
Integrating Existing Scientific Workflow Systems: The
Kepler/Pegasus Example

Nandita Mandal, Ewa Deelman, Gaurang Mehta, Mei-Hui Su, Karan Vahi
USC Information Sciences Institute

Marina Del Rey, CA 90292

{nandita, deelman, gmehta, mei, vahi}@isi.edu

ABSTRACT
Scientific workflows have become an

important tool used by scientists to conduct
large-scale analysis in distributed environments.
Today there is a variety of workflow systems that
provide an often disjoint set of capabilities and
expose different workflow modeling semantics to
the users. In this paper we examine the
possibility of integrating two well-known
workflow systems Kepler and Pegasus and
examine the opportunities and challenges
presented by such an integration. We illustrate
the combined system on a workflow used as a
basis of a provenance challenge.

Categories and Subject Descriptors

D.1 Programming Techniques.

General Terms
Design, Languages

Keywords
Scientific Workflows, Programming Models, User
Interfaces

1. INTRODUCTION
Scientific workflows are quickly becoming recognized
as an important unifying mechanism to combine
scientific data management, analysis, simulation, and
visualization tasks [1]. Scientific workflows often
exhibit particular traits, e.g., they can be data-
intensive, compute-intensive, or visualization-
intensive, thus covering a wide range of applications
from low-level “plumbing workflows” of interest to
grid engineers, to high-level “knowledge discovery
workflows” for scientists [2]. There are many
workflow management systems today, each with their
own strengths and weaknesses. When designing
workflows, scientists need to choose their target
workflow management system and in the process
often need to tradeoff between the various
capabilities. In this paper we examine the possibility
of integrating two well-known management systems:
Kepler [2] and Pegasus [3] in the hopes of leveraging
their respective strengths. We describe our initial
integration and show the results of our approach using

an example workflow which formed the basis of the
provenance challenge [4] which aimed at comparing
and contrasting provenance models developed within
a variety of system, most of which were workflow-
based.

2. KEPLER
The Kepler scientific workflow system [2] provides
domain scientists with an easy to-use system for
capturing scientific workflows. Kepler attempts to
streamline the workflow creation and execution
process so that scientists can design, execute, monitor,
re-run, and communicate analytical procedures
repeatedly with minimal effort [5]. The system
follows an actor-oriented modeling approach where
individual workflow components (e.g., for data
movement, database querying, job scheduling, remote
execution etc.) are abstracted into a set of generic,
reusable tasks. Instantiations of these common tasks
can be functionally equivalent atomic components
(called actors) or composite components (so-called
composite actors or sub workflows) [6]. Figure 1
shows a snapshot of Kepler running a gene sequence
workflow utilizing web services and data
transformations.
Kepler’s intuitive GUI (inherited from Ptolemy [7])
for design and execution, and its actor-oriented
modeling paradigm make it a very versatile tool for
workflow design, prototyping, execution, and reuse
for both workflow engineers and end users. Kepler
workflows can be exchanged in XML using Ptolemy’s
own Modeling Markup Language (MoML). [9]

3. PEGASUS
The Pegasus mapping and planning framework uses
the concept of abstract workflows to describe and
model abstract job computations in distributed
environments, such as the grid.
The framework creates a separation between the
application description and the actual execution. Users
describe workflows in resource-independent ways and
Pegasus maps them onto potentially multiple
heterogeneous resources distributed across the wide
area networks, while at the same time shielding the
user from grid details [3]. Pegasus finds appropriate
resources to execute the computations and modifies
the user-specified workflow to execute on those
resources. Pegasus also adds tasks for data

