
Evaluating I/O Aware Network Management for Scientific
Workflows on Networked Clouds

Anirban Mandal, Paul Ruth, Ilya Baldin,
Yufeng Xin, Claris Castillo

RENCI - UNC Chapel Hill
{anirban,pruth,ibaldin,yxin,claris}@renci.org

Mats Rynge, Ewa Deelman
ISI - USC

{rynge,deelman}@isi.edu

ABSTRACT
This paper presents a performance evaluation of scientific
workflows on networked cloud systems with particular em-
phasis on evaluating the effect of provisioned network band-
width on application I/O performance. The experiments
were run on ExoGENI, a widely distributed networked in-
frastructure as a service (NIaaS) testbed. ExoGENI orches-
trates a federation of independent cloud sites located around
the world along with backbone circuit providers. The eval-
uation used a representative data-intensive scientific work-
flow application called Montage. The application was de-
ployed on a virtualized HTCondor environment provisioned
dynamically from the ExoGENI networked cloud testbed,
and managed by the Pegasus workflow manager.

The results of our experiments show the effect of modify-
ing provisioned network bandwidth on disk I/O throughput
and workflow execution time. The marginal benefit as per-
ceived by the workflow reduces as the network bandwidth al-
location increases to a point where disk I/O saturates. There
is little or no benefit from increasing network bandwidth
beyond this inflection point. The results also underline the
importance of network and I/O performance isolation for
predictable application performance, and are applicable for
general data-intensive workloads. Insights from this work
will also be useful for real-time monitoring, application steer-
ing and infrastructure planning for data-intensive workloads
on networked cloud platforms.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer-
Communication Networks—Distributed Systems

Keywords
Networked clouds, scientific workflows, performance evalua-
tion, performance monitoring, I/O performance

1. INTRODUCTION
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
NDM’13 November 17, 2013, Denver, CO, USA
Copyright 2013 ACM 978-1-4503-2522-6/13/11 ...$15.00
http://dx.doi.org/10.1145/2534695.2534698 .

Advanced networks are an essential element of data-driven
science enabled by next-generation cyberinfrastructure en-
vironments. Computational activities increasingly incorpo-
rate widely dispersed resources, and the benefits of utilizing
them are often limited by the ability to quickly and effi-
ciently access large data-sets on remote resources. The re-
cent advances in enabling on-demand network circuits, cou-
pled with programmable edge technologies create an un-
precedented opportunity to enable complex data-intensive
scientific applications to run on dynamic networked cloud
infrastructure.

Data-driven computational workflows and workflow en-
sembles are becoming a centerpiece of modern computa-
tional science. NIaaS links distributed resources into con-
nected arrangements, slices, targeted at solving a specific
problem. However, scientists lack the tools that integrate
the operation of workflow-driven science applications with
dynamic slices of infrastructure. These tools must orches-
trate the infrastructure in response to applications, manage
application lifetime on top of the infrastructure by moni-
toring various workflow steps, expand and shrink slices in
response to application demands, and integrate data move-
ment with the workflows to optimize performance.

Integrating data movement is particularly important as
large datasets would be expected to reside both inside and
outside the dynamically created compute infrastructure. The
application and application inputs, outputs, and intermedi-
ate data will need to be accessed in a timely manner by
distributed computational tasks. It is critical to create sys-
tems that can fluidly shift data and computation across the
infrastructures (static and dynamic), taking advantage of
available resources, while providing more predictable per-
formance in an environment that can be customized to the
needs of the application.

There are three components that are necessary to enable
data-driven computational workflows to effectively adapt
dynamically provisioned networked cloud infrastructure to
the needs of the application.

• Mechanisms for modifying the amount and types of
compute, network, and storage resources allocated to
the workflow over time.

• Mechanisms for monitoring resource demand for, and
utilization of, temporarily allocated resources distributed
across administrative domains. This includes com-
pute, network, and storage resources.

• Policies for deciding when and how to modify allocated
infrastructure based on observed demand and utiliza-
tion.

Mutually Isolated
Virtual Networks

VM VM

VM VM

VM VM

VM VM

VM VM

VM VM

VM VM

VM VM

VM VM

VM VM

VM VM

VM VM

Edge Providers
(Compute Clouds and Network Providers)

Mutually Isolated Slices
of Virtual Resources

Figure 1: Networked Clouds

In recent years, many cloud Infrastructure-as-a-Service
(IaaS) systems have been designed and deployed to address
these needs [1, 25, 7, 24]. Among these systems is Exo-
GENI [2], which uses ORCA [4, 9, 28, 3, 12], a control
framework for NSF GENI, to create mutually isolated slices
of interconnected infrastructure from multiple independent
cloud and network providers, as shown in Figure 1. Each
of these cloud services has some level of mechanisms for dy-
namic modification.

ExoGENI provides dynamic bandwidth provisioned layer-
2 network circuits that are necessary for transferring large
amounts of data for data-driven workflows. In addition, Ex-
oGENI includes a distributed monitoring facility that uses
persistent queries [22] to observe resource utilization and ap-
plication performance. The monitoring facility is designed
to enable closed-loop feedback control for optimizing and
steering future resource provisioning according to the dy-
namic demands of the workflow application.

