
single sequence may take anywhere from 10 seconds to 30
minutes. But many researchers bundle thousands of searches
into a single request. Performed linearly, such a search might
take several days or weeks of computation. BLASTer
automatically divides the query file into chunks and creates a
Pegasus workflow to distribute the search over hundreds of
DiaGrid nodes, so the end-to-end execution time can be
shortened from weeks to a matter of hours. Shared storage
allows the NCBI standard databases, updated regularly, to be
available to all users without requiring file transfer, as shown in
Fig. 2, thereby further reducing the time to results.

DiaGrid.org offers a similar tool for statistical analysis
scripts written in the R programming language [27]. It is quite
common for researchers to run a particular script over a wide
range of input parameters to explore the parameter space or to
perform a sensitivity analysis. The SubmitR tool [28] takes a
script, data files, and a specification of parameter values, and
automatically builds and executes the Pegasus workflow to run
a large number of R jobs in parallel on DiaGrid. Again, this
appeals to the domain scientist who is quite familiar with R,
but knows nothing about workflows, Condor, or DiaGrid.

IV. CREATING SCIENTIFIC WORKFLOWS

A. Job Submission via “submit”
The integration of Pegasus and HUBzero certainly makes it

easier for end users to launch workflows, but also makes it
easier for tool developers to build and test new workflows.
Each hub comes with one tool called a Workspace, which is a
full-featured Linux desktop accessible via the Web. Tool
developers use this to upload, compile, and test their code
before deploying a tool. Experienced researchers also use this
to get past the constraints of a graphical interface—to edit files,
write simple scripts, and dispatch computational jobs.

HUBzero provides a command called “submit,” which is
used within the Workspace to dispatch jobs, as shown in Fig. 3.
In this example, the command line “spice3 –b circuit”
represents the research code that is being executed. Electrical
engineers will recognize this as the SPICE3F4 program created
back in the 1970’s at UC Berkeley and still in use today [29].
But the approach we describe would apply to any such research
code amenable to command line execution. The command
spice3 is the executable, the flag –b means to execute in
batch mode, and the file circuit contains the netlist
representing the electrical circuit being simulated.

When invoked directly on the command line as in Fig. 3(a),
the spice3 program runs locally within the execution host
managing the tool session (see Fig. 1). However, prefixing the
usual command line with submit will send the job off to
remote execution venues, such as DiaGrid or the Open Science
Grid. The “-v DiaGrid” arguments shown in Fig. 3(b)
request that the job be sent to DiaGrid. The submit command
will automatically transfer files such as circuit that are
required for simulation. It will speak the appropriate
protocol—currently Condor, Condor-G, Load Leveler, LSF,

(a) spice3 –b circuit

(b) submit –v DiaGrid spice3 –b circuit

(c) submit –p @@res=100,1k,10k spice3 –b @:circuit

(d) submit –p @@res=100,1k,10k –p @@cap=1u,10u,100u spice3 –b @:circuit

(e) submit –d indata.csv spice3 –b @:circuit

(f) submit –p @@num=1:100 spice3 –b circuit@@num

(g) submit –p @@file=glob:circuit* spice3 –b @@file

(h) submit pegasus-plan --dax myworkflow.dax
Fig. 3. HUBzero’s submit command makes it easy to send jobs off to remote sites, and includes support for parameter sweeps and Pegasus workflows.

SGE, PBS, or SLURM—to queue the job. And, it will monitor
progress and transfer results back to the execution host once
the run is complete. It runs all jobs with a common credential
owned by the hub, so individual users need not have an account
or any credentials for the remote venue. The hub tracks all
jobs, including those run on remote venues, so that if a security
incident arises, a complete report can be generated for any
affected venue. The same accounting is used to produce
monthly reports of the overall simulation usage for each hub.

