
Toward Prioritization of Data Flows for Scientific
Workflows Using Virtual Software Defined

Exchanges
Anirban Mandal, Paul Ruth, Ilya Baldin

RENCI - UNC Chapel Hill
{anirban, pruth, ibaldin}@renci.org

Rafael Ferreira da Silva, Ewa Deelman
USC Information Sciences Institute
{rafsilva, deelman}@isi.edu

Abstract—Recent advances in cloud systems, on-demand cir-
cuits and software-defined networking have created new oppor-
tunities to enable complex, data-intensive scientific applications
to run on dynamic networked cloud infrastructures. In this work,
we present an end-to-end framework for autonomic adaptation
for scientific workflows on networked cloud systems, which
leverages novel network provisioning technologies. We present an
application-independent controller framework called Mobius++
that includes dynamic network adaptation capabilities using
Software-Defined Networking (SDN) mechanisms, which enables
workflow management systems to address competing priorities
of workflow operations, data movements in particular. We use
a representative, data-intensive bioinformatics workflow as a
driving use case to showcase the above capabilities. Experimental
results show that the Mobius++ framework, in conjunction with
a novel virtual Software Defined Exchange (SDX) platform, is
able to dynamically prioritize bandwidths between different end-
points, on-demand, and being driven by priority directives from
a workflow management system. We show that data transfer
jobs from two workflows with different priorities are accurately
arbitrated as the relative priorities change.

Index Terms—scientific workflows; networked clouds; data
flow prioritization; software defined exchange

I. INTRODUCTION

Advanced hardware and software infrastructures have made
it possible to deploy and run the critical data processing
and analysis applications that arise in many fields of science
and engineering. Examples of such applications include those
developed by bioinformaticians to extract information out of
enormous sequence datasets, those developed by physicists
to analyze data produced by high-end instruments such as
particle accelerators and telescopes, or those developed by data
scientists to analyze Web and social networking data. Work-
flows have emerged as a flexible representation to declaratively
express such complex applications with data and control
dependencies, and have become mainstream in domains such
as astronomy, physics, climate science, earthquake science,
biology, and others [1], [2].

Large-scale computations are often composed of several
interrelated workflows grouped into collections consisting of
workflows that have a similar structure, but may differ in
their input data, number of tasks, and individual task sizes.
In some cases, workflows within such a collection may have
different priorities, for example, to access/transfer data from

external repository or datastore. It might also be the case where
different workflows, say a hurricane simulation workflow and
a bioinformatics workflow, share a common computational
and network infrastructure, and their computations and data
flows might need to be arbitrated depending on external factors
like an impending hurricane. Therefore, it is crucial that the
computational and network infrastructures provide mecha-
nisms to address competing priorities of workflow operations
such as data acquisition from external storage resources, and
to provide support for dynamic computational needs as the
workflows proceed through execution stages. It is also essential
to tailor and adapt the infrastructure based on the requirements
of the workflows.

In recent years, cloud Infrastructure-as-a-Service (IaaS)
systems [3], [4] have been designed to offer virtualized
infrastructure as a unified hosting substrate for diverse ap-
plications. Similarly, network substrates increasingly offer
control interfaces for dynamic virtualization (e.g., circuits and
software-defined networking). These advances have created an
unprecedented opportunity to enable data-intensive scientific
applications on elastic networked cloud infrastructure. We
refer to this model as Networked Infrastructure-as-a-Service
(NIaaS). Such infrastructures link distributed resources into
connected arrangements called slices, which are mutually
isolated pieces of networked virtual infrastructure, carved out
from multiple cloud and network transit providers, and is built
to order for guest applications like scientific workflows. One
such exemplar NIaaS system used in this work is ExoGENI [5]
(Section IV-A).

ExoGENI provides many of the low-level mechanisms for
on-demand infrastructure creation and adaptation of network
and compute resources. But, the resource and request rep-
resentations used in NIaaS systems, for e.g. RSpec [6] and
NDL-OWL [7], are designed for the purpose of infrastructure
management — resource provisioning, allocation, etc. — but
are not suitable for direct use by higher-level applications.
Hence, in our previous work [8], we developed an application-
independent controller framework called Mobius that can
translate high-level resource requirements to low-level NIaaS
operations to instantiate appropriate resource envelopes for
workflow execution. While Mobius had support for creation
of simple connected slices (e.g., HTCondor pools with data

links) and for providing dynamic computational elasticity dur-
ing workflow execution through computational infrastructure
adaptation, it lacked support for new kinds of mechanisms
developed in ExoGENI and needed by workflows — network
adaptation (bandwidth shaping, flow control), dynamic addi-
tion of network links, and new Software-Defined Networking
(SDN) capabilities like Software-Defined Exchanges [9].

In this work, which is done in the context of the DoE
Panorama project [10], [11], we present an end-to-end frame-
work for autonomic adaptation of complex scientific work-
flows on networked cloud systems driven by the requirements
from workflow management systems like Pegasus [12], [13].
Our particular emphasis is on novel network provisioning
mechanisms and how we can extend these capabilities up to
scientific workflow management systems. We present a new
version of Mobius, called Mobius++, which includes new
dynamic network adaptation capabilities like virtual Software
Defined Exchanges (SDX) that enables workflow management
systems to address competing priorities of workflow opera-
tions, both data movement and computational. To demonstrate
our new capabilities with a real use case, we show how data
flows resulting from workflow data transfers can be arbitrated
transparently based on workflow priorities for a data-intensive
bioinformatics workflow.

This paper is organized as follows. Section II presents the
overall system architecture including the Mobius++ framework
with support for virtual SDX and a network adaptation use
case for scientific workflows. An experimental evaluation of
the system with a real data-intensive workflow instantiated on
ExoGENI is presented in Section III. Section IV provides
background on ExoGENI, Pegasus workflow management
system, and the Panorama project. Section V presents related
work, and Section VI concludes the paper and discusses future
work.