The work presented in this paper evaluates the effects of
provisioned network bandwidth on disk I/O for data-driven
workflow applications as a step toward developing slice mod-
ification policies based on monitoring feedback. Most work-
flow management systems manage a DAG composed of com-
putational tasks that each have a set of input and output
files. Often a task’s output files are inputs to subsequent
tasks. A significant responsibility of workflow management
systems is transferring the data files between compute sites
that execute the tasks. Dynamic NIaaS creates the opportu-
nity to modify the amount and type of resources the work-
flow uses to transfer these files. However, finding the opti-
mal amount of resources to allocate is not easy. In the case
of data-driven workflows, it is possible to allocate network
bandwidth that exceeds the I/O bandwidth capability of a
compute resource. In this case, any additional network allo-
cation is wasted because it will not reduce the application’s
run time. Ideally, it would be possible to allocate precisely
the amount of network bandwidth required for the applica-
tion. However, the correct amount of bandwidth depends

on the I/O characteristics of the compute host as well as the
characteristics of the application.

The paper is organized as follows. In section 2, we discuss
network provisioning considerations for data-driven work-
flows, and present workflow use cases with a representative
data-intensive workflow. In section 3, we present our evalua-
tion of the network provisioning considerations on workflow
and I/O performance. Section 4 provides more background
on ExoGENI, the networked cloud platform used for the ex-
periments, and the Pegasus workflow management system.
Section 5 presents some related work and section 6 concludes
the paper.

2. DATA-DRIVEN WORKFLOWS
This section describes network provisioning considerations

for data-intensive workflows, workflow use cases for dynam-
ically provisioned infrastructure, and a representative work-
flow application that can benefit from dynamic network pro-
visioning.

2.1 Network Provisioning Considerations
One limitation on performance of data-intensive workflows

is the ability to stage input and output files quickly. There
are two primary bottlenecks for quickly staging files. The
more obvious bottleneck is the network bandwidth between
the source and destination of the files. Increasing the net-
work bandwidth will usually decrease the file staging time.
However, the high-bandwidth links provided by dynamic
layer-2 circuits can expose a second bottleneck caused by
limited disk I/O bandwidth. The disk I/O bottleneck may
occur at either end of the transfer but is most often seen
when the shared storage node is overloaded with many con-
current transfers.

The goal of this work is to find the relationship between
provisioned network bandwidth and disk I/O including the
saturation points of each. Ideally, we would be able to match
the network performance to the I/O performance. Specific

 Condor Head Node
(handles initial workflow staging)

Add compute nodes for parallel
compute intensive step

Workflow Dynamic Slice

Tim
e

1.

Network intensive
workflow staging

End workflow

Free unneeded compute nodes
after compute step

Start workflow

3.

5.

Dynamically provision compute
nodes and network for workflow

staging Dynamically destroy
compute nodes and
provisioned netowork

Dynamically create
compute nodes

2.

4.

Figure 2: Workflow use case for networked clouds. The left side of the figure depicts the workflow while the
right side depicts the dynamic slice of resources customized to support the application.

goals include evaluating the following:

• Application run time: Effect of network provision-
ing on the run time of data-intensive workflow appli-
cations.

• Network bandwidth vs. disk I/O: Effect of provi-
sioned network bandwidth on disk I/O performance.

• Performance isolation: Relationship between net-
work bandwidth, disk I/O, and co-location of virtual
machines.

The result of each of these goals is highly dependent on
the characteristics of the workflow application and will likely
change over time as the workflow progresses through its
phases.

2.2 Workflow Use Case
Figure 2 presents a timeline with the workflow in the left

column and the state of the elastic slice of resources in the
right column. The application represents a common sce-
nario in which a workflow must complete several steps in
a sequence in order to realize its goal. The workflow has
different resource requirements for each step. Multiple steps
(in this case step 3) include many tasks that can be executed
in parallel. The tasks of step 3 are compute-intensive but
require large input files to be staged into the node before
execution and output files to be staged out after execution.

Ideally, the workflow will dynamically adjust the amount
and types of resources that it consumes at each step. For-
tunately, most workflows are controlled by a workflow man-
agement system. The workflow management system knows
which steps and tasks of the workflow have completed, which
are currently executing, and which will be executed next. In
many cases, the workflow management system is knowledge-
able about the resource requirements of each task.

If a workflow was running in an elastic slice of resources, it
is possible to insert additional tasks into the workflow that
modify the slice to prepare it for its future tasks. For exam-
ple, a workflow could increase the number of compute nodes
in order to handle upcoming parallel tasks and release those
nodes upon completion of the ensemble. Further, dynamic
network provisioning features of ExoGENI enable a work-
flow to dynamically add on-demand layer 2 circuits that can
be used to stage large input and output files to compute
resources.

In the example workflow in Figure 2, the slice initially con-
tains a single compute node that runs the HTCondor head
node (i.e. it runs the HTCondor scheduler and collector).
Step 2 in the workflow completes the HTCondor pool by cre-
ating both the additional HTCondor workers that will ac-
tually run the computation and the bandwidth provisioned
network that will be used to stage the input and output
data files. Figure 3 shows a more detailed view of the fully
allocated infrastructure. The HTCondor pool uses the ded-
icated data plane for its communication. The parallel work
is executed in step 3. After completing step 3 and moving
the output data to its destination, the workflow releases its
compute and network resources.

In this situation the workflow will have the performance of
dedicated layer-2 circuit without the cost of a permanent cir-
cuit. Further, many workflows require access to several large
datasets that are distributed across large geographic areas.
The system used here could allow workflows to have tempo-
rary high-bandwidth circuits between all necessary datasets
and a large number of available compute resources.