B. Simple Workflows: Parameter Sweeps
The submit command can also manage parameter sweeps

with a very simple command line, as shown in Fig. 3(c).
The -p flag indicates that the next argument is a parameter
specification. In this case, the parameter @@res is taking three
values: 100, 1k, and 10k. The @: prefix before the circuit
file indicates that this file should be processed with parameter
substitutions. In other words, the submit command treats
circuit as a template file, and substitutes all occurrences of
@@res with a particular parameter value. In this case, it
produces three separate input files—one for each of the
parameter values. Then, it automatically builds a Pegasus
workflow to manage the jobs, and dispatches the workflow off
to an appropriate venue. Since the optional –v argument was
not specified in this case, the submit command will
automatically select a venue that supports Pegasus job
submission and data transfer interfaces, such as DiaGrid or
Open Science Grid.

A simulation run may have multiple parameters. In
Fig. 3(d), the parameter @@res is swept through three values,
and the parameter @@cap is swept through three values. The
submit command creates 9 different input files representing
all possible combinations of these two parameters, builds a
Pegasus workflow to manage the jobs, and then dispatches the
workflow to an appropriate venue.

Instead of specifying input parameters on the command
line, the values for all combinations of parameters can be
stored in a comma-separated value (CSV) file. In Fig. 3(e), the
arguments “-d indata.csv” indicate that parameter values
should be loaded from the file indata.csv. The first line
should contain the parameter names for the columns, such as
“@@res,@@cap” in this example. Each of the remaining lines
represents the parameter values for a single job, such as
“100,1u” or “10k,100u” for this example. Passing
parameters in this way is useful when the desired values are not
a simple combination of values, but perhaps a series of values
generated by a genetic optimization algorithm, or by a Latin
Hypercube sampler.

Instead of relying on template files and parameter
substitutions, the user may generate a series of separate input
files. For example, suppose a user has 100 different circuit
files to evaluate. The syntax shown in Fig. 3(f) supports this
scenario. The arguments “-p @@num=1:100” define a
parameter @@num that takes on integer values from 1 to 100. In
this case, the circuit input file is specified as circuit@@num,
so the submit command builds a Pegasus workflow with 100
different command lines, substituting the value of @@num for
each job to produce commands like “spice3 –b circuit1”,

“spice3 –b circuit2”, and so forth, referencing the series
of numbered files that the user created by hand for this run.

Input files can also be recognized using glob-style pattern
matching. The arguments “-p @@file=glob:circuit*” in
Fig. 3(g) define a parameter named @@file that takes on all
values matching the glob-style pattern circuit*. With this
syntax, the files could be distinguished by different numbers,
different letters, or other naming conventions, but all files that
submit can find matching circuit* will be simulated as
separate cases, with @@file representing the whole name of
each matching file, such as circuit1, circuit-2b,
circuitXYZ, etc.

C. Customized Workflows in Pegasus
More experienced users can learn how to create their own

customized Pegasus workflows. Each workflow is expressed
as a high-level directed acyclic graph (DAG) called a DAX (for
DAG XML description). Each node in the DAX represents a
job in the workflow, and the edges between nodes represent
data files that flow from one job to the next. The DAX is
similar to the Condor DAGMan file [30] but at a higher level
of abstraction so that it can be targeted to different execution
environments.

Each DAX is ultimately expressed as an XML file. Writing
that file by hand, however, can be tedious and impractical.
Many developers prefer to express their workflow as small
program written in Python, Java, or Perl. Pegasus provides
Application Programming Interfaces (APIs) in these languages
to help construct the needed XML. The workflow designer
needs to build up the nodes and edges of a DAX object, and the
API is used to write out the object in XML format. Running
the program, therefore, produces a DAX file expressing the
entire workflow, suitable for submission.

The submit command described earlier is also used to
launch Pegasus workflows, as shown in Fig. 3(h). This time the
programs being launched (such as spice3) do not appear on
the command line; instead, they are encoded within the DAX
description of the workflow, which in this case is a file named
myworkflow.dax. The submit command invokes another
program called pegasus-plan which reads the DAX,
“compiles” the workflow for a specific execution venue, then
launches the workflow and manages execution.

