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Abstract—Computational science today depends on complex,
data-intensive applications operating on datasets from a variety
of scientific instruments. A major challenge is the integration
of data into the scientist’s workflow. Recent advances in dy-
namic, networked cloud resources provide the building blocks
to construct reconfigurable, end-to-end infrastructure that can
increase scientific productivity. However, applications have not
adequately taken advantage of these advanced capabilities. In this
work, we have developed a novel network-centric platform that
enables high-performance, adaptive data flows and coordinated
access to distributed cloud resources and data repositories for
atmospheric scientists. We demonstrate the effectiveness of our
approach by evaluating time-critical, adaptive weather sensing
workflows, which utilize advanced networked infrastructure to
ingest live weather data from radars and compute data products
used for timely response to weather events. The workflows are
orchestrated by the Pegasus workflow management system and
were chosen because of their diverse resource requirements.
We show that our approach results in timely processing of
Nowcast workflows under different infrastructure configurations
and network conditions. We also show how workflow task
clustering choices affect throughput of an ensemble of Nowcast
workflows with improved turnaround times. Additionally, we find
that using our network-centric platform powered by advanced
layer2 networking techniques results in faster, more reliable data
throughput, makes cloud resources easier to provision, and the
workflows easier to configure for operational use and automation.

Index Terms—adaptive weather sensing, network-centric plat-
form, distributed cloud infrastructure, dynamic network and
resource provisioning, malleable data flows, scientific workflow
automation

I. INTRODUCTION

Computational science today depends on many complex,
data-intensive applications operating on distributed datasets
that originate from a variety of scientific instruments and
repositories. A major challenge for these applications is the
integration of data into the scientist’s workflow. These work-
flows are composed of a set of dependent tasks, each of
which has different compute, network, storage, and input
requirements that determine where and how each task can
run. They may require specialized access to resources for
large transfers between tasks, with data residing in different

domains. This necessitates an integration of two or more
existing infrastructures (e.g., instruments, compute resources,
and data repositories) using high-performance networks and
data management software in order to increase the scientific
output. Currently, such integration is either not available, or is
purpose-built manually for a specific scientific application or
community. However, recent advances in dynamic networked
cloud infrastructure (e.g., ExoGENI [1]) provide the technical
building blocks to construct and manage such integrated,
reconfigurable, end-to-end infrastructure, built-to-order with
performance guarantees that satisfy workflow compute and
data movement requirements.

Data-driven applications and workflows have not adequately
taken advantage of the rich set of capabilities offered by
dynamic, networked infrastructures. They are not designed to
utilize adaptive features offered by state-of-the-art, networked
cloud infrastructures, especially with respect to delivering end-
to-end, high-performance data flows. As a result, scientists
in weather modeling, ocean sciences, seismology, etc. are
struggling to analyze data from community resources. They
are often downloading the data to their own environment,
processing it at limited scales in modest chunks, losing crucial
time to react to the observed phenomenon and/or missing
longitudinal patterns.

In parallel, resource requirements for these workflows are
increasing in scale. Traditional approaches of statically pro-
visioned, dedicated, pre-configured compute and network in-
frastructure are expensive, hard to adapt, and hard to manage.
The bursty computational and network demands for these
workflows warrant flexible processing solutions on diverse in-
frastructures for computing, and malleable, high-performance
data movements for expeditious delivery. While dynamic
provisioning mechanisms exist, these are not offered to the
scientists at the right level of abstraction, making them difficult
to use, with no guarantee of a proper resource match. Addi-
tionally, managing the execution of workflow ensembles over
the provisioned infrastructure remains a significant challenge.

In this work, we address some of the above challenges



by developing a system called DyNamo, which enables high-
performance, adaptive, performance-isolated data-flows across
a federation of distributed cloud resources and community
data repositories. DyNamo facilitates the provisioning of ap-
propriate compute and storage resources for observational
science workflows from diverse, national-scale cyberinfras-
tructure (CI). Driven by specific needs of science applications,
these capabilities are presented to applications and users at the
right level of abstraction through an easily understandable,
high-level interface. Efforts to use, configure, and reconfig-
ure resources are significantly simplified by this approach.
Through integration with the Pegasus Workflow Manage-
ment System [2], the DyNamo system offers automation and
orchestration of data-driven workflows on the provisioned
infrastructure.

In this paper, we make the following contributions:
• We present a case study of a data-driven science ap-

plication called Collaborative and Adaptive Sensing of
Atmosphere (CASA), and describe its specific computing
and networking challenges, which are addressed by the
DyNamo system (cf. Section II).