In this work, the Pegasus workflow management system,
described in section 4.2, was used to plan workflows that
execute on HTCondor based systems. The experiments per-
formed for this paper involved deploying a complete HT-
Condor site within a slice of ExoGENI resources. The HT-
Condor site includes one HTCondor scheduler (head node),

eth0

Management Switch

br-int
eth0.100

HTCondor Head Node
(scheduler, collector)

eth0 eth1
tap0 tap1

Data Plane Switch
(Bandwidth Provisioned VLANs)

eth1

br-eth1.1
eth1.1

Host 1

Virtual Machine

eth0

br-int
eth0.100

HTCondor Worker
(startd)

eth0 eth1
tap0 tap1

eth1

br-eth1.1
eth1.1

Host 2

Virtual Machine

eth0

br-int
eth0.100

HTCondor Worker
(startd)

eth0 eth1
tap0 tap1

eth1

br-eth1.1
eth1.1

Host 3

Virtual Machine

eth0

br-int
eth0.100

HTCondor Worker
(startd)

eth0 eth1
tap0 tap1

eth1

br-eth1.1
eth1.1

Host 4

Virtual Machine

eth0

br-int
eth0.100

HTCondor Worker
(startd)

eth0 eth1
tap0 tap1

eth1

br-eth1.1
eth1.1

Host 5

Virtual Machine

To OpenStack
Head Node

Figure 3: Virtual machines running HTCondor daemons. There is one HTCondor head node that is used
to submit Pegasus workflows. There are many HTCondor worker nodes that execute the computational
workflow tasks.

and several HTCondor workers (HTCondor startd’s). The
head node and workers are deployed within virtual machines
with a dedicated layer-2 network. The amount of bandwidth
allocated to the network is configured for the various exper-
iments described in Section 3.

Montage: For the experiments in this paper, we used an
I/O intensive Pegasus based workflow named Montage as a
representative data-driven workflow use case. The workflow
is based on the widely used Montage [14] astronomy image
application developed at NASA’s Infrared Processing and
Analysis Center. The Montage workflow is given a region of

Figure 4: The majority of the Montage workflow
tasks and dependencies

the sky for which a mosaic is desired, the size of the mosaic
in terms of square degrees, and other parameters such as
the mission and band to be used. The input images are first
reprojected to the coordinate space of the output mosaic, the
reprojected images are then background rectified and finally
co-added to create the final output mosaic. Figure 4 shows
the majority of the tasks and dependencies in the workflow.
Most of these tasks take one or more input images, perform
an operation to re-project or combine images, and write an
output image. This makes Montage a very I/O intensive
workflow.

3. EVALUATION
Our goal was to evaluate the performance of scientific

workflows when deployed on dynamically provisioned net-
worked clouds, with particular emphasis on analyzing I/O
bottlenecks under different network provisioning configura-
tions. The experiments were run using two racks from the
ExoGENI NIaaS testbed - a rack at Florida International
University (FIU) in Miami, FL, and another rack at NICTA
in Sydney, Australia. Details on the hardware and soft-
ware configurations for the racks can be found on the Exo-
GENI wiki [8]. The evaluations used a representative data-
intensive scientific workflow application called Montage, as
described in the previous section. Montage was deployed on
a virtualized HTCondor environment provisioned dynami-
cally from resources on the ExoGENI NIaaS testbed, and
managed by the Pegasus workflow manager.

Slices were provisioned from the ExoGENI testbed by
sending requests for virtual topologies consisting of a set of
virtual machines (vm) connected via a broadcast link with
a specified bandwidth. Since Pegasus and Montage use an
execution framework based on HTCondor, the request to
ExoGENI consisted of a HTCondor head node vm and a
specified number of HTCondor worker vms connected by
links with desired bandwidths. The virtual machine images
had pre-requisite software installed like HTCondor and Pe-
gasus. The ExoGENI postboot script feature was leveraged
to start various HTCondor daemons on vm startup so that
the HTCondor environment is ready to run the workflow as
soon as the slice setup is complete. The workflow was run

with 4 and 8 Condor workers. Input data for the runs was
scaled according to the number of HTCondor workers.

The Linux iotop utility [20] was used to monitor the I/O
performance for processes running on a vm during the work-
flow execution. The iotop utility was installed on the vir-
tual machine images. The monitoring data was analyzed
offline post-execution. The iotop tool provides current I/O
usage by processes or threads on the system - the observed
read and write bandwidth for a process during the specified
sampling period. The default sampling period of 1 second
was used for the experiments. iotop also provides the per-
centage of time a particular process or thread spends while
waiting on I/O during the same sampling period. We re-
fer to this metric as percent_io_wait. percent_io_wait

provides a measure of I/O bottlenecks in the system with
high percent_io_wait indicating that the process is spend-
ing most of it’s time performing I/O. Workflow execution
statistics were collected using the pegasus-statistics util-
ity, and the slice resource details were obtained from Exo-
GENI slice manifests.

Data was collected at both HTCondor head node vm and
HTCondor worker vms. For the purpose of our evaluation,
the condorio mode was used for files. In condorio mode,
input data to the HTCondor workers is sent from the HT-
Condor head node for each workflow step, and output data
for each step from the HTCondor workers is sent back to
the HTCondor head node over the network. The HTCondor
head node and worker vms use their local disks for reading
and writing files. Hence, in this setup, the I/O performance
on the HTCondor head node is more important, and we
present performance results for the HTCondor head node.
Execution of Montage goes through several phases of high
I/O activities interspersed by computational tasks.