For example, the Moment Frame Earthquake Reliability
Analysis tool, discussed in Section III.B, uses both the Python
API provided by Pegasus and the submit command. At the
launch of the simulation by the user, the tool invokes a shell
script that first invokes a Python script (opensees-dax.py)
to create the XML file and then invokes the submit command
using the pegasus-plan program and the XML file to run the
workflow on the OSG, as follows:

The workflow compilation or “planning” step is the

strength of the Pegasus approach. It optimizes the workflow
by removing any branches where partial results are in place and

#!/bin/sh
python opensees-dax.py –-nMat=$1 –-nMotion=$2 > dax.xml
submit pegasus-plan --dax dax.xml

where dependencies are already satisfied. It also augments the
workflow, adding tasks to stage data files in/out of remote
resources, and to clean up unnecessary results after execution.
And, it can partition the workflow and cluster short-running
jobs together, so that they run more efficiently on a single
compute node. It does all of this at a high-level, freeing the
user from having to request or identify specific resources.
During execution, Pegasus dispatches jobs, monitors progress,
and automatically retries failing jobs so that sporadic failures
do not derail the entire workflow. If a workflow does fail (for
example, if the venue goes down, or if a particular job triggers
a bug in the code), it can be corrected and restarted by the user.
Pegasus will recognize partial results and pick up where it left
off to complete the workflow.

V. BUILDING AND DEPLOYING APPLICATIONS

A. Graphical User Interfaces and the Rappture Toolkit
Researchers can build their own graphical user interfaces

on top of the basic submit capability, so that other (perhaps
less experienced) users can access a simplified interface and
launch powerful workflows for targeted applications, as
described earlier in Section III. Such tools can be created using
MATLAB®, Java, Qt, GTK+, wxWidgets, or any other toolkit
that runs under Linux/X11. For example, the interfaces for
BLASTer and SubmitR were both created using Java and
Python, respectively.

HUBzero’s Rappture toolkit provides an easy way to create
such graphical interfaces. Rappture comes pre-installed within
the Workspace tool and includes an interactive “builder”
application for new tools. Researchers specify the inputs and
outputs for each new tool by dragging objects from a palette of
available controls and by dropping them into an interface
specification tree. Each object is given a label, description, a
default value, and other attributes, such as units of measure for
numeric values. The builder provides a preview of the
resulting interface and generates errors and warnings if any
elements are missing or incomplete. The builder saves each
interface in an XML description file, and it can also generate a
skeleton for the main program of the tool in a variety of
programming languages, including C/C++, Fortran, MATLAB,
Octave, Java, Python, Perl, R, Ruby, and Tcl/Tk. The
researcher modifies the body of the skeleton code to include
the core of the tool, then runs the rappture command to
produce the graphical interface.

However a graphical interface is created, it acts as an
intermediary for the user, gathering input values, launching
simulation runs, and plotting results. Remote jobs and
workflow submissions are handled via something like the C
language system() function, which forks and executes a
separate shell process to handle a command line string with the
submit command shown earlier in Fig. 3. Scripting languages
are particularly well suited for this task, so it is quite common
to build an interface tool in Python, for example, which calls
submit to dispatch a complex workflow built from a series of
C/C++ and Fortran programs.

B. Tool Publication Process
HUBzero includes a powerful content management system

for uploading and deploying many different types of content,

including seminars, tutorials, teaching materials, and most
importantly, computational tools. Any researcher within a
particular hub community can click on the Upload link, fill out
a form describing their new tool, and get immediate access to a
private project area complete with a Subversion source code
repository and a wiki area for project notes. The researcher can
launch the Workspace tool, check out the latest source code,
and compile and test within the workspace environment. The
researcher can build Pegasus workflows and test them right at
the command line by typing the command shown earlier in
Fig. 3(h). Once that part is working, the researcher can create a
graphical interface using Rappture or any other toolkit, and
embed the same submit command within the code of their
new tool.

Once the tool is working properly, the researcher can visit
the page representing their tool contribution and click a link
saying, “My code is committed, working, and ready to be
installed.” This signals the hub administrators to check out the
latest code, compile it, and install it in the official /apps
directory under a subdirectory with the tool name and its
revision number from the source code control system.

Once a tool is installed, the researcher receives a message
to begin testing. Clicking a Launch Tool button brings up a
preview of the final tool, exactly as other users of the hub
would see it. Once the tool has been verified, the researcher
can click a link saying, “My tool is working properly. I approve
it.”