management by adding steps to the workflow to stage
data to and from where the computations will take
place, registering them into data registries and staging
the results out to a user-specified location. Figure 2
gives a view of the above grid mapping process in
Pegasus.
Currently Pegasus supports three main ways of
specifying the abstract workflow: 1) using a semantic-
rich workflow composition tool—Wings [10], using
partial workflow descriptions—via VDL [11], and by
directly specifying the workflow in an XML format
[12] (DAX—Directed Acyclic Graph in XML). The
abstract workflow is composed of tasks described in
terms of logical transformations and logical input and
output filenames. Pegasus consults monitoring
services deployed in the environment to find the
available resources. It also queries data registries to
find the location of the data referred to in the
workflow and queries the Transformation Catalog [13]
to find the location of the workflow component

executables. Based on all this information, Pegasus
maps the workflow onto the resources and creates an
executable workflow which is given to Condor
DAGMan [14] for execution. DAGMan follows the
dependencies described in the executable workflow
and releases the tasks, as they become ready to run, to
the execution environment.

Figure 1. A bioinformatics workflow in Kepler which retrieves a gene sequence via web service and data
transformation actors. The execution model is enforced by a director, SDF Director [8].

4. INTEGRATED SYSTEM AND
ITS BENEFITS
The goal of our integration is to provide the Kepler
users with a system that allows them to develop
workflows in a resource-independent way and thus
obtain the benefits of workflow portability,
optimization, and ease of design, and on the other
hand, we want to provide the Pegasus users with a tool
that allows a graphical method of workflow
composition and a tool capable of visual workflow
execution monitoring and debugging. Figure 3 shows
the components of the integrated system.

Figure 2. Pegasus converts abstract workflows into concrete workflows and maps them onto the grid.

Kepler

Pegasus DAGMan

Abstract
Workflow in DAX

format

Executable
Workflow

Tasks
Distributed Environment

Monitoring Information

Transformation
Catalog

Data Registry

Figure 3: Integrated Kepler-Pegasus System. The light gray dotted lines indicate future work.

Figure 4a: User configuring the transformation for the Pegasus Job Abstract entity

The user composes the workflow g raphically using the
Kepler interface. The composition relies on the
Transformation Catalog to find the available
transformations. In the future we will also integrate
the Data Registry into the workflow composition
capability. Once the workflow is fully composed, the
abstract workflow is created and given to Pegasus.

The workflow mapping and execution then proceeds
as described above with DAGMan managing the
workflow execution in the distributed environment.
Eventually, the monitoring information available in
the environment will be presented to the user through
the Kepler interface. Below we describe the workflow
creation process in more detail.

Figure 4b: User configuring the required command line arguments and I/O files for the
”align_warp” job.

The user interfaces with the system through the
Kepler canvas and creates an abstract workflow in a
visual form. This workflow refers to the actors (in
Pegasus called transformations) and data files by their
logical names. Figures 4a, and 4b show an example of
a Pegasus actor‘s configuration dialog. The actor is
generic and can take in multiple input files and can
output multiple output files, hence contains multi-
input/output port of width n. Since the actor is generic,
the user needs to customize it to represent the desired
computation to be performed within the workflow.
The scientist is expected to input the logical
transformation/computation he/she wants to perform
on the grid. As seen in Figure 4.a a user enters a
known Transformation Catalog (TC) to receive the list
of available transformations. The Pegasus
Transformation Catalog contains information about
the location of the workflow components described in
the abstract workflow as well as their resource
requiremenst, the environment variables that need to
be set, and any other information needed for the
successful component execution on a remote resource.
The interfaces in Figures 4a and 4b were customized
specifically for Pegasus. Figure 4.b shows the user
choosing appropriate parameters for the job. We
discuss some of the issues associated with the generic
actors in Section 2.2.
We implemented a Pegasus director for Kepler. The
task of the director is to impose the dataflow model on
the workflow designed by the user and to translate it
into a DAX format suitable for Pegasus. This
translation is made possible by utilizing the Kepler
MoML [9] format consisting of actor entities with

configuration and parameter information. The
algorithm converts each entity in MOML to an
appropriate job in the DAX format. Pegasus then
maps this workflow onto the available resources and
gives it to DAGMan for execution. In the fully
integrated system, monitoring information would be
flowing from the execution environment to Kepler.
Currently this functionality is not implemented.
Next, we describe the integration points and the
challenges we faced.