0 100 300 500 900 2000 4000 6000
1000

2000

3000

4000

5000

6000

7000

Provisioned network bandwidth (Mb/s)

T
o
ta

l
w

o
rk

fl
o
w

 e
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Workflow execution time vs. Provisioned bandwidth

HTCondor head node with 8 HTCondor workers

Figure 5: Workflow execution time vs. provisioned
network bandwidth (FIU rack)

3.1 Results

Effect of provisioned bandwidth on execution time
Figure 5 shows results of executing Montage workflow on the
FIU rack with 8 HTCondor workers. The total workflow
execution time is plotted against the provisioned network
bandwidth between the HTCondor worker vms and the HT-

Condor head node vm. Each point represents an average of
4 runs with error bars representing the variability across the
runs. The results show that the workflow execution time
decreases with increasing provisioned network bandwidth.
There is a factor of 4 improvement in total execution time
when provisioned bandwidth increases from 100 Mb/s to
2000 Mb/s. It is also observed that the marginal benefit
reduces as the network bandwidth allocation increases to
about 2000 Mb/s. For example, increasing the provisioned
bandwidth to 4000 Mb/s (i.e. doubling the bandwidth) re-
sults in only about 6% improvement in total execution time.

Effect of provisioned network bandwidth on I/O
Figure 6 plots the histograms of average percent_io_wait

distributions for different bandwidths - 100 Mb/s, 300 Mb/s,
500 Mb/s, 900 Mb/s, 2000 Mb/s, and 4000 Mb/s at the
FIU rack. Each sub-figure shows the histogram distribu-
tion for a specific bandwidth. The x-axis of each sub-figure
represents the quantiles of percent_io_wait, <10%, <20%,
and so on. The y-axis represents the average percentage
of samples that belong to a specific quantile. Each his-
togram includes an error bar representing the variability of
observed data across 4 runs. The iotop utility was used
to collect the percent_io_wait profile for processes during
each workflow run. The results show that at lower band-
widths, the percentage of samples for high percent_io_wait

is very small, and most processes during the runs had very
low percent_io_wait, implying absence of I/O bottlenecks.
As the provisioned bandwidth increases, the percentage of
samples with high percent_io_wait increases. The effect
is more pronounced at and beyond 2000 Mb/s, when about
30% of the samples exhibit percent_io_wait between 90-
100%. This implies that at higher bandwidths, processes
are increasingly spending more time waiting on I/O. Be-
yond this inflection bandwidth, there is saturation in disk
I/O, and network I/O is no longer the bottleneck.

Figure 7 plots the observed disk read/write bandwidth for
different provisioned bandwidths - 100 Mb/s through 4000
Mb/s at the FIU rack. Each sub-figure shows the scatterplot
for a specific bandwidth. The x-axis represents the execu-
tion progress in seconds. The observed read/write band-
width is plotted on the y-axis for each point of time in the
execution period. During the workflow execution there are
various phases of read and write activities. The observed
I/O throughput is lower for lower provisioned bandwidths
because there is not enough data sent on the network to
exercise the entire disk I/O bandwidth available. The re-
sults show that the I/O throughput increases by increas-
ing the provisioned bandwidth, and this results in shorter
durations of read and write phases. Beyond the inflection
point, the I/O bandwidth doesn’t increase proportionally
with increase in provisioned bandwidth because the disk
I/O is gradually getting saturated, as evident from increased
percent_io_wait in the previous graphs.

Figure 8 presents the histograms of write throughput dis-
tribution. Histogram bars for observed write bandwidth less
than 10 Mb/s have been excluded because these samples cor-
respond to compute intensive phases. It is observed that the
number of samples with higher write throughput increases
with increase in provisioned bandwidth initially. At 2000
Mb/s and beyond, the processes experience higher band-
widths when they are not waiting on disk I/O, but they also
experience lower bandwidths when they are waiting on I/O.

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

% I/O wait

P
e

rc
e

n
ta

g
e

 o
f

to
ta

l
s
a

m
p

le
s

Distribution of % I/O wait using 100Mb/s network

HTCondor head node: 100Mb/s network

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

% I/O wait

P
e

rc
e

n
ta

g
e

 o
f

to
ta

l
s
a

m
p

le
s

Distribution of % I/O wait using 300Mb/s network

HTCondor head node: 300Mb/s network

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

% I/O wait

P
e

rc
e

n
ta

g
e

 o
f

to
ta

l
s
a

m
p

le
s

Distribution of % I/O wait using 500Mb/s network

HTCondor head node: 500Mb/s network

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

% I/O wait

P
e

rc
e

n
ta

g
e

 o
f

to
ta

l
s
a

m
p

le
s

Distribution of % I/O wait using 900Mb/s network

HTCondor head node: 900Mb/s network

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

% I/O wait

P
e

rc
e

n
ta

g
e

 o
f

to
ta

l
s
a

m
p

le
s

Distribution of % I/O wait using 2000Mb/s network

HTCondor head node: 2000Mb/s network

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

% I/O wait

P
e

rc
e

n
ta

g
e

 o
f

to
ta

l
s
a

m
p

le
s

Distribution of % I/O wait using 4000Mb/s network

HTCondor head node: 4000Mb/s network

Figure 6: Percent I/O wait distributions for different provisioned bandwidths

0 1000 2000 3000 4000 5000 6000 7000
0

5

10

15

20

25

30

35

40

45

50

Execution time (secs)

w
ri
te

/r
e

a
d

 b
a

n
d

w
id

th
 (

M
B

/s
)

Observed I/O bandwidth with 100Mb/s network

HTCondor head node vm : Write

HTCondor head node vm : Read

0 500 1000 1500 2000 2500 3000
0

50

100

150

Execution time (secs)

w
ri
te

/r
e

a
d

 b
a

n
d

w
id

th
 (

M
B

/s
)