II. SYSTEM DESCRIPTION

In our previous work, we built an application-independent
controller framework called Mobius [8] that works in con-
cert with an application-aware controller such as a workflow
management system. It takes a description of a desired high-
level resource configuration for the slice, and issues requests to
the underlying Networked Infrastructure-as-a-Service (NIaaS)
system (ExoGENI) to (re)configure and adapt the slice to
implement the specified changes. Mobius consumes high-level
application specific requests, automatically transforms them
to appropriate low-level infrastructure provisioning requests,
runs policies to adapt the infrastructure, and adjusts resource
allocations based on the demands from the application. The
purpose of Mobius is to facilitate ease of use of NIaaS
systems for workflow systems. One of the key design prin-
ciples for Mobius was the separation of concerns between
the application-aware controller, which is application aware
but NIaaS agnostic; and the application-independent controller,
which is NIaaS aware but application agnostic.

A. Mobius++

Building on the same design principle, we built an extended
version of Mobius, referred to as Mobius++, to address new
capabilities for resource provisioning driven by new types of
requirements from the workflow management system. While
Mobius includes capabilities for providing computational elas-
ticity and addition of stitchports (network links to external data
sources) to workflows, it does not provide any capabilities for
adaptations of network performance in response to changing
needs from the workflow management system. In order to
extend these capabilities to workflow management systems
layer, we developed new underlying NIaaS mechanisms for
performing different kinds of network adaptation (e.g., band-
width shaping, flow control, etc.) using novel network provi-
sioning techniques like Software Defined Exchanges (SDX).
These additional capabilities also required rethinking of how
ExoGENI slices can be programmatically controlled to create
new kinds of topologies, as well as how to support dynamic
adaptation of network performance.

Hence, Mobius++ includes the following additional ele-
ments: (1) an enhanced programmatic toolkit for interacting
with ExoGENI slices, which we refer to as the Ahab Library
(Section II-B); (2) addition of support for virtual SDX and its
representative use in the context of workflows (Section II-C);
and (3) an end-to-end architecture that captures the interactions
among these new capabilities (Section II-D). In this section,
we also describe how novel Mobius++ capabilities enable
network adaptations for prioritized flow requests originated
from the workflow management system (Section II-E).

B. Abab Library

With the advance of ExoGENI capabilities to include
control facilities (e.g., Mobius++) to automatically modify
provisioned resources, there is an urge for a programmatic
toolkit for interacting with ExoGENI slices. Ahab is a graph-
based Java library designed to allow applications to control
and modify ExoGENI slices. The Ahab library is composed
of a collection of libraries organized as follows:

1) libtransport: A library that provides an abstraction
for interacting with ExoGENI through its XMLRPC
interface. This library requires users to provide their
GENI [14] credentials in order to create a proxy object
associated with a particular ExoGENI controller. The
proxy can then be used to create, terminate, modify, or
query any slice (or set of slices) owned by the tenant on
a determined controller.

2) libndl: A library that provides a graph-based abstraction
for interacting with ExoGENI slices. It primary handles
the conversion of the topology graph into NDL-OWL
requests, which are then consumed by ExoGENI. Com-
puteNodes and networks can be added to a slice where
they become nodes in the graph (more advanced node
types include stitchports and storage). Nodes and net-
works can be connected by stitching nodes and networks
together forming edges in the graph. Finished topologies

1 ITransportProxyFactory ifac = new XMLRPCProxyFactory();
2 TransportContext context = new PEMTransportContext("",pem,pem);
3 ISliceTransportAPIv1 sliceProxy = ifac.getSliceProxy(context,controllerURL);
4 Slice s = Slice.loadManifestFile(sliceProxy,sliceName);
5 ComputeNode newnode = s.addComputeNode("ComputeNode0");
6 newnode.setImage(imageURL,imageHash,imageName);
7 newnode.setNodeType("XO Large");
8 newnode.setDomain("RENCI (Chapel Hill, NC USA) XO Rack");
9 BroadcastNetwork net = (BroadcastNetwork)s.getResourceByName(netName);

10 Interface int1 = net.stitch(node);
11 ((InterfaceNode2Net)int1).setIpAddress(ip);
12 s.commit()

Fig. 1. Ahab code example (pem: user’s pem file; controllerURL: URL to the ExoGENI Controller).

are committed, which pushes any changes to ExoGENI
via the libtransport proxy.

3) libndl.extras: Extras is a set of extensions to the libndl
library that provides higher-level abstractions that the
user can invoke in a native way. These extensions
are typically sets of ExoGENI resources that act as a
more sophisticated larger resource. For example, extras
includes a class called PriorityNetwork that is used like
a standard BroadcastNetwork but allows the user to
set priority paths for traffic going through the network.
When a user creates a PriorityNetwork, several nodes
and networks are created utilizing OpenFlow — a virtual
Software Defined Exchange, which will enforce the
priority policies. The key idea is that the user gets this
functionality without needing to know the internals of
the PriorityNetwork. More details about the PriorityNet-
work and virtual SDX will be discussed in the upcoming
section.

Figure 1 shows a code snippet of how to use the basic
features of libtransport and libndl. Lines 1-3 show how the user
can create a SliceProxy that is used to communicate with the
ExoGENI controller. Line 4 show how to query the ExoGENI
controller for the slice with a specific name. The controller
returns the NDL-OWL manifest of the slice which is converted
into a graph that can be manipulated by the user. Line 5 shows
how a user can add a new node to the graph, and lines 6-8
show how to set the properties of the new compute node. Line
9 shows how to get the network object from the slice graph.
At this point, the user has a reference to both the new compute
node and the existing network. Line 10 depicts the process for
stitching the new node to the network by creating an interface
between them. Line 11 sets the IP address of the interface.
Last, line 12 commits the changes to the slice.

C. Virtual Software Defined Exchange (vSDX)

Traditionally, Internet Exchange Points (IXPs) are physical
locations that provide services that enable independent net-
work domains to exchange network traffic. Typically, IXPs
work at layer-3 and route traffic between domains using poli-
cies determined by protocols such as BGP (Border Gateway

Virtualized
SDX

Site 1

OpenFlow
Controller Site 3Site 2

Data Site

ExoGENI Slice(s)

Dynamic
Connectivity

Fig. 2. Software Defined Exchanges (SDX): meeting point of networks to
exchange traffic, securely and with QoS, using SDN protocols.