• We present our approaches to infrastructure fed-
eration and mechanisms used to enable malleable,
high-performance data flows between diverse, dis-
tributed, national-scale cloud platforms (ExoGENI and
Chameleon [3]) and the CASA data repository (cf. Sec-
tion III).

• We present new features in a network-centric platform
called Mobius, which bridges the abstraction gap by
presenting an appropriate, high-level interface to scien-
tists for dynamic, end-to-end resource provisioning (cf.
Section III).

• We show how CASA workflows can be parallelized as
ensembles and automatically executed on the provisioned
infrastructure by Pegasus (cf. Section IV).

• We present a performance evaluation of our system with
multiple CASA workflows under different deployment
scenarios and infrastructure conditions (cf. Section IV).

• We show that our system is used operationally by CASA
scientists for real weather events (cf. Section IV).

II. CHALLENGES: COLLABORATIVE AND ADAPTIVE
SENSING OF ATMOSPHERE (CASA) APPLICATION

CASA has the goal to improve our ability to observe,
understand, predict, and respond to hazardous weather events.
To achieve this goal, CASA has created a technology that
allows the sensing of the lowest part of the atmosphere through
networks of small, dual polarized, X-band Doppler radars [4].
Since 2012, CASA has operated a network of seven radars
in the Dallas/Fort Worth (DFW) Metroplex. Deployment and
operation of these meteorological sensors is only the first step,
since the project goals depend on efficient distribution and
scalable processing of the volumetric radar data. Dozens of
meteorological products are generated in near real time, some
24/7/365, others on demand, based on the characteristics of
the ongoing weather regime. First order processes include

calculating rainfall rate and accumulations, short term now-
casts (0-30min), hydrometeor classifications (rain/hail/snow),
hydrological products (runoff, streamflow), and network wind
products. In addition, various post-processing routines operate
on the gridded product data, including raster image generation,
contouring, format conversions, and end user driven, GIS
based data extraction. Timely generation of these products
is essential for the warning process and requires significant
network and compute resources.

Setting up a CASA workflow is complex [5] due to asyn-
chronous input data, and dynamic computational processing
loads which are often a function of the nature of the ongoing
weather. CASA workflows have traditionally been processed
across 16 servers, one dedicated server at each radar site,
and the rest at the DFW Radar Operations Center (DROC) at
NOAA Southern Region Headquarters in Fort Worth, Texas.
Processing tasks have been assigned to each server based
on extensive performance analysis to ensure that the largest
loads can be handled when severe weather is present. As
new types of processing algorithms have been introduced
and existing algorithms improved, the system has been very
carefully managed to integrate these without risking existing
workflow performance. In recent years, dynamic provision-
ing solutions have reduced some unnecessary processing [5],
however static architectures must still be chosen in advance
based on an estimated requirement, and effort is needed to
distribute workflow processes evenly across an arbitrary col-
lection of VMs. The preferred solution is to be able to quickly
acquire appropriate resources in an automated fashion based
on specific triggers and measured loads, with a simple interface
that allows for architecture reconfiguration as resource demand
fluctuates. With its ability to provide on-demand, configurable,
high-bandwidth network paths to distributed, national scale
resources, its support of parallel execution of algorithms,
and its workflow automation and management, DyNamo has
the potential to greatly improve system design and simplify
operations.

We briefly introduce the weather products that are generated
by the CASA workflows described in this paper:

A. Nowcast

Nowcasts are short-term advection forecasts that are com-
puted by mosaicking asynchronous individual radar reflectivity
data, accumulating the composite grids over a short duration,
and projecting into the future by estimating the derivatives
of motion and intensity with respect to time [6], [7]. Every
minute the CASA nowcasting system generates 31 grids of
predicted reflectivity, one for each minute into the future from
minutes 0-30. Nowcasts are valuable for short term planning
and estimating the arrival or departure of precipitation by
giving the user an estimation of the timing and trajectory
of moving weather features. They can assist in such tasks
as route planning, deployment of spotters, and keeping emer-
gency responders out of harm’s way. Before DyNamo, CASA
dedicated a server with substantial resources to generate now-
casting data and required a second server to extract contours



for user notification purposes. Upon generation, nowcast data
are transmitted to the CASA data repository, which serves as
gateway between the public internet and ExoGENI provisioned
layer-2 VLANs.