4.1 Different Execution Models
A workflow model defines the semantics of a
workflow including its task and structure definitions.
Kepler and Pegasus use two different types of
workflow models: a concrete (executable) model and
abstract model respectively. In the abstract model, a
workflow is described in a resource-independent way.
The abstract model provides a flexible way for users
to define workflows without being concerned about
low-level implementation details. Tasks in the abstract
model are portable and can be mapped onto any
suitable grid services at run-time by using resource
discovery and mapping mechanisms. [15] The abstract
model also eases the sharing of workflow descriptions
between users within a community [14].
In contrast, the concrete model binds workflow tasks
to specific resources and indicates specific data
locations. In some cases, the concrete model may
include nodes acting as data movement to stage data
in and out of the computation and data publication to
publish newly derived data into community data
registries [14]. In another situation, tasks in the

Figure 5: A Kepler concrete workflow for the Provenance Challenge FMRI imaging workflow [20]

concrete model may also include necessary
application movement to transfer computational code

to the data site for large-scale data analysis [15].

Figure 5 shows an example of a concrete workflow
designed in Kepler. This workflow was designed by the
Kepler team in response to the Provenance Challenge
[4] conducted in 2006. The challenge brought together
researchers interested in comparing and contrasting the
data provenance solutions developed within a variety of
workflow and data management systems.
This example workflow was inspired by a real
experiment in the area of Functional Magnetic
Resonance Imaging (fMRI). This workflow was well
documented to support the challenge and thus
constitutes a good example that can be shared and
explained to others. The jobs in the workflow create an
averaged brain from a collection of high-resolution
anatomical data and create 2D images across each sliced
dimension of the brain. Inputs to the workflow are a set
of 3D scans of brain images [4]. As is seen in the figure
Kepler doesn’t entertain the concept of generic grid jobs
and the location of local input files (DataDir +
“filename”) is provided to each grid job by the user.
Figure 6 shows the same workflow implemented in our
integrated system. The overall structure of the workflow
remains the same, but now this workflow is abstract, in
the sense that it is devoid of the execution details and
thus is portable across execution environments. This
workflow can be easily shared among collaborators

which have access to different resources. Another thing
to notice is that the names of the files in the integrated
system are unique within a workflow and can be also
made unique across workflows. Pegasus uses the
filename uniqueness to determine whether two files are
the same and if they are Pegasus is able to optimize the
workflow by not re-computing the data already
available, if appropriate. Another thing to notice is that
there are distinct names for each workflow component
align_warp_1, align_warp_2,…, align_warp_4,
although they refer to the same component and in a
DAX format would have the underlying same name.
This is because each component is a different job actor
entity and it is not allowed to have same name for actors
on Kepler canvas. This has ramifications for the
Transformation Catalog as the catalog needs to have
mappings for each actor rather than for each type of
component.

4.2 Catalog Integration
As we have shown in Figure 4b, we have integrated the
Pegasus Transformation Catalog with the Kepler
environment in a way which allows the user to
customize the Pegasus actor. Ideally, we would like to
be able to create and customize the Pegasus actors on
the fly so that the user would not have to go through the
two-step process (add a Pegasus actor to the canvas and

Figure 6: Abstract workflow created on the Kepler canvas with Pegasus Director and Pegasus Job Abstract
entities.