That prompts the hub administrators to take one last look,
to verify that the tool is indeed functional and has an adequate
description page, and then move the tool to the “published”
state, where it becomes available to other users according to the
restrictions set by the tool authors. A tool can be open to the
world, or protected by export control, or accessible only by a
certain group of users. If a tool is published as Open Source,
an archive of the source code is presented for download
alongside the Launch Tool button, and the terms of the Open
Source license are clearly displayed on the tool page. All tools
have a unique Digital Object Identifier (DOI), so they can be
cited within academic publications.

C. Ongoing Tool Support
The publication of a tool is not the end of the story. Other

users may encounter a bug in the tool and file a support ticket
on the hub. Any ticket filed on a live tool session page is
automatically routed to the tool authors and becomes their
responsibility to fix. The authors receive email about the
ticket, and they can see it listed on the My Tickets module
within their My Account dashboard page. They can update the
ticket to communicate with the user, check out the code within
a Workspace, commit a fix, and close the ticket. When the
code is ready for another release, the authors click a link
saying, “I've made changes Please install the latest code for
testing and approval.” This takes the tool back to the
“updated” state, causing hub administrators to stage the latest
version, letting the tool authors test and approve the latest
version, leading to an updated tool publication.

Each tool also has its own question/answer forum for
community discussion. Another user might not understand the

physics within the tool and post a question. One of the tool
authors, or perhaps another user, might follow up with an
answer. Researchers can have threaded discussions within the
question/answer area, and they earn points for participation.
The points can be redeemed for merchandise on some hubs,
traded for other favors, or used as bragging rights.

End users may like a tool, but may have requests for
improvement, such as support for extra model parameters or
material types. They can post such ideas on the wish list for
each tool. Other users can vote the ideas up or down. The tool
authors can evaluate each wish on a scale of importance and
effort, so that wishes can be sorted in order of priority. Ideas
that are deemed important and low effort bubble up to the top
of the list, while those that are unimportant and high effort sink
to the bottom. When any wish is granted, the original user is
notified and the tool author may earn points for fulfilling the
request.

VI. INTEGRATION CHALLENGES
During the integration work, we encountered some

challenges including data management, feedback and workflow
progress in the user interface, and also providing workflow
metrics from Pegasus to the HUBzero framework.

When the integration effort started, the most recent Pegasus
release was version 3. The data management in that version
was still based on a model of high-performance computing
(HPC) systems, with assumptions such as a shared parallel
filesystem being mounted on the compute nodes used for the
workflow. Under this data management model, when a
workflow was submitted, a particular compute resource had to
be chosen, the data had to be transferred in to the shared
filesystem, and after the jobs were run, the output data had to
be staged out. These steps were handled by Pegasus, but the
fact that a resource had to be chosen up-front meant that either
the hub or the end user would have to select a resource to run
on. In the case of high throughput workloads, for which it does
not matter where the jobs run, selecting a resource was not a
very user-friendly solution, since at any given moment, a
particular resource might be heavily loaded or broken, while
other venues might be working fine. This particular integration
problem went away with the release of Pegasus 4.0. Two new
data management approaches were added to support workloads
that could either use Condor IO for file transfers, or a shared
staging storage element (such a GridFTP or S3 server) for
storing intermediate data products. Workflows could then span
multiple compute resources. Today, most of the hub workflows
are using a simple site catalog describing either DiaGrid or
Open Science Grid as the target compute resource, and no jobs
are bound to particular resources of those grids. The result of a
simpler site catalog, a catalog, which describes the various
available resources and the services they provide, and the
improved data management in Pegasus 4.0, is that the
researcher or workflow developer can more easily hand off
workflows to the underlying infrastructure and worry less
about where the jobs will be running.

Another integration challenge was how to provide better
feedback to the user about the execution of the workflow. The
interface to Pegasus is mostly command line tools, and even
though there are tools like pegasus-status (which provides

a progress report), the question was how to provide the
information back through the tool to the end user. In particular,
we ran into a problem where planning a workflow was taking a
long time—on the order of 30 minutes! During this time, there
was no feedback to the user that the system was actually doing
anything. We are still working on a solution to provide better
output from the pegasus-plan operation, but once the
workflow is planned and is running, the hub regularly runs
pegasus-status and provides feedback to the user. Once the
workflow has finished, the pegasus-statistics and
pegasus-analyzer commands are run automatically to
provide the user with summary statistics, and if something
failed, a report on what failed. Improving these integration
points is an ongoing effort for the HUBzero and Pegasus
developers.