Protocol). More recently, IXPs are incorporating software
defined networking (SDN) to create software defined exchange
points (SDXs) that allow for more fine-grained policies to be
expressed by the IXP and the domains to which it connects [9].

In the meantime, federated cyberinfrastructures, such as Ex-
oGENI, have enabled many institutions to dynamically “stitch”
their local network domains to complex topologies deployed
across wide areas (regional, national, and international). This
capability has made it possible to deploy an ExoGENI slice
that accepts connections from many different institutional
domains and uses SDN to forward network traffic between
those domains. In effect, this network transit service acts like
an SDX without a static physical location. In other words,
the ExoGENI transit service slice (Figure 2) is a virtual SDX
(vSDX) [15].

An ExoGENI vSDX is a dynamic slice rather than a static
physical location. The vSDX can be created and managed by
a controller application using the Ahab library described in
Section II-B. Like a static SDX, a vSDX uses SDN within the
exchange to enforce policies. However, the Ahab library can

Virtualized
SDX

Site 1

OpenFlow
Controller Site 3Site 2

Data Site

ExoGENI Slice with Virtual SDX + HTCondor Pools + Data Site

Dynamic
Connectivity

HTCondor
Pool

HTCondor
Pool

HTCondor
Pool

Fig. 3. vSDX use case with HTCondor pools and Pegasus.

SDX Tree Network with Express Flows

RYU OpenFlow
Controller

OpenFlow v1.3

Site0

Site1

Express Flows
(Bandwidth Provisioned)

Site5

Site6

Site4

Site3

Site2

Fig. 4. Tree network with vSDX.

be used to automate modifications to the physical infrastruc-
ture used by the vSDX. These modifications can respond to
changes in policy that require additional connectivity to new
domains or even changes in the physical performance of a
network path.

In the case discussed in this paper (Figure 3), a vSDX
is used to connect a data repository and several HTCondor
pools. This infrastructure is used to simultaneously support the
execution of multiple Pegasus scientific workflows. The vSDX
is based on Ahab’s PriorityNetwork and is used by Mobius++
to enforce policy that prioritizes data transfer performance for
each workflow based on dynamic application layer QoS re-
quirements. Mobius++ communicates the data transfer priority
requested by each workflow and sets the desired performance
between the data repository and the HTCondor pool(s) sup-
porting that workflow. Internally, the pools are connected to
the PriorityNetwork which builds a tree of OpenFlow switches
(Figure 4) that are able to forward traffic between any pair
of sites. A Ryu [16] OpenFlow controller manages each of

ORCA/ExoGENI
provisioning

Resource requests
Data transfer requests

Data transfer QoS requirements

Pegasus Workflow
Management System

AHAB Library
(libndl +

libtransport)

Request Manager

AMQP
space

Mobius++

Workflow Models (Aspen)
+ Simulation (CODES) Resource Provisioner

virtual SDX API
(SDXTreeNetwork, …)

Fig. 5. Mobius++ end-to-end architecture.

the switches and installs queuing rules that create the desired
bandwidth priorities between each site.

D. End-to-end Architecture

Figure 5 shows the end-to-end architecture consisting of the
application-independent controller framework — Mobius++
that works in concert with the application-aware controller,
and the Pegasus Workflow Management System. Pegasus takes
as input the workflow description, and determines the work-
flow priorities using user directives, historical performance
models, or by evaluating workflow performance models [10].
In addition to communicating compute requirements, as in
Mobius, Pegasus can communicate data transfer requests and
data flow QoS requirements to Mobius++ through an AMQP
message space (RabbitMQ [17]). The high-level schema for
the requirements included a new ‘sdxcondor’ initial request
template and a new ‘modifyNetwork’ resource request in
addition to other templates supported [8].

The Request Manager component in Mobius++ orchestrates
the resource requirements communicated to the AMQP mes-
sage space with the Ahab Library and the virtual SDX func-
tionalities to send provisioning and de-provisioning requests
to ExoGENI. It parses the high-level requests based on the
request schema, and uses the APIs exposed by Ahab and
virtual SDX to construct new and modify ExoGENI requests
to instantiate new slices, modify existing topologies, and to
modify properties in an existing slice. It is also responsible for
sending the feedback to Pegasus through the AMQP message
space when provisioning and modify actions are complete.

E. Adaptation with Prioritized Flows

The Mobius++ framework can be used by several high-level
applications to provision and adapt infrastructure based on
particular requirements. In this section, we present an example

Pegasus WMS

1. Pegasus determines
“Express flow” requirements
for workflow data transfers

2. Pegasus sends
“modifyNetwork”
QoS requests to
messaging space

M
od

ify

re
qu

es
ts

Request Manager (RM),
AHAB, VirtualSDX API

Mobius ++

3. RM uses AHAB and
VirtualSDX API to send
SDN QoS requests to SDX
Tree Network

4. SDX Tree Network
actuates QoS actions
using REST API of SDN
controller

6. Slice modified with
required bandwidth QoS

NIaaS/Infrastructure

VirtualSDX + ExoGENI

Sl
ic

e
re

ad
y

w
ith

Q

oS 7. RM sends ack. to
Pegasus when Express
flow QoS is set

5. SDN controller contacts
SDX switches for each site

Workflow Models
(Aspen) +

Simulation (CODES)
Resource

Provisioner

Fig. 6. Adaptation with Mobius++ – an example.

use case for Mobius++ framework for network adaptation for
workflows, which is also used for evaluations (Section III).
Figure 6 shows the timeline for the different steps involved
in the adaptation process for the various entities: the Pegasus
WMS, Mobius++, and the infrastructure provisioning system.