then customize it to represent the desired computation)
to create the desired workflow component. A solution is
to view the workflow components as dynamic libraries
on the Kepler canvas. Hence dynamic abstract jobs can
be loaded as libraries in the Kepler environment. This
would enable scientists to get a quick overview at all
the logical transformations and jobs applicable and
simply drag them on the canvas for further use. Figure 7
gives a snapshot of the Kepler library panel and the
drag and drop nature of the actor entities. Kepler
currently supports a library of all the concrete
actors/entities that can be executed in non-abstract type
workflows. As in the provenance challenge workflow
an associated Transformation Catalog could contain all
the operations of align, reslice, softmean, slicer, and
convert job entites which can be simply loaded when
the Kepler environment starts up. This dynamic loading
of entities would require access of the most recent
Transformation Catalog file so as to give an updated list
of currently possible logical transformations. However,
currently the Kepler library system does not allow
dynamic loading of entities at start up and requires the
creation of specific files for the actor entity to be
registered with the framework.
The Kepler Object Manager is the infrastructure
component designed to manage access to all objects on
both the local filesystem and through network-
accessible services. The managed objects including data
objects, metadata objects and annotations, and actor
classes, are identified using an LSID identifier. This
identifier can be used to retrieve more detailed
information about the component, including metadata
about the component which will include a list of
components on which this one depends.

Although it is not currently supported, the object
manager could be modified to accept and automate the
process of creating abstract actors from the logical
transformation file as well as during start up process.
This would require a sub component to create unique
LSIDs for abstract logical transformations defined in
the Transformation Catalog. A new semantic domain of
“Pegasus” can be introduced to the environment and all
the newly created abstract jobs can be registered as
belonging to the “Pegasus” domain. This automated
dynamic loading and registration of the abstract jobs
would enable scientists to easily access grid jobs
available for execution.

Another integration not currently in place is the
integration of Kepler with the current Pegasus data
registry. This registry is composed of a metadata
catalog such as MCS [17] and a replication location
service such as RLS [18]. The registry can be used by
the scientists to discover data to input into the
workflow. This integration could be done as a simple
extension to the current integration of the
Transformation Catalog with the Pegasus abstract actor.
When the user chooses which files to use an input to a
logical transformation, a data registry could be queried.

4.3 Monitoring and Debugging
After scientists have modeled and used the workflow
tools to schedule their analysis for execution, the
workflow management environment needs to provide
monitoring information about the jobs currently
executing on the grid. A specialized grid workflow
monitoring tool can be implemented in the Kepler
management system, where currently mapped
workflows and jobs can be actively monitored. Users

Figure 7: A snapshot of the Kepler environment with the left panel of library components which are
loaded at runtime.

should be able to view the status of the workflow
(submitted, active, done, failed), the number of tasks
already completed, the tasks currently executing, and
other information [16]. The accurate and up-to date job
execution and status results details can be retrieved
from a combination of the Metadata Catalog Service set
up to keep track of active workflows, Condor-G, and
DAGMan logs [14]. DAGMan creates a log file
recording the execution history.
Many scientific abstract and concrete workflows which
are mapped on the grid can consist of 100,000 jobs and
more [22, 23]. Workflows with so many jobs cannot be
manually created or visualized on the Kepler canvas.
Even if loop constructs are used, the files and
parameters needed cannot be easily visualized. Hence,
Kepler can be first used as a modeling environment
where scientists can initially create, test, and map small
subsets of workflows and reproduce the above to the
execution grid on a bigger scale. Additionally, the
integrated environment can also be implemented as a
debugging environment where workflow failures can be
investigated. A scientist for example can debug a given
abstract workflow. If the workflows had been mapped
onto grid, then he can even inspect subsets of the
concrete workflow versions of the above, to gain further
understanding of the job execution and fault scenarios.
Currently we have not implemented the monitoring and
debugging capabilities.

4.4 Supporting current Pegasus users
in the Integrated Environment
In order to support current Pegasus users, we
developed a capability to import existing DAX
workflows into Kepler and place them on the
Kepler canvas for modification and visualization.
However, these dynamically generated workflows
require sophisticated graphing algorithms to better
visualize the complex workflows. The integrated
environment can make use of graph networks and
visualization software such as “Grappa” [20] to
better visualize complex nodes workflows
consisting of 20-30 nodes or more in such an
environment. We plan to support the use graph
layout tools within Kepler in the future.