Observed I/O bandwidth with 300Mb/s network

HTCondor head node vm : Write

HTCondor head node vm : Read

0 500 1000 1500 2000 2500
0

50

100

150

200

250

Execution time (secs)

w
ri
te

/r
e

a
d

 b
a

n
d

w
id

th
 (

M
B

/s
)

Observed I/O bandwidth with 500Mb/s network

HTCondor head node vm : Write

HTCondor head node vm : Read

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

Execution time (secs)

w
ri
te

/r
e

a
d

 b
a

n
d

w
id

th
 (

M
B

/s
)

Observed I/O bandwidth with 900Mb/s network

HTCondor head node vm : Write

HTCondor head node vm : Read

0 200 400 600 800 1000 1200 1400 1600
0

50

100

150

200

250

300

350

Execution time (secs)

w
ri
te

/r
e

a
d

 b
a

n
d

w
id

th
 (

M
B

/s
)

Observed I/O bandwidth with 2000Mb/s network

HTCondor head node vm : Write

HTCondor head node vm : Read

0 500 1000 1500
0

50

100

150

200

250

300

350

Execution time (secs)

w
ri
te

/r
e

a
d

 b
a

n
d

w
id

th
 (

M
B

/s
)

Observed I/O bandwidth with 4000Mb/s network

HTCondor head node vm : Write

HTCondor head node vm : Read

Figure 7: Observed I/O bandwidth for different provisioned network bandwidths

This results in histograms scattered over the entire range of
write bandwidth values.

The results of the above experiments show the effect of

modifying provisioned network bandwidth on I/O throughput
and workflow execution time. The marginal benefit as per-
ceived by the workflow reduces as the network bandwidth al-

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700

800

900

1000

write bandwidth (MB/s)

N
u

m
b

e
r

o
f

s
a

m
p

le
s

Distribution of observed disk write bandwidth using 100Mb/s network

HTCondor head node: 100Mb/s network

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

write bandwidth (MB/s)

N
u

m
b

e
r

o
f

s
a

m
p

le
s

Distribution of observed disk write bandwidth using 300Mb/s network

HTCondor head node: 300Mb/s network

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

100

write bandwidth (MB/s)

N
u

m
b

e
r

o
f

s
a

m
p

le
s

Distribution of observed disk write bandwidth using 500Mb/s network

HTCondor head node: 500Mb/s network

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

35

40

45

50

write bandwidth (MB/s)

N
u

m
b

e
r

o
f

s
a

m
p

le
s

Distribution of observed disk write bandwidth using 900Mb/s network

HTCondor head node: 900Mb/s network

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

16

18

20

write bandwidth (MB/s)

N
u

m
b

e
r

o
f

s
a

m
p

le
s

Distribution of observed disk write bandwidth using 2000Mb/s network

HTCondor head node: 2000Mb/s network

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

16

18

20

write bandwidth (MB/s)

N
u

m
b

e
r

o
f

s
a

m
p

le
s

Distribution of observed disk write bandwidth using 4000Mb/s network

HTCondor head node: 4000Mb/s network

Figure 8: Distribution of observed write bandwidth for different network bandwidths

location increases to a point where disk I/O saturates. There
is little or no benefit from increasing network bandwidth be-
yond this inflection point. A sustained percent_io_wait

value greater than 90% indicates I/O saturation and slice
modification policies should not increase provisioned band-
width beyond the inflection point.

0 100 200 300 400 500 700 900 1000
2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

Provisioned network bandwidth (Mb/s)

T
o
ta

l
w

o
rk

fl
o
w

 e
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Workflow execution time vs. Provisioned bandwidth

Default OpenStack assignment: mean

Default OpenStack assignment: error

HTCondor head node on separate OpenStack worker: mean

HTCondor head node on separate OpenStack worker: error

Figure 9: Workflow execution time vs. provisioned
network bandwidth (NICTA rack)

The previous experiments were conducted on the FIU Ex-
oGENI rack where there might have been other users using
the rack and running experiments on their vms at the same
time as the experiments. It was desired to run our experi-
ments in a controlled environment where there would be no
performance interference from vms from other users. For

this purpose, experiments were run on an ExoGENI rack
at NICTA. Exclusive access to the rack was obtained for
running the experiments. The NICTA rack has fewer total
OpenStack workers. It also has fewer cores (12 instead of
16) and memory (48G instead of 64G) on each OpenStack
worker node. The network switch was also 1Gbps instead of
10Gbps at FIU.

Effect of performance isolation
The Montage workflow was run on the NICTA rack with
4 HTCondor workers. Two configurations of the HTCon-
dor head node and HTCondor worker vms were used. In
the first configuration, the default OpenStack assignment
of vms to the OpenStack workers was used. In this case,
the HTCondor head node vm can be mapped to the same
OpenStack worker node as another HTCondor worker vm.
This is referred to as the default case. In the second con-
figuration, the HTCondor head node vm was mapped to
an OpenStack worker different from any of the HTCondor
worker vms. This is referred to as the isolated case.