A slice with ‘sdxcondor’ template is created with two
HTCondor pools, a data storage node, a virtual SDX, and an
SDN controller node (This step is not shown in the timeline
figure). While planning and executing the workflows on the
HTCondor pools, Pegasus determines the flow requirements
and priorities for workflow data transfers (step 1) and sends
“modifyNetwork” QoS requests to the AMQP message space
(step 2). The Request Manger component in Mobius++ uses
the Ahab library and virtual SDX API to send SDN QoS
requests (e.g., the flow priorities) to the SDX Tree network
(step 3). The SDX tree network actuates the QoS actions by
communicating with an SDN controller node using a REST
API (step 4). The SDN controller then contacts the SDX
switches in the virtual SDX to set OpenFlow rules, queues, and
required attributes corresponding to the priorities requested
(step 5). These actions result in modification of slice band-
width across different sub-domains in the virtual SDX (step
6). Then the Request Manager sends an acknowledgement to
Pegasus confirming that the flow requirements are satisfied.
Pegasus continues with executing the steps of the workflow
with the modified slice attributes and network properties (step
7).

III. EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation of the
data flow prioritization mechanism with Mobius++ powered
by the virtual SDX system. We first describe a represen-
tative scientific workflow application in Section III-A. In
Section III-B, we describe the experimental conditions and the
infrastructure used to conduct the evaluations, and we present
our experimental results and discussion in Section III-C.

A. Scientific Workflow Application

The 1000 genomes project provides a reference for human
variation, having reconstructed the genomes of 2,504 individ-
uals across 26 different populations [18]. The test case used

...c1 c2 c22 ...s1 s2 s22...p1 p2 pn

... fc 2505fc 1 fs 3fp 1 fp 2 fp n...

...m1 m2 m154 ...fr1 fr2 fr154

i 3 pop 2 sh 3

om 1

Data
Preparation

Populations Sifting

Individuals
1000 Genome Populations Sifting

Pair
Overlap

Mutations

Individuals

Analysis

ofm 1

Input Data

Output Data fom 2 fog 2

Frequency
Overlap

Mutations

Fig. 7. Overview of the 1000 genome sequencing analysis workflow.

in this work identifies mutational overlaps using data from the
1000 genomes project in order to provide a null distribution
for rigorous statistical evaluation of potential disease-related
mutations. This test case (Figure 7) has been implemented as
a Pegasus workflow [19], and is composed of five different
tasks: (1) individuals – This task fetches and parses the Phase
3 data [18] from the 1000 genomes project per chromosome;
(2) populations – The populations task fetches and parses five
super populations (African, Mixed American, East Asian, Eu-
ropean, and South Asian), and a set of all individuals; (3) sift-
ing – This task computes the SIFT scores1 of all of the SNPs
(single nucleotide polymorphisms) variants, as computed by
the Variant Effect Predictor; (4) pair overlap mutations – This
task measures the overlap in mutations (SNPs) among pairs
of individuals; and (5) frequency overlap mutations – This
task calculates the frequency of overlapping mutations across
subsamples of certain individuals.

The total data footprint for a typical run of the genomics
workflow is about 4.4TB, and requires over 400GB of RAM
(for the largest tasks – individuals). A detailed workflow
characterization is available in [19]. In order to fit an instance
of the workflow execution into our testbed (see description
below), we have pruned the original datasets to process
about 10% of the original data (about 11GB per individual
dataset), and the processing of 2 populations. For this ex-
periment, each workflow is composed of 22 individuals jobs,
2 sifting jobs, 14 frequency overlap mutations jobs, and 14
pair overlap mutations jobs. We will refer to this workflow
as the 1000 genome workflow.

B. Experiment Conditions

The experiments used three racks from the ExoGENI
testbed: a rack at the Lawrence Berkeley National Laboratory’s

1SIFT is a sequence homology-based tool that Sorts Intolerant From Toler-
ant amino acid substitutions, and predicts whether an amino acid substitution
in a protein will have a phenotypic effect.

Oakland Scientific Facility (OSF), Oakland, CA; a rack at the
University of Massachusetts at Amherst (UMass), Amherst,
MA; and a rack at the Pittsburgh Supercomputing Center
(PSC), Pittsburgh, PA. Details about the hardware on these
three racks can be found on the ExoGENI wiki [20]. Slices
were provisioned from these racks by sending requests for
virtual topologies consisting of (1) a set of virtual machines
(VM) connected via a broadcast link with a specific bandwidth
(250 Mb/s or 500 Mb/s) at each of the computing sites — OSF
and UMass sites are used as computing sites (in each site we
deploy an HTCondor pool with a master and several workers);
(2) a VM hosting storage at the PSC site, which was used as
the datastore node (emulates an external storage); and (3) a
virtual SDX consisting of VMs acting as OpenFlow switches
connecting the three sites in a tree network. A separate VM
was provisioned at an ExoGENI rack in West Virgina (WVN),
which performed the role of an OpenFlow controller. The
overall bandwidth available on the virtual SDX connecting
the three sites was configurable. Two values were used for the
experiments – 500 Mb/s and 250 Mb/s.

WMS Configuration and Execution Environment. Since Pe-
gasus uses HTCondor, the request to ExoGENI consisted of an
HTCondor master VM and a specified number of HTCondor
worker VMs connected by links with desired bandwidth for
each rack hosting the HTCondor pools. The VM images had
prerequisite software installed such as HTCondor, Pegasus,
and the workflow application. The ExoGENI postboot script
feature was leveraged to start various HTCondor daemons
on VM startup so that the HTCondor environment is ready
as soon as the slice setup is complete. An overview of the
deployed environment consisting of two HTCondor pools and
a data node, all connected through a virtual SDX, is shown
in Figure 8. We have also leveraged the PRE script job
capability of HTCondor/DAGMan to send “modifyNetwork”
QoS requests (step 2, Figure 6), which holds the job execution
until an authorization message is received from Mobius++
(i.e., the network is properly provisioned according to the
priorities of the workflows currently running).