B. Wind Speed

A Doppler radar is able to estimate the velocity of moving
objects based on a phase shift that occurs if the objects are
moving toward or away from the radar beam. Components of
velocity perpendicular to the beam are not sensed. For a given
radar this means that there will be substantial underestimations
of true wind speed over portions of the sensing domain where
certain directional components of the winds are not able to
be sampled. However with an overlapping network of radars,
areas not adequately sampled by one radar are often better
sampled by other radars with different relative angles. There-
fore CASA’s maximum observed velocity workflow ingests the
single radar base data from all of the radars in the network and
creates a gridded product representing the maximum observed
wind speeds. As part of this workflow, areas of severe winds
are identified and checked against the location of known
infrastructure, in our case hospitals, with email alerts sent out
should they be impacted. This class of workflow that blends
together voluminous radar based data as an initial processing
step is much more network intensive than other workflows
that operate on derived products. Input data rates can approach
10Mbps per radar, of which CASA currently operates 7.

C. Contouring

Similar to contours on a topographical map that enclose ar-
eas above a certain elevation, in CASA contours indicate areas
where values within the grid exceed a certain threshold [8].
Contouring produces 2D closed GIS style polygon ‘objects’ in
GeoJSON format that describe geographical areas of observed
or forecast weather risk. The contouring algorithm is used to
describe areas with high radar reflectivity as a proxy for storm
location in the nowcasting workflow, and areas of severe winds
that are likely to be causing damage in the wind workflow.
While the contouring process is a highly useful mechanism
for communicating risk locations to users, generating valid,
well ordered polygons out of large grids of imperfect data is a
CPU intensive process. The CASA contouring procedure uses
the CONREC algorithm [9] to generate a series of unordered
isolines, followed by a custom approach to connect them into
ordered concave polygons.
Visualization & Data dissemination. For each of the 31 grids
produced per minute by the nowcasting algorithm and the
grid produced by the Wind Speed algorithm a PNG image
are created and disseminated back to the CASA data portal,
where they are transferred for user visualization on CASA’s
Google Maps based website. In contrast to the computation of
the gridded data, the generation of visualization, contouring,
and notification can be performed in a distributed fashion and
the postprocessing workflows are well suited for a HTCon-
dor [10] compute cluster, instantiated at either Chameleon or
an ExoGENI rack.

III. DYNAMO SYSTEM DESCRIPTION

The challenges described in Section II are common to sev-
eral data-driven scientific workflows. Hence, we have devel-
oped the DyNamo system to address some of those challenges.
The DyNamo system offers the following capabilities: (a)
programmatic resource provisioning on an integrated, diverse
infrastructure federation, which enables on-demand access
to multiple national-scale computational cloud resources for
science workflows, (b) end-to-end network management for
malleable data movement across infrastructures and external
science data repositories, (c) a network-centric platform called
Mobius that hides the complexity of resource and network
provisioning from the scientists and transforms high-level
application-aware, infrastructure-agnostic resource requests to
low-level infrastructure provisioning actions, and (d) support
for workflow automation for science applications on the pro-
visioned infrastructure using Pegasus. These DyNamo system
capabilities are described as follows.

A. Integrated, Multi-Cloud Resource Provisioning

Data-driven workflows like those from the CASA appli-
cation need to quickly acquire appropriate resources in an
automated fashion to satisfy their bursty computational and
network demands. The nature of ongoing or expected weather,
the number of available sensors, and end user defined triggers
all contribute to load variability. DyNamo enables CASA sci-
entists to transparently acquire cloud resources from multiple
cloud providers based on high-level resource requirements.
Through network integration and programmatic provisioning
of specific cloud resources using their native APIs, we are
shielding the scientists from interacting with diverse cloud
providers or from using low-level provisioning commands.

We initially target two national scale, federally funded
cloud resource providers and make them accessible to CASA
scientists using high-level resource requests.

• ExoGENI [1], a networked Infrastructure-as-a-Service
(IaaS) testbed supported by NSF, links cloud racks at 20
sites on campuses across the US through regional and na-
tional transit networks (Internet2, ESnet, etc.). ExoGENI
allows users to dynamically provision mutually isolated
“slices” of interconnected infrastructure from multiple
independent providers (compute, network, and storage)
by taking advantage of existing virtualization mechanisms
and integrating various resources together: layer2 global
dynamic-circuit networks like Internet2 and ESnet, and
private clouds like OpenStack [11]. ExoGENI provides
value added over dynamic-circuit providers by permit-
ting users to instantiate virtual, distributed topologies,
and by provisioning the appropriate network resources
corresponding to the topologies, thereby creating end-to-
end layer2 paths.

• NSF Chameleon Cloud [12] is a large, deeply pro-
grammable testbed designed for systems and networking
experiments. Similar to ExoGENI, it leverages OpenStack
to deploy isolated slices of cloud resources for user



experiments. However, where ExoGENI scales in geo-
graphic distribution, Chameleon scales by providing large
amounts of compute, storage, and networking resources
spread across only two sites. In total, Chameleon provides
over 15K cores and 5 PB storage across the University
of Chicago and the Texas Advanced Computing Center.
Users can provision bare metal compute nodes with
custom system configuration connected to user-controlled
OpenFlow switches operating at up to 100 Gbps. In
addition, Chameleon networks can be stitched to external
partners including ExoGENI slices.