Figure 9 shows the results of executing Montage work-
flow for the default and isolated cases. The total workflow
execution time is plotted against the provisioned network
bandwidth between the HTCondor worker vms and the HT-
Condor head node vm. Each point represents an average of
4 runs with error bars representing the variability across
the runs. The black line represents the default case and
the red line represents the isolated case. It is observed that
for both the cases the workflow execution time decreases
with increasing provisioned network bandwidth. As previ-
ously observed, the marginal benefit decreases with higher
bandwidth allocation. Since the network switch in this rack
was limited to 1Gbps, experiments could not be run with

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

% I/O wait

P
e

rc
e
n

ta
g

e
 o

f
to

ta
l
s
a
m

p
le

s
Distribution of % I/O wait using 100Mb/s network

HTCondor head node with default OpenStack assignment

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

% I/O wait

P
e

rc
e
n

ta
g

e
 o

f
to

ta
l
s
a
m

p
le

s

Distribution of % I/O wait using 300Mb/s network

HTCondor head node with default OpenStack assignment

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

% I/O wait

P
e

rc
e
n

ta
g

e
 o

f
to

ta
l
s
a
m

p
le

s

Distribution of % I/O wait using 500Mb/s network

HTCondor head node with default OpenStack assignment

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

% I/O wait

P
e

rc
e
n

ta
g

e
 o

f
to

ta
l
s
a
m

p
le

s

Distribution of % I/O wait using 900Mb/s network

HTCondor head node with default OpenStack assignment

Figure 10: % I/O wait distributions for different bandwidths: Default OpenStack assignment

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

% I/O wait

P
e

rc
e
n

ta
g

e
 o

f
to

ta
l
s
a
m

p
le

s

Distribution of % I/O wait using 100Mb/s network

HTCondor head node on different OpenStack worker

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

% I/O wait

P
e

rc
e
n

ta
g

e
 o

f
to

ta
l
s
a
m

p
le

s

Distribution of % I/O wait using 300Mb/s network

HTCondor head node on different OpenStack worker

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

% I/O wait

P
e

rc
e
n

ta
g

e
 o

f
to

ta
l
s
a
m

p
le

s

Distribution of % I/O wait using 500Mb/s network

HTCondor head node on different OpenStack worker

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

% I/O wait

P
e

rc
e
n

ta
g

e
 o

f
to

ta
l
s
a
m

p
le

s

Distribution of % I/O wait using 900Mb/s network

HTCondor head node on different OpenStack worker

Figure 11: % I/O wait distributions for different bandwidths: HTCondor head node on separate OpenStack
worker

higher values of provisioned bandwidths. This graph also
shows that if there are no interfering vms in the same Open-
Stack worker, the total execution time is less than when
there might be interfering vms. The average execution time
for the isolated case is between 8.75% to 12.35% less than
the default case for provisioned bandwidths greater than 300
Mb/s. The default case also has much higher variability in
execution times as shown by the error bars. This underscores
the importance of I/O performance isolation in virtualized
environments.

Figures 10 and 11 plot the histograms of percent_io_wait
distributions for different bandwidths - 100 Mb/s, 300 Mb/s,
500 Mb/s, and 900 Mb/s for the default and isolated cases
respectively. Each sub-figure shows the histogram distribu-
tion for a specific bandwidth. The x-axis of each sub-figure
represents the quantiles of percent_io_wait, <10%, <20%,
and so on. The y-axis represents the average percentage of
samples that belong to a specific quantile. Each histogram
includes error bars representing the variability of observed
data across 4 runs. We observe that for higher bandwidths
(300Mb/s and beyond), the percentage of samples with high
percent_io_wait is more in the default case than in the iso-
lated case. This implies that the interference of I/O activ-
ity from co-located vms, even from the same application,
can impact I/O performance at higher allocated network
bandwidths. The isolated case has more consistent and pre-
dictable performance because of absence of interference from
other co-located vms. This shows that data-intensive appli-
cations like Montage can be affected negatively without I/O
performance isolation in virtualized environments. These
results underscore the importance of network and I/O per-
formance isolation for predictable application performance,
and are applicable for general data-intensive workloads.

4. BACKGROUND

4.1 ExoGENI
ExoGENI is a new GENI testbed that links GENI to two

advances in virtual infrastructure services outside of GENI:
cloud computing and dynamic circuit fabrics. ExoGENI or-
chestrates a federation of independent cloud sites located
across the US and circuit providers, like NLR and Internet2,
through their native IaaS API interfaces, and links them to
other GENI tools and resources.

ExoGENI is, in effect, a widely distributed networked
infrastructure-as-a-service (NIaaS) platform geared towards
experimentation and computational tasks. ExoGENI em-
ploys sophisticated topology embedding algorithms that take
advantage of semantic resource descriptions using NDL-OWL
– a variant of Network Description Language.

Individual ExoGENI deployments consist of cloud site
racks on host campuses, linked with national research net-
works through programmable exchange points. Virtual com-
pute, storage, and network resources are stitched together
to form mutually isolated slices. Compute and storage re-
sources are obtained from private clouds at the infrastruc-
ture’s edge. Network resources are obtained from both edge
providers and national fabrics using traditional VLAN-based
switching and OpenFlow. Using ORCA (Open Resource
Control Architecture) control framework software, ExoGENI
offers a powerful unified hosting platform for deeply net-
worked, multi-domain, multi-site cloud applications.

What sets ExoGENI apart from most cloud systems is its
ability to allocate bandwidth-provisioned dedicated layer-2
private networks between compute resources (virtual and
physical machines) residing on independent cloud sites. In
the context of data-driven scientific workflows, these dedi-
cated layer-2 networks enable fast transfer of data files be-

tween computational tasks.

4.2 Pegasus Workflow Management System
The Pegasus Workflow Management System [6] is used

by scientists to execute large-scale computational workflows
on a variety of cyberinfrastructure, ranging from local desk-
tops to campus clusters, grids, and commercial and academic
clouds. Pegasus WMS enables scientists to compose abstract
workflows without worrying about the details of the underly-
ing execution environment or the particulars of the low-level
specifications required by the middleware. This mapping is
done by supplying the abstract workflow, a list of available
software (transformation catalog), a list of input files (replica
catalog), and a description of available execution environ-
ments (site catalog) to the Pegasus planner. The output of
the planning step is an executable workflow, which includes
workflow transforms such as optimization and added data
management tasks.