Determining Workflow Priorities. For each experiment run,
we executed the 1000 genome workflow on each of the
HTCondor pools using the Pegasus WMS. Two instances of
the workflow were run simultaneously with different data flow
priority values γ. Priority values are defined as follows:

γ(wi) = p

γ(wj) = 90− p, i 6= j, and
p ∈ {10, 20, 30, 40, 45, 50, 60, 70, 80},

(1)

where wi and wj are the two simultaneous workflow running
instances, and p is the priority balancing factor between
the workflows. For example, when one workflow requests
a priority γ = 20, the corresponding second simultaneous
workflow has a priority γ = 70. We reserved a default priority
γd = 10 for other potential network traffic going through the
virtual SDX, which is why the combined priority of the two

Virtualized SDX

OpenFlow
Controller

Data Node

HTCondor
Pool 1

HTCondor
Pool 2

(UMass ExoGENI Rack)

(OSF ExoGENI Rack)

(PSC ExoGENI Rack)

Fig. 8. HTCondor pools with Pegasus connected to a data store deployed
with a virtual SDX on ExoGENI testbed racks.

workflows was set to 90. Tasks from both workflows were
designed to fetch data from the common data store at the
PSC rack. The average observed latency from the HTCondor
master node in HTCondor pool 1 (OSF rack) to the data
node on the PSC rack was 71 ms. The average observed
latency from the HTCondor master node in HTCondor pool
2 (UMass rack) to the data node on the PSC rack was 20
ms. The individuals job is the most data intensive step in the
workflow. Hence, the experimental results mainly focus on
the average data transfer times for this step in addition to the
overall workflow turnaround time (makespan).

Measured vs. Provisioned Bandwidth. Figure 9 shows the
observed and provisioned bandwidths for one of the HTCondor
pools (HTCondor pool 1) against the priorities requested
by the workflow running on that pool (Workflow1). The
top set of red lines correspond to the case where the overall
virtual SDX bandwidth was set to 500 Mb/s, and the bottom
set of blue lines correspond to the case for overall virtual
SDX bandwidth of 250 Mb/s. The observed bandwidth was
measured using iperf3 [21]. The provisioned bandwidth bwp

is calculated from the priority requested by Workflow1, the
priority requested by workflow running on HTCondor pool
2 (Workflow2), and the default priority γd reserved by the
virtual SDX system:

bwp(wi) =
(γ(wi)

(γ(wi) + γ(wj) + γd)
∗ bw

)
, (2)

where bw is the total vSDX bandwidth. For example, the
provisioned bandwidth for a case where Workflow1 pri-
ority γ(w1) = 30 (with corresponding Workflow2 priority
γ(w2) = 60, default virtual SDX priority γd = 10), and total
bandwidth of 500 Mb/s, can be computed as follows:

bwp(w1) =
(30

(30 + 60 + 10)
∗ 500

)
Mb/s, (3)

or 150 Mb/s. We observe that, for both the cases, the observed
bandwidth is within 1–5% of the bandwidth provisioned by the

10 20 30 40 45 50 60 70 80

Data flow priorities for Workflow1 on HTCondor pool 1

0

50

100

150

200

250

300

350

400

B
a

n
d

w
id

th
 (

M
b

/s
)

Bandwidth vs. Flow priorities

observed bandwidth (vSDX bw = 500 Mb/s)

provisioned bandwidth (vSDX bw = 500 Mb/s)

observed bandwidth (vSDX bw = 250 Mb/s)

provisioned bandwidth (vSDX bw = 250 Mb/s)

Fig. 9. Observed and provisioned bandwidths for different requested flow
priorities by Workflow1. Observed bandwidth was measured using iperf3,
while the provisioned bandwidth was computed with Equation 2.

virtual SDX system. The results are similar when we plot the
same with Workflow2 on HTCondor pool 2. This shows
that the priority requests are effectively satisfied by the virtual
SDX system.

C. Experimental Results

We conducted sets of experiments using the experimental
setup described above to study the prioritization capabilities
of the virtual SDX system. We used the observed data transfer
times of the data-intensive workflow steps, and the overall
workflow execution time (i.e., workflow makespan) as im-
portant performance measures to evaluate the prioritization
capabilities.

Workflow Data Transfer Times. Figure 10 shows the effect of
relative flow priorities on the data transfer time as observed
by data-intensive tasks for each of the two simultaneous
workflows. The X-axis denotes the relative flow priorities of
the two workflows for a particular run. The value “20-70”
implies the case when Workflow1 was executed with requested
priority of 20 and Workflow2 was executed with requested
priority of 70. The virtual SDX system was responsible for
arbitrating and carving out the overall available bandwidth of
500 Mb/s to the two workflows running on two HTCondor
pools on two different sites. The Y-axis denotes the average
data transfer time observed for the 20 individuals jobs in each
of the two workflows. The two curves correspond to the two
simultaneous workflows - Workflow1 and Workflow2. Each
point is an average of 4 runs with corresponding error bars.

We observe that the virtual SDX system is able to prioritize
the flows effectively. When the relative priorities of the two
workflows differ by a large amount, we observe that the
corresponding difference in transfer times is also large. For
example, when Workflow1 has a priority of 10 and Workflow2

10-80 20-70 30-60 40-50 45-45 50-40 60-30 70-20 80-10

Relative data flow priorities (Workflow1-Workflow2)

0

100

200

300

400

500

600

700

800

900

A
v
g
.
tr

a
n
s
fe

r
ti
m

e
 f
o
r

"i
n
d
iv

id
u
a
l"

 j
o
b
s
 (

s
e
c
s
)

Transfer time vs. Flow priorities (vSDX bandwidth = 500Mb/s)

Workflow1 on HTCondor pool 1

Workflow2 on HTCondor pool 2

Fig. 10. Transfer time vs. relative flow priorities.

has a priority of 80, the average transfer time for Workflow1
is about 800 seconds while that of Workflow2 is about 70
seconds. The difference in average transfer times decreases
as the difference between priorities of the two workflows
decreases. This result shows that the virtual SDX system
is able to arbitrate the available SDX bandwidth effectively
between competing workflows.