By utilizing the Mobius platform (cf. Sect. III-C), it is
possible to provision appropriate compute resources from
ExoGENI and Chameleon using a high-level, application-
aware API. By sending requests to Mobius, scientists can
provision resources from different clouds and connect them
for use by a single workflow. The Mobius platform also
provides capabilities to easily instantiate application-specific
environments on top of the multi-cloud provisioned resources,
e.g., a distributed HTCondor [10] cluster.

B. Malleable Data Movement Across Infrastructures and Ex-
ternal Data Repositories

Integrating data movements with computations is essen-
tial, but often overlooked, for data-driven science workflows.
While provisioning resources from multiple clouds provides
scientists with significant compute flexibility, supporting high-
performance data movements into, across, and out of the provi-
sioned distributed compute infrastructure is another important
problem that we address in this work. Mobius allows flex-
ible, programmatic provisioning of high-bandwidth network
paths/circuits across and within different infrastructures and
science data repositories.

Fig. 1: Data movement and resource provisioning across CI
federation.

Figure 1 shows the deployment scenario for supporting
malleable data movements. We leverage the ExoGENI network
overlay to connect data repositories like CASA with national
scale CI resources, Chameleon and ExoGENI racks currently,
with plans for connecting to XSEDE JetStream, Open Science
Grid and Amazon AWS in the future, through ExoGENI-
provisioned, dynamically reconfigurable network paths. The
connections between ExoGENI and the external resources and
data repositories use ExoGENI stitchports [13].
Stitchport: A general stitchport abstraction is a foundational
building block of this deployment. What lies beyond a stitch-

port is assumed to be an IP-based subnet including infras-
tructure like data transfer nodes for large compute clusters,
data repository endpoints, nodes connected to storage arrays
for instrument data, or any other sources or sinks of scientific
data sets. Stitchports enable high-performance connectivity to
external infrastructure outside of ExoGENI.
UNT stitchport. We deployed a stitchport at the location of
the CASA data repository at the University of North Texas
in Denton, TX. The server behind this stitchport hosts the
weather data from the 7 CASA radars. This server is plumbed
to a static pool of VLANs set up and connected to the
ExoGENI network fabric by transiting through the LEARN
regional network. This makes it possible to programmatically
connect the data repository to any of the 20 ExoGENI racks
or other external infrastructure that ExoGENI can connect to,
with a dynamic bandwidth specification.
Chameleon Stitching. Chameleon supports the creation of
isolated OpenFlow networks controlled by users. In addition
to connecting Chameleon compute resources, these networks
can be stitched to external partners, including ExoGENI, using
dedicated layer2 circuits [14]. Stitching uses a set of ExoGENI
stitchports which can be allocated to Chameleon networks. A
Chameleon user can create an isolated network that includes
one of the ExoGENI stitchports. Then ExoGENI users can
create slices that include the allocated stitchport. After the
stitchport has been allocated on both infrastructures, layer2
traffic will pass between the networks.

Hence, our system, through stitchports, connects the CASA
data repository, via dynamically provisioned layer2 overlay
networks, to ExoGENI resources, which are then stitched to
Chameleon. This creates layer2, end-to-end, virtualized, per-
formance isolated data movement paths for CASA workflows.

A proof-of-concept has been developed that enables
Chameleon and ExoGENI slices to connect to other partners
including Amazon AWS Direct Connect using Internet2’s
Cloud Connect service [15].

C. DyNamo Network-centric Platform: Mobius

We have developed new capabilities in a network-centric
platform called Mobius [16], [17]. These include support
for integrated, multi-cloud resource provisioning and high-
performance science data flows across diverse infrastructures,
and enhanced mechanisms for interacting with higher level ap-
plication and workflow management systems and transforming
high-level resource requests to low-level provisioning actions.

The Mobius platform has been implemented as a Spring
framework [18] based REST server and exposes a REST
API [17] for automated provisioning of network and compute
resources. It consumes high-level application-aware resource
requests from scientists or workflow systems and automati-
cally provisions resources using the native APIs of different
providers. Essentially, the applications can specify to Mobius
their resource requirements over time in the form of a Gantt
chart. Scientists can easily set up application-specific environ-
ments by invoking the Mobius REST API. Figure 2 shows the
different components of the Mobius platform.
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Fig. 2: Mobius network-centric platform.