5. RELATED WORK
There has been considerable work [15, 16, 5] on investi-

gating the effectiveness and applicability of IaaS cloud plat-
forms for executing scientific workflows. Existing workflow
engines like Pegasus and Kepler have features [31, 32] that
can leverage Amazon EC2 and other cloud platforms for run-
ning workflow steps. Researchers have also done cost and
performance evaluation of scientific workflows on clouds [21,
17]. There is also existing work on performance analysis
and evaluation of cloud infrastructures for scientific com-
puting [26, 11, 13, 30, 18]. In our previous work [23], we
have evaluated provisioning network bandwidth for Hadoop
workloads in multi-domain networked cloud environments.
However, none of the exiting research has evaluated both
network and IaaS aspects for workflows in dynamically pro-
visioned networked cloud environments. Our work is unique
in that respect.

Ghoshal et. al [10] studied I/O performance of HPC appli-
cations on virtualized cloud environments. There has been
studies on I/O performance isolation issues in cloud envi-
ronments [27, 29], and work on policies for fair-share of I/O
in multi-tenant clouds [19]. Our work identifies similar I/O
performance isolation issues, but in addition, investigates
the effects of bandwidth provisioning on I/O performance
isolation.

6. CONCLUSIONS
In this paper, we presented performance evaluation of a

representative data-intensive scientific application workflow
on dynamically provisioned resources from the ExoGENI NI-
aaS testbed. In particular, we measured and analyzed the
effect of provisioned network bandwidth on overall workflow
execution time and I/O performance when using a virtual-
ized HTCondor execution environment dynamically set up
for workflow execution. The results of our experiments show
that the marginal benefit as perceived by the workflow re-
duces as the network bandwidth allocation increases to a
point where disk I/O saturates. We identified an inflec-
tion point for provisioned bandwidth, beyond which there
is little or no benefit from increasing provisioned network
bandwidth. Our results also underscore the importance of
network and I/O performance isolation for predictable appli-
cation performance. We show the effect of interfering virtual

machines on overall workflow execution time and I/O wait
times experienced by the application.

One of our future goals is to use real-time monitoring data
on I/O and network performance during workflow execution
to enable steering of applications and run-time modification
of provisioned infrastructure. This would enable closed-loop
feedback control. For example, we could dynamically change
the provisioned bandwidth on the links between the vms
depending on the bottlenecks observed. We would dynam-
ically increase the bandwidth until the inflection point and
release excess bandwidth when the data load is low. Moni-
toring these metrics would also be useful to migrate vms to
different OpenStack workers when performance interference
exceeds acceptable thresholds. This work is also applicable
for workflow and ensemble planning so that data movements
can be planned and optimized based on performance feed-
back.

7. ACKNOWLEDGMENTS
Work for this paper was supported by the NSF CC-NIE

ADAMANT project (NSF ACI 1245926), DoE DROPS project
(ASCR DE-SC0005286), DoE SciDAC SUPER (DE-FG02-
11ER26050/DE-SC0006925) project, NSF SDCI Missing Link
project (NSF ACI 1032573), and the NSF GENI project
(GENI Project Office Award #1872).

8. REFERENCES
[1] Amazon Elastic Compute Cloud (Amazon EC2).

http://www.amazon.com/ec2.

[2] I. Baldine, Y. Xin, A. Mandal, P. Ruth,
A. Yumerefendi, and J. Chase. Exogeni: A
multi-domain infrastructure-as-a-service testbed. In
8th International ICST Conference on Testbeds and
Research Infrastructures for the Development of
Networks and Communities (TRIDENTCOM 2012),
2012.

[3] J. Chase, L.Grit, D.Irwin, V.Marupadi, P.Shivam, and
A.Yumerefendi. Beyond virtual data centers: Toward
an open resource control architecture. In Selected
Papers from the International Conference on the
Virtual Computing Initiative (ACM Digital Library),
May 2007.

[4] J. S. Chase, D. E. Irwin, L. E. Grit, J. D. Moore, and
S. E. Sprenkle. Dynamic Virtual Clusters in a Grid
Site Manager. In Proceedings of the Twelfth
International Symposium on High Performance
Distributed Computing (HPDC), June 2003.

[5] E. Deelman, G. Juve, M. Malawski, and J. Nabrzyski.
Hosted science: Managing computational workflows in
the cloud. Parallel Processing Letters, 23(2), 2013.

[6] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil,
C. Kesselman, G. Mehta, K. Vahi, G. B. Berriman,
J. Good, et al. Pegasus: A framework for mapping
complex scientific workflows onto distributed systems.
Scientific Programming, 13(3):219–237, 2005.

[7] Eucalyptus Systems. http://www.eucalyptus.com/.

[8] ExoGENI Wiki. http://wiki.exogeni.net.

[9] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat.
SHARP: An Architecture for Secure Resource Peering.
In Proceedings of the 19th ACM Symposium on
Operating System Principles, October 2003.

[10] D. Ghoshal, R. S. Canon, and L. Ramakrishnan. I/o
performance of virtualized cloud environments. In
Proceedings of the second international workshop on
Data intensive computing in the clouds, DataCloud-SC
’11, pages 71–80, New York, NY, USA, 2011. ACM.