Figure 11 shows the effect of relative flow priorities on the
data transfer times for the individuals jobs for two different
values of overall virtual SDX bandwidths - 500 Mb/s and 250
Mb/s. The X-axis and Y-axis denote relative flow priorities
and average transfer times, as described in the previous result.
The two sets of curves correspond to the different bandwidths
— dotted curves representing the 500 Mb/s case and the solid
curves representing the 250 Mb/s case. We observe similar
behavior for the 250 Mb/s case as in the 500 Mb/s case
described above, i.e. higher relative priority differences result
in higher differences in transfer times. We also observe that the
average transfer times also scale with the arbitrated bandwidth.
Since the overall virtual SDX bandwidth available is half for
the 250 Mb/s case, it is reflected in the average data transfer
times being doubled when moving from 500 Mb/s to 250
Mb/s. This result shows that the virtual SDX system is able
to arbitrate flows effectively in different bandwidth scenarios.

Workflow Makespan. Figure 12 shows the effect of relative
flow priorities on the overall workflow execution times for the
two workflows. The X-axis denotes the relative flow priorities
of the two workflows for a particular run. The Y-axis denotes
the workflow execution time (makespan) for each workflow.
We observe that the execution time of a workflow decreases
with increasing priority values with a corresponding increase
of execution time for the other workflow with decreasing
priority values. Since this workflow has a few data-intensive
steps, the execution time is affected by the transfer times for all

10-80 20-70 30-60 40-50 45-45 50-40 60-30 70-20 80-10

Relative data flow priorities (Workflow1-Workflow2)

0

200

400

600

800

1000

1200

1400

1600

1800

A
v
g
.
tr

a
n
s
fe

r
ti
m

e
 f
o
r

"i
n
d
iv

id
u
a
l"

 j
o
b
s
 (

s
e
c
s
)

Transfer time vs. Flow priorities (Different bandwidths)

Workflow1 on HTCondor pool 1 (vSDX bandwidth = 250Mb/s)

Workflow2 on HTCondor pool 2 (vSDX bandwidth = 250Mb/s)

Workflow1 on HTCondor pool 1 (vSDX bandwidth = 500Mb/s)

Workflow2 on HTCondor pool 2 (vSDX bandwidth = 500Mb/s)

Fig. 11. Transfer time vs. relative flow priorities for different bandwidths.

10-80 20-70 30-60 40-50 45-45 50-40 60-30 70-20 80-10

Relative data flow priorities (Workflow1-Workflow2)

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

W
o
rk

fl
o
w

 e
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
s
)

Execution time vs. Flow priorities (vSDX bandwidth = 250Mb/s)

Workflow1 on HTCondor pool 1

Workflow2 on HTCondor pool 2

Fig. 12. Workflow makespan vs. relative flow priorities for different band-
widths.

the data-intensive steps in the workflow. This result shows that
for data-intensive workflows, the virtual SDX system helps
in overall turnaround time for higher priority workflows by
arbitrating the transfers effectively.

IV. BACKGROUND

A. ExoGENI

ExoGENI [5] is a network IaaS national testbed powered
by the ORCA (Open Resource Control Architecture) [22]
control software used for GENI. ORCA allows users to cre-
ate mutually isolated “slices” of interconnected infrastructure
from multiple independent providers (compute, network, and
storage) and commodity infrastructure. To this end, ORCA
takes advantage of existing virtualization mechanisms by in-
tegrating various resources together: Layer-2 global dynamic-

Fig. 13. ExoGENI testbed.

circuit networks like Internet2/ION, AL2S/OESS, and ESnet,
software defined networks using OpenFlow, and private clouds
like OpenStack, and xCAT. As shown in Figure 13, Exo-
GENI links racks at 20 sites on campuses and labs across
the country through regional and national transit networks
(Internet2, ESnet, etc.). Each rack is a small networked
cloud, consisting of servers virtualizable via OpenStack and
xCAT, sliverable storage and a high-performance (10G/40G)
dataplane switch capable of both VLAN-based and Open-
Flow operation. ExoGENI is also complemented by racks
contributed by individual campuses (e.g., in Sydney, Australia,
Amsterdam, The Netherlands, and others). ExoGENI racks
are integrated into campuses and offer connectivity to select
campus resources where the racks are deployed. This ties data
transport capability with local computational resources in the
rack, allowing to move some computations close to the data
on campus or ingest it into a slice using a dynamic on-ramp-
on-demand Layer2/SDN connection.

B. Pegasus WMS

The Pegasus workflow management system (WMS) [12],
[13] provides the necessary abstractions for scientists to create
workflows, allow for transparent execution of these workflows
on a range of compute platforms including campus clusters,
clouds, and grids. Since its inception 15 years ago, Pegasus has
become an integral part of the production scientific computing
landscape in several scientific communities [13]. In this work,
we have used Pegasus as a representative workflow manage-
ment system leveraging NIaaS platforms to plan and execute
workflows.

In Pegasus, workflows are described abstractly as directed
acyclic graphs (DAGs), where nodes represent individual com-
putational tasks and the edges represent data and control de-
pendencies between tasks, without any information regarding
physical resources or physical locations of data and executa-
bles. During execution, Pegasus translates the abstract work-
flow into an executable workflow, determining the executables,
data, and computational resources required for the execution.
Workflow execution with Pegasus includes data management,
monitoring, and failure handling. Individual workflow tasks
are managed by a task scheduler (HTCondor [23]), which
supervises their execution on local and remote resources.

C. Panorama Project

In the Panorama project [10], [11], we examine challenges
present in the execution of large-scale workflow applications
on world-class leadership machines, and we seek to automate
the process of performance modeling, resource provisioning,
workflow execution, and anomaly detection, which could lead
to resource selection at runtime. This approach integrates
extreme-scale systems, testbed experimentation, structured an-
alytical modeling and parallel systems simulation with the
Pegasus WMS. The Panorama project pursues a multi-prong
approach: it collects runtime information about the execution
of workflows in distributed and heterogeneous environments,
it instruments and collects information from the infrastructure,
it uses analytical and simulation-based models of the workflow
execution on diverse resources, and it compares the models to
the observed behavior during workflow execution and based
on that comparison it detects anomalies in the execution and
adapts the workflow and the infrastructure.