5. RELATED WORK
There are many systems today that are used by a variety
of user communities [24, 25, 26, 27, 28, 29]. However,
they often present different models and capabilities to
the users. In the past there were some efforts to
interface systems together. An example of a similar
effort was done within the UK e-Science program under
the “Link-Up” project [21]. This activity involved
myGrid [19], Kepler [2], and the Wings/Pegasus system
groups [30]. The goal was to combine workflow
editors, validators, and generators from the different
projects. This work is another step in this direction,

taking two of the systems and integrating them in a way
that allows users from both communities to benefit.
As we already mentioned in this paper there are also
efforts in finding common ground in provenance
systems as part of the Provenance Challenge [4].

6. CONCLUSIONS
In this paper we described a system that integrates the
visual workflow composition aspects of Kepler and the
workflow mapping and management capabilities of
Pegasus. We believe that such an integrated system
could benefit scientists in both user communities.
Although we have shown that Kepler users can generate
Pegasus-type abstract workflows in the Kepler
environment and that current Pegasus users can use that
environment to explore their workflows, much more
work needs to be done. Currently Pegasus-type
workflows generated in Kepler consist of custom
Pegasus Job Abstract actors and directors. Further work
to extend our system to fully incorporate all existing
Kepler workflows and actors. We touched upon some of
the issues related to workflow execution monitoring,
where information from the execution environment
needs to be propagated back to the user. We also
described some of the issues associated with debugging,
some of which are related to providing a mapping
between the abstract and executable levels and some
related to the scale of the workflows. In general, we
believe that as the needs of the scientific communities
grow, workflow management systems will have to learn
to leverage the best of each other’s capabilities to
deliver the tools that scientists need to do their work.

ACKNOWLEDGEMENTS
This work was supported by the National Science
Foundation under grant OCI-0438712. We would like to
thank Ilkay Altintas for helpful discussions.

REFERENCES
[1] Shawn Bowers et al., Actor Oriented Design for
Scientific Workflows, Lecture Notes in Computer
Science, Vol. 3716 (November 2005), pp. 369-384.
[2] Betram Ludascher et al., Scientific Workflow
Management and the Kepler System. Concurrency and
Computation: Practice and Experience, Special Issue on
Scientific Workflows, 2005.
[3] Ewa Deelman et al., "Pegasus: a Framework for
Mapping Complex Scientific Workflows onto
Distributed Systems". Scientific Programming Journal,
Vol 13(3), 2005, Pages 219-237
[4] S. Miles, First Provenance Challenge,
http://twiki.ipaw.info/bin/view/Challenge
/FirstProvenanceChallenge, August 2006.
[5] Ilkay Altintas et al., Kepler: An Extensible System
for Design and Execution of Scientific Workflows, 2004.
[6] Ilkay Altintas et al., A Framework for the Design
and Reuse of Grid Workflows, Spring 2005.