Some integration issues required just simple code changes.
One example is how a report generated by the
pegasus-statistics tool was modified to better match the
data needed inside HUBzero. The changes included adding a
few columns to the job/host breakdown, and providing the data
in comma-separated value (CSV) format so that the HUBzero
framework could easily import the data at the end of a
workflow run.

VII. CONCLUSION
The integration of Pegasus into the HUBzero framework

has brought the power of automated workflows to many more
users. Expert users can launch a Workspace within a hub and
gain immediate access to Pegasus and computational
resources—without having to install or setup the Pegasus
software, without having to apply for Grid credentials, and
without having to learn complex Grid protocols. A simple
submit command dispatches any single job or complex
workflow off to remote facilities for execution. Expert users
can experiment with such commands, use them in research
activities, and wrap them into graphical user interfaces that are
deployed as new tools for the community.

Without knowing a thing about workflows or high-
throughput computing, others in the community can access
such tools, enter their own input parameters, and launch a
complex workflow with the press of a button. If the users have
questions, they can post them for the tool authors and the rest
of the community. They can post ideas about improving the
tool, and submit bug reports when a tool fails or produces
incorrect results. All of these capabilities are provided not just
for one community or one site, but for 40+ sites built on the
HUBzero platform. This improvement is bringing workflow
automation and high-throughput computing to thousands of
users around the world who will benefit from it without ever
realizing the complexity.

REFERENCES
[1] E. Deelman, G. Singh, M-H Su, J. Blythe, Y. Gil, C. Kesselman, G.

Mehta, K. Vahi, G.B. Berriman, J. Good, A. Laity, J.C. Jacob, D.S.
Katz, Pegasus: a Framework for Mapping Complex Scientific
Workflows onto Distributed Systems, Scientific Programming Journal,
Vol 13(3), pages 219-237, (2005).

[2] D. Thain, T. Tannenbaum, M. Livny, "Distributed Computing in
Practice: The Condor Experience" Concurrency and Computation:

Practice and Experience, Vol. 17, No. 2-4, pages 323-356, February-
April, 2005.

[3] T. Oinn, M. Greenwood, M. Addis, et al., Taverna: lessons in creating a
workflow environment for the life sciences. Concurrency Computat.:
Pract. Exper., 18: 1067–1100 (2006). doi: 10.1002/cpe.993

[4] B. Ludäscher, I. Altintas, C. Berkley, et al., Scientific workflow
management and the Kepler system. Concurrency Computat.: Pract.
Exper., 18: 1039–1065, (2006). doi: 10.1002/cpe.994

[5] P. Kacsuk, Z. Farkas, M. Kozlovszky, G. Hermann, A. Balasko, K.
Karoczkai, Istvan Marton, WS-PGRADE/gUSE Generic DCI Gateway
Framework for a Large Variety of User Communities, J Grid Computing
10:601–630 (2012). DOI 10.1007/s10723-012-9240-5

[6] J. Goecks, A. Nekrutenko, J. Taylor, T.G. Team, Galaxy: a
comprehensive approach for supporting accessible, reproducible, and
transparent computational research in the life sciences. Genome Biol,
11(8), R86, (2010).

[7] J.L. Brown, C.S. Ferner, T.C. Hudson, et al., GridNexus: A Grid
Services Scientific Workflow System, International Journal of Computer
Information Science (IJCIS), Vol 6, No 2; June 20, 2005: 72-82.

[8] C.A. Goble, D.C. De Roure, myExperiment: social networking for
workflow-using e-scientists. In Proceedings of the 2nd workshop on
Workflows in support of large-scale science (WORKS '07). ACM, New
York, NY, USA (2007). DOI=10.1145/1273360.1273361

[9] R. Pordes, et al., The open science grid, J. Phys.: Conf. Ser. 78, 012057
(2007).