V. RELATED WORK

In the past years, cloud computing has become a major topic
of discussion in the scientific computing community. More
specifically, many recent studies have focused on investigating
the effectiveness and applicability of IaaS cloud platforms for
executing scientific workflows [24]–[26]. In [25], a survey of
public cloud elasticity for scientific applications shows that
most distributed large-scale applications strongly depend on
automated infrastructure optimizations (i.e., the application is
unaware of the platform capabilities) to maximize resource
usage, while reducing costs and meeting deadlines. Although
scientific workflows provides a significant step toward au-
tomation of computation and data management for scientific
applications, there are still steep challenges that need to be ad-
dressed. Unsurprisingly, resource management for distributed
applications has been the subject of enormous amounts of
efforts [27]–[31], both from practitioners and from researchers,
and there is arguably a clear disconnect between theory and
practice [32]. Theoretical results are obtained based on strong
and simplifying assumptions, so that resource management
problems are rendered tractable.

Workflow management systems have also focused on the
execution and management of distributed applications on
clouds (both academic and commercial platforms) [33]–[36].
However, most of the strategies used by such systems target
the deployment of virtual machines in the cloud platform
(with limited support to dynamic elasticity), while none or
minimal support to infrastructure optimization is enabled.
In particular, data placement/movement and network con-
figuration/provisioning decisions are crucial to achieve high
performance, given the increasing size of datasets processed
by scientific workflows, many of which now fall in the
loosely defined big data category of applications [24], [37].
A recent survey [38] on dynamic workflows and user steering
techniques underlines the need for monitoring awareness and
data analysis to enable adaptation. An outcome of the survey
is that most workflow management systems do not provide a

complete set of tools and mechanisms to enable task and data
configuration refinement (e.g., add/delete/replace tasks, change
platform conditions, etc.). In a previous work [8], we presented
a scheduling technique that predicts dynamic resource needs
using a workflow introspection technique to be used within the
Mobius system to actuate resource adaptation in response to
dynamic workflow needs. This work is a first step towards
dynamic adaptation (in particular elasticity), but it did not
account for data flows and network adaptation.

VI. CONCLUSIONS AND FUTURE WORK

We presented an application-independent controller frame-
work called Mobius++ that facilitates the use of advanced net-
work provisioning technologies for scientific workflows. Mo-
bius++ consists of an enhanced programmatic toolkit for cre-
ating and modifying ExoGENI slices (the Ahab library), and
a virtual SDX abstraction created using Ahab, which enables
creation of PriorityNetwork by leveraging SDN technologies.
The PriorityNetwork construct is useful for arbitrating and pri-
oritizing data flows from competing workflows, with priorities
being communicated to Mobius++ by a workflow management
system (Pegasus). We evaluated this end-to-end framework
using a representative, data-intensive bioinformatics workflow
on the ExoGENI testbed. Results show that our system is able
to dynamically prioritize bandwidths between different end-
points for relevant workflow transfers, and the data transfer
jobs from competing workflows with different priorities are
accurately arbitrated as their relative priorities change.

In the future, we plan to develop accurate models to
determine priorities automatically. We also plan to develop
new mechanisms for adaptation like migration of workflows
during execution in case of failure and poor performance,
and the corresponding enhancements for Mobius++ to support
this desirable feature from the perspective of a workflow
management system. We also plan to develop new policies
in Mobius++ that will integrate performance monitoring and
performance data analysis to drive the adaptation process.

ACKNOWLEDGMENTS

This work was funded by DOE contract number
#DESC0012636, “Panorama—Predictive Modeling and Diag-
nostic Monitoring of Extreme Science Workflows”. We thank
Rosa Filgueira, Ian M. Overton, and Erola Pairo-Castineira for
their valuable help.

REFERENCES

[1] I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, Workflows for
e-Science: scientific workflows for grids. Springer Publishing Company,
Incorporated, 2007.

[2] C. S. Liew, M. P. Atkinson, M. Galea, T. F. Ang, P. Martin, and
J. I. V. Hemert, “Scientific workflows: Moving across paradigms,” ACM
Computing Surveys (CSUR), vol. 49, no. 4, p. 66, 2016.

[3] Amazon Elastic Compute Cloud (Amazon EC2),
http://www.amazon.com/ec2.

[4] OpenStack Cloud Software, http://openstack.org.
[5] I. Baldin, J. Chase, Y. Xin, A. Mandal, P. Ruth, C. Castillo, V. Or-

likowski, C. Heermann, and J. Mills, “Exogeni: A multi-domain
infrastructure-as-a-service testbed,” in The GENI Book. Springer, 2016,
pp. 279–315.

[6] “RSpec,” http://www.protogeni.net/ProtoGeni/wiki/RSpec.
[7] J. Ham, F. Dijkstra, P. Grosso, R. Pol, A. Toonk, and C. Laat, “A

Distributed Topology Information System for Optical Networks Based
on the Semantic Web,” Journal of Optical Switching and Networking,
vol. 5, no. 2-3, June 2008.

[8] A. Mandal, P. Ruth, I. Baldin, Y. Xin, C. Castillo, G. Juve, M. Rynge,
E. Deelman, and J. Chase, “Adapting scientific workflows on networked
clouds using proactive introspection,” in IEEE/ACM Utility and Cloud
Computing (UCC), 2015.

[9] A. Gupta, M. Shahbaz, L. Vanbever, H. Kim, R. Clark, N. Feamster,
J. Rexford, and S. Shenker, “Sdx: A software defined internet exchange,”
ACM SIGCOMM, 2014.

[10] E. Deelman, C. Carothers, A. Mandal, B. Tierney, J. S. Vetter, I. Baldin,
C. Castillo, G. Juve, D. Król, V. Lynch, B. Mayer, J. Meredith, T. Prof-
fen, P. Ruth, and R. Ferreira da Silva, “PANORAMA: An approach
to performance modeling and diagnosis of extreme scale workflows,”
International Journal of High Performance Computing Applications,
vol. 31, no. 1, pp. 4–18, 2017.