[11] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan,
T. Fahringer, and D. Epema. Performance analysis of
cloud computing services for many-tasks scientific
computing. IEEE Trans. Parallel Distrib. Syst.,
22(6):931–945, June 2011.

[12] D. Irwin, J. S. Chase, L. Grit, A. Yumerefendi,
D. Becker, and K. G. Yocum. Sharing Networked
Resources with Brokered Leases. In Proceedings of the
USENIX Technical Conference, June 2006.

[13] K. Jackson, L. Ramakrishnan, K. Muriki, S. Canon,
S. Cholia, J. Shalf, H. J. Wasserman, and N. Wright.
Performance analysis of high performance computing
applications on the amazon web services cloud. In
Cloud Computing Technology and Science
(CloudCom), 2010 IEEE Second International
Conference on, pages 159–168, 2010.

[14] J. C. Jacob, D. S. Katz, G. B. Berriman, J. C. Good,
A. C. Laity, E. Deelman, C. Kesselman, G. Singh,
M. Su, T. A. Prince, and R. Williams. Montage a grid
portal and software toolkit for science grade
astronomical image mosaicking. Int. J. Comput. Sci.
Eng., 4(2):73–87, July 2009.

[15] G. Juve and E. Deelman. Scientific workflows and
clouds. Crossroads, 16(3):14–18, Mar. 2010.

[16] G. Juve and E. Deelman. Scientific workflows in the
cloud. In M. Cafaro and G. Aloisio, editors, Grids,
Clouds and Virtualization, Computer Communications
and Networks, pages 71–91. Springer London, 2011.

[17] G. Juve, E. Deelman, G. B. Berriman, B. P. Berman,
and P. Maechling. An evaluation of the cost and
performance of scientific workflows on amazon ec2. J.
Grid Comput., 10(1):5–21, 2012.

[18] Z. Li, L. O’Brien, H. Zhang, and R. Cai. A factor
framework for experimental design for performance
evaluation of commercial cloud services. In CloudCom,
pages 169–176. IEEE, 2012.

[19] X. Lin, Y. Mao, F. Li, and R. Ricci. Towards fair
sharing of block storage in a multi-tenant cloud. In
Proceedings of the 4th USENIX conference on Hot
Topics in Cloud Ccomputing, HotCloud’12, pages
15–15, Berkeley, CA, USA, 2012. USENIX
Association.

[20] Linux iotop. http://guichaz.free.fr/iotop/.

[21] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski.
Cost- and deadline-constrained provisioning for
scientific workflow ensembles in iaas clouds. In
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and
Analysis, SC ’12, pages 22:1–22:11, Los Alamitos, CA,
USA, 2012. IEEE Computer Society Press.

[22] A. Mandal, I. Baldine, Y. Xin, P. Ruth, and
C. Heerman. Enabling persistent queries for
cross-aggregate performance monitoring. Technical
Report TR-13-01, Renaissance Computing Institute,
2013, http://www.renci.org/wp-
content/uploads/2013/04/TR-13-01.pdf.

[23] A. Mandal, Y. Xin, I. Baldine, P. Ruth, C. Heerman,

J. Chase, V. Orlikowski, and A. Yumerefendi.
Provisioning and evaluating multi-domain networked
clouds for hadoop-based applications. In Cloud
Computing Technology and Science (CloudCom), 2011
IEEE Third International Conference on, pages
690–697, 2011.

[24] D. Milojicic, I. M. Llorente, and R. S. Montero.
Opennebula: A cloud management tool. IEEE
Internet Computing, 15(2):11–14, 2011.

[25] OpenStack Cloud Software. http://openstack.org.

[26] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan,
T. Fahringer, and D. H. J. Epema. A performance
analysis of ec2 cloud computing services for scientific
computing. In D. R. Avresky, M. Diaz, A. Bode,
B. Ciciani, and E. Dekel, editors, CloudComp,
volume 34 of Lecture Notes of the Institute for
Computer Sciences, Social Informatics and
Telecommunications Engineering, pages 115–131.
Springer, 2009.

[27] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, and
C. Pu. Understanding performance interference of i/o
workload in virtualized cloud environments. In
Proceedings of the 2010 IEEE 3rd International
Conference on Cloud Computing, CLOUD ’10, pages
51–58, Washington, DC, USA, 2010. IEEE Computer
Society.

[28] L. Ramakrishnan, L. Grit, A. Iamnitchi, D. Irwin,
A. Yumerefendi, and J. Chase. Toward a Doctrine of
Containment: Grid Hosting with Adaptive Resource
Control. In Supercomputing (SC06), November 2006.

[29] J. Shafer. I/o virtualization bottlenecks in cloud
computing today. In Proceedings of the 2nd conference
on I/O virtualization, WIOV’10, pages 5–5, Berkeley,
CA, USA, 2010. USENIX Association.

[30] R. Tudoran, A. Costan, G. Antoniu, and L. Bougé. A
performance evaluation of azure and nimbus clouds for
scientific applications. In Proceedings of the 2nd
International Workshop on Cloud Computing
Platforms, CloudCP ’12, pages 4:1–4:6, New York,
NY, USA, 2012. ACM.

[31] J.-S. Vöckler, G. Juve, E. Deelman, M. Rynge, and
B. Berriman. Experiences using cloud computing for a
scientific workflow application. In Proceedings of the
2nd international workshop on Scientific cloud
computing, ScienceCloud ’11, pages 15–24, New York,
NY, USA, 2011. ACM.

[32] J. Wang and I. Altintas. Early cloud experiences with
the kepler scientific workflow system. Procedia
Computer Science, 9(0):1630 – 1634, 2012.