[10] Purdue University, DiaGrid, http://diagrid.org, accessed March 14, 2013.
[11] Extreme Science and Engineering Discovery Environment (XSEDE),

http://www.xsede.org, accessed March 14, 2013.
[12] G. Singh, K. Vahi, A. Ramakrishnan, G. Mehta, E. Deelman, H. Zhao,

R. Sakellariou, K. Blackburn, D. Brown, S. Fairhurst, D. Meyers, G.B.
Berriman. Optimizing Workflow Data Footprint, Special issue of the
Scientific Programming Journal dedicated to Dynamic Computational
Workflows: Discovery, Optimisation and Scheduling, 2007.

[13] S. Miles, E. Deelman, P. Groth, K. Vahi, G. Mehta, L. Moreau,
Connecting Scientific Data to Scientific Experiments with Provenance,
Third IEEE International Conference on e-Science and Grid Computing
(e-Science 2007) 10-13 December 2007 in Bangalore, India

[14] S. Miles, P. Groth, E. Deelman, K. Vahi, G. Mehta, L. Moreau,
Provenance: The Bridge Between Experiments and Data, Computing in
Science & Engineering Volume:10 Issue:3 May-June 2008 Page(s):38-
46.

[15] G. Klimeck, M. McLennan, S.P. Brophy, G.B. Adams III, M.S.
Lundstrom, nanoHUB.org: Advancing Education and Research in

Nanotechnology, Computing in Science and Engineering, 10(5), pp. 17-
23, September/October, 2008.

[16] M. McLennan, R. Kennell, HUBzero: A Platform for Dissemination and
Collaboration in Computational Science and Engineering, Computing in
Science and Engineering, 12(2), pp. 48-52, March/April, 2010.

[17] Statistics reported online at http://nanohub.org/usage, accessed March
14, 2013.

[18] Apache Project, Subversion, http://subversion.apache.org, accessed
March 14, 2013.

[19] OpenVZ Linux Containers, http://openvz.org, accessed March 14, 2013.
[20] T. Richardson, Q. Stafford-Fraser, K.R. Wood, A. Hopper, Virtual

network computing, Internet Computing, IEEE , vol.2, no.1, pp.33,38,
Jan/Feb 1998, doi: 10.1109/4236.656066

[21] S. Maddineni, J. Kim, Y. El-Khamra, S. Jha, Distributed Application
Runtime Environment (DARE): A Standards-based Middleware
Framework for Science-Gateways, J Grid Computing, 10:647–664
(2012). DOI 10.1007/s10723-012-9244-1

[22] M. Pierce, S. Marru, R. Singh, A. Kulshrestha, K. Muthuraman, Open
Grid computing environments: advanced gateway support activities,
Proceedings of the 2010 TeraGrid Conference, TG ’10, pp. 16:1–16:9.
ACM, New York (2010)

[23] F. McKenna, G.L. Fenves, M.H. Scott, OpenSees: Open system for
earthquake engineering simulation. Pacific Earthquake Engineering
Center, University of California, Berkeley, CA., http://opensees.
berkeley. edu (2006).

[24] F. McKenna, C. McGann, P. Arduino; J.A. Harmon (2012), "OpenSees
Laboratory," https://nees.org/resources/openseeslab, accessed March 14,
2013.

[25] C. Thompson, B. Raub, BLASTer, http://diagrid.org/resources/blastgui,
accessed March 14, 2013.

[26] S. Altschul, W. Gish, W. Miller, E. Myers, D. Lipman, Basic local
alignment search tool, Journal of Molecular Biology, 215 (3): 403–410,
October 1990. doi:10.1016/S0022-2836(05)80360-2.

[27] R. Ihaka, R. Gentleman, R: A language for data analysis and graphics,
Journal of Computational and Graphical Statistics, Vol. 5, Iss. 3, 1996.

[28] R. Campbell, SubmitR, https://diagrid.org/resources/submitr, accessed
March 14, 2013.

[29] L.W. Nagel, D.O. Pederson, SPICE: Simulation program with integrated
circuit emphasis. Electronics Research Laboratory, College of
Engineering, University of California, 1973.

[30] J. Frey, T. Tannenbaum, I. Foster, M. Livny, S. Tuecke, "Condor-G: A
Computation Management Agent for Multi-Institutional Grids.," Cluster
Computing, vol. 5, pp. 237-246, 2002.