[7] PTOLEMY II project and system. Department of
EECS, UC Berkeley, 2004.
http://ptolemy.eecs.berkeley.edu/ptolemyII/.
[8] C. Brooks et al., Heterogeneous Concurrent
Modeling and Design in Java (Volume 3: Ptolemy II
Domains): SDF Domain, Technical Memorandum
UCB/ERL M04/17, University of California, Berkeley,
CA USA 94720, June 24, 2004.
[9] Edward A. Lee and Steve Neuendorffer. MoML — A
Modeling Markup Language in XML — Version 0.4.
Technical report, University of California at Berkeley,
March, 2000.
[10] Yolanda Gil et al., Wings for Pegasus: A Semantic
Approach to Creating Very Large Scientific Workflows,
OWL: Experiences and Directions 2006
[11] I. Foster et al., Chimera: A Virtual Data System for
Representing, Querying, and Automating Data
Derivation, Proceedings of Scientific and Statistical
Database Management, 2002.
[12] Ewa Deelman et al., Pegasus: Mapping Scientific
Workflows onto the Grid, Across Grids Conference
2004, Nicosia, Cyprus
[13] E. Deelman, C. Kesselman, et al., "Transformation
Catalog Design for GriPhyN," Technical Report
GriPhyN-2001-17, 2001.
[14] Condor Team, The directed acyclic graph
manager, www.cs.wisc.edu/condor/dagman, 2002
[15] Jia Yu and Rajkumar Buyya, A Taxonomy of
Workflow anagement Systems for Grid Computing,
Technical Report, GRIDS-TR-2005-1, Grid Computing
and Distributed Systems Laboratory, University of
Melbourne, Australia, March 10, 2005.
[16] Gurmeet Singh et al., The Pegasus Portal: Web
Based Grid Computing, Symposium on Applied
Computing archive Proceedings of the 2005.
[17] Gurmeet Singh et al., A Metadata Catalog Service
for Data Intensive Applications, ACM/IEEE conference
on Supercomputing 2003.
[18] A. Chervenak, E. Deelman, et al., Giggle: A
Framework for Constructing Scalable Replica Location
Services, Proceedings of Supercomputing 2002
(SC2002), Baltimore, MD. 2002.
[19] Carole Goble, Using the Semantic Web for e-
Science: Inspiration, Incubation, Irritation Lecture
Notes in Computer Science 3729:1-3
[20] J. Mocenigo, Grappa: A Java Graph Package,
October 2006.
[21] http://www.mygrid.org.uk/linkup
[22] Berriman, G. et al., Montage: The Architecture and
Scientific Applications of a National Virtual
Observatory Service for Computing Astronomical
Image Mosaics, Proceedings of Earth Sciences
Technology Conference, 2006
[23] Ewa Deelman et al., Managing Large-Scale
Workflow Execution from Resource Provisioning to

Provenance tracking: The CyberShake Example, e-
Science 2006, Amsterdam, December 4-6, 2006
[24] S. McGough et al., Workflow Enactment in ICENI.
In UK e-Science All Hands Meeting, Nottingham, UK,
IOP Publishing Ltd, Bristol, UK, Sep. 2004; 894-900.
[25] F. Berman et al., The GrADS Project: Software
Support for High-Level Grid Application Development.
International Journal of High Performance Computing
Applications(JHPCA), 15(4):327-344, SAGE
Publications Inc., London, UK, Winter 2001.
[26] G. von Laszewski, M. Hategan. Java CoG Kit
Karajan/GridAnt Workflow Guide. Technical Report,
Argonne National Laboratory, Argonne, IL, USA, 2005.
[27] G. von Laszewski, K. Amin, M. Hategan, N. J.
Zaluzec, S. Hampton, and A. Rossi. GridAnt: A Client-
Controllable Grid Workflow System. In 37th Annual
Hawaii International Conference on System Sciences
(HICSS'04), Big Island, Hawaii: IEEE CS Press, Los
Alamitos, CA, USA, January 5-8, 2004.
[28] I. Taylor, M. Shields, and I. Wang. Resource
Management of Triana P2P Services. Grid Resource
Management, Kluwer, Netherlands, June 2003.
[29] T. Oinn et al., Taverna: a tool for the composition
and enactment of bioinformatics
workflows.Bioinformatics, 20(17):3045-3054, Oxford
University Press, London, UK, 2004.
[30] Y. Gil, et al., "Wings for Pegasus: Creating Large-
Scale Scientific Applications Using Semantic
Representations of Computational Workflows," in
Proceedings of the 19th Annual Conference on
Innovative Applications of Artificial Intelligence
(IAAI) Vancouver, British Columbia, Canada, 2007 (to
appear)

	1. INTRODUCTION
	2. KEPLER
	3. PEGASUS
	4. INTEGRATED SYSTEM AND ITS BENEFITS
	4.1 Different Execution Models
	4.2 Catalog Integration
	4.3 Monitoring and Debugging
	4.4 Supporting current Pegasus users in the Integrated Environment

	5. RELATED WORK
	6. CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