[11] “PANORAMA: Predictive modeling and diagnos-
tic monitoring of extreme science workflows,”
https://sites.google.com/site/panoramaofworkflows/.

[12] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob,
and D. S. Katz, “Pegasus: a framework for mapping complex scientific
workflows onto distributed systems,” Scientific Programming Journal,
vol. 13, no. 3, pp. 219–237, 2005.

[13] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger,
“Pegasus, a workflow management system for science automation,”
Future Generation Computer Systems, vol. 46, no. 0, pp. 17–35, 2015.

[14] “The NSF GENI (Global Environment for Network Innovations)
Project,” http://www.geni.net/.

[15] Y. Yao, Q. Cao, J. Chase, P. Ruth, I. Baldin, Y. Xin, and A. Mandal,
“Slice-based network transit service: Inter-domain l2 networking on ex-
ogeni,” in IEEE INFOCOM Workshop on Distributed Cloud Computing
(DCC), 2017.

[16] “Ryu SDN framework,” https://osrg.github.io/ryu/.
[17] RabbitMQ, http://www.rabbitmq.com/.
[18] T. . G. P. Consortium, “A global reference for human genetic variation,”

Nature, vol. 526, no. 7571, pp. 68–74, 2015.
[19] R. Ferreira da Silva, R. Filgueira, E. Deelman, E. Pairo-Castineira, I. M.

Overton, and M. Atkinson, “Using simple pid controllers to prevent and
mitigate faults in scientific workflows,” in 11th Workflows in Support of
Large-Scale Science (WORKS’16), 2016, pp. 15–24.

[20] “ExoGENI Wiki,” https://wiki.exogeni.net.
[21] “iperf3,” http://software.es.net/iperf/.
[22] J. Chase, L.Grit, D.Irwin, V.Marupadi, P.Shivam, and A.Yumerefendi,

“Beyond virtual data centers: Toward an open resource control archi-
tecture,” in Selected Papers from the International Conference on the
Virtual Computing Initiative (ACM Digital Library), May 2007.

[23] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in
practice: the condor experience,” Concurrency and computation: prac-
tice and experience, vol. 17, no. 2-4, pp. 323–356, 2005.

[24] J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso, “A survey of data-
intensive scientific workflow management,” Journal of Grid Computing,
vol. 13, no. 4, pp. 457–493, 2015.

[25] G. Galante, L. C. E. De Bona, A. R. Mury, B. Schulze, and
R. da Rosa Righi, “An analysis of public clouds elasticity in the ex-
ecution of scientific applications: a survey,” Journal of Grid Computing,
vol. 14, no. 2, pp. 193–216, 2016.

[26] D. Poola, M. A. Salehi, K. Ramamohanarao, and R. Buyya, “A taxonomy
and survey of fault-tolerant workflow management systems in cloud and
distributed computing environments,” Software Architectures for Cloud
and Big Data Book, 2016.

[27] M. A. Rodriguez and R. Buyya, “Deadline based resource provi-
sioningand scheduling algorithm for scientific workflows on clouds,”
IEEE Transactions on Cloud Computing, vol. 2, no. 2, pp. 222–235,
2014.

[28] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Algorithms
for cost-and deadline-constrained provisioning for scientific workflow
ensembles in iaas clouds,” Future Generation Computer Systems, vol. 48,
pp. 1–18, 2015.

[29] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-constrained
workflow scheduling algorithms for infrastructure as a service clouds,”
Future Generation Computer Systems, vol. 29, no. 1, pp. 158–169, 2013.

[30] L. Liu, M. Zhang, R. Buyya, and Q. Fan, “Deadline-constrained coevo-
lutionary genetic algorithm for scientific workflow scheduling in cloud
computing,” Concurrency and Computation: Practice and Experience,
vol. 29, no. 5, 2017.

[31] M. Malawski, K. Figiela, M. Bubak, E. Deelman, and J. Nabrzyski,
“Scheduling multilevel deadline-constrained scientific workflows on
clouds based on cost optimization,” Scientific Programming, vol. 2015,
p. 5, 2015.

[32] U. Schwiegelshohn, “How to design a job scheduling algorithm,”
in Workshop on Job Scheduling Strategies for Parallel Processing.
Springer, 2014, pp. 147–167.

[33] E. Deelman, K. Vahi, M. Rynge, G. Juve, R. Mayani, and R. Ferreira da
Silva, “Pegasus in the cloud: Science automation through workflow
technologies,” IEEE Internet Computing, vol. 20, no. 1, pp. 70–76, 2016.

[34] L. Yu and D. Thain, “Resource management for elastic cloud work-
flows,” in Proceedings of the 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012). IEEE
Computer Society, 2012, pp. 775–780.

[35] F. Oesterle, S. Ostermann, R. Prodan, and G. Mayr, “Experiences with
distributed computing for meteorological applications: grid computing
and cloud computing,” Geoscientific Model Development, vol. 8, no. 7,
pp. 2067–2078, 2015.

[36] M. Kasztelnik, E. Coto, M. Bubak, M. Malawski, P. Nowakowski,
J. Arenas, A. Saglimbeni, D. Testi, and A. F. Frangi, “Support for taverna
workflows in the vph-share cloud platform,” Computer Methods and
Programs in Biomedicine, 2017.

[37] R. Ferreira da Silva, R. Filgueira, I. Pietri, M. Jiang, R. Sakellariou,
and E. Deelman, “A characterization of workflow management systems
for extreme-scale applications,” Future Generation Computer Systems,
vol. 75, pp. 228–238, 2017.

[38] M. Mattoso, J. Dias, K. A. Ocana, E. Ogasawara, F. Costa, F. Horta,
V. Silva, and D. de Oliveira, “Dynamic steering of hpc scientific
workflows: A survey,” Future Generation Computer Systems, vol. 46,
pp. 100–113, 2015.