Multi-cloud and Network Resource Manager. At this layer,
Mobius translates application requests to native cloud specific
requests. Since we are leveraging the ExoGENI network
overlay to set up data flow paths, the application-level data
movement requests get translated to ExoGENI network pro-
visioning requests. The Multi-cloud and Network Resource
Manager consists of two native cloud specific adapters to
provision resources on our target infrastructures.

Ahab adapter: Ahab [19] is a collection of graph-based
Java libraries designed to allow applications to control, modify
and manage the state of ExoGENI slices. Ahab includes libndl,
which provides a graph-based abstraction for interacting with
ExoGENI slices. It primarily handles the conversion of an
abstract topology graph consisting of ComputeNodes, net-
works, stitchports, storage, etc. into native ExoGENI resource
requests (NDL-OWL [20]), which are then sent to ExoGENI
using another library called libtransport. The Mobius Ahab
adapter leverages the Ahab library functionalities to instantiate
compute resources on ExoGENI racks and to create network
paths between stitchports, ExoGENI racks and other cloud
providers like Chameleon.

Jclouds adapter: Apache jclouds [21] is an open source
multi-cloud toolkit that allows the creation of portable ap-
plications across different cloud providers while maintaining
full control to use cloud-specific features. We have imple-
mented a Mobius jclouds adapter for OpenStack to provision
resources on Chameleon and XSEDE JetStream. We also plan
to implement a Mobius jclouds adapter for Amazon EC2 to
provision resources on Amazon AWS, which can then be used
in conjunction with the stitchport for AWS Direct Connect to
move data in and out of the EC2 provisioned resources.
Workflow Database. The information about all the resources
provisioned for a workflow or an application on different
clouds and the corresponding application request parameters
is maintained in the Workflow Database.
Periodic Processor. High level application requests can be
represented as a Gantt chart of required resources for a

particular application or workflow. The periodic processor
triggers the provisioning of the resources at the scheduled time.
It also monitors the provisioning status of all the resources
instantiated for various application workflows and triggers
notifications to applications/workflow management system.
Monitoring and Control. The Monitoring and Control mod-
ule is designed to transparently maintain the quality of service
of the provisioned end-to-end infrastructure through contin-
uous monitoring and control (e.g. growing and shrinking
compute or storage resource pools and changing network prop-
erties of links). This module is currently under development.
Mobius Controller. The Mobius controller orchestrates all the
above components and processes the incoming REST requests
to trigger appropriate Mobius components.

D. Workflow Automation

The DyNamo system supports workflow automation on the
provisioned infrastructure by leveraging Pegasus, which pro-
vides the necessary abstractions for scientists to create work-
flows, and allows for transparent execution of these workflows
on a range of execution platforms. Workflows are described
abstractly as directed acyclic graphs (DAGs), where nodes
represent individual compute tasks and the edges represent
data and control dependencies between tasks. During planning,
Pegasus translates the abstract workflow into an executable
workflow, determining executables, data, and computational
resources required for execution. Individual workflow tasks
are managed by a scheduler (HTCondor), which supervises
their execution on local and remote resources.

In this work, we have developed Pegasus workflows for
the CASA application, which are executed on end-to-end
infrastructure provisioned using Mobius. While designing
these workflows we wanted to achieve three main goals:
(1) ease of deployment, (2) portability and (3) scalability.
The Mobius platform simplifies resource provisioning and
helps in ease of deployment. Taking advantage of Pegasus’
container support provides a unified execution environment
and guarantees portability across multiple clouds. The abstract
workflow definitions describe the computational tasks in their
simplest form (one task triggers one executable). Even though
this approach results in more tasks in the generated DAG, it
increases the versatility of the workflow. Taking into consid-
eration characteristics of the tasks (e.g., runtime or resource
usage) and the provisioned resources, we can instruct Pega-
sus to automatically cluster multiple tasks together, creating
larger jobs and optimizing for data movement and resource
utilization.

IV. EVALUATION OF DYNAMO SYSTEM

A. CASA Workflow Description

For the evaluation of DyNamo we have selected CASA
workflows that produce nowcasts and wind speed estimates
as described in Section II. Figure 3 shows the deployment
scenario for the CASA workflows used for the evaluation.
The workflow processes include input data collection and
product generation, visualization, contouring into polygon



objects, spatial comparisons of identified weather features with
infrastructure, and dissemination of notifications.
Pegasus Workflows and Testcases. The generated Pegasus
workflow for nowcast [22] consists of 63 compute tasks. There
is a preprocessing task that splits the input data into 31 grids,
and then 62 independent tasks compute the reflectivity and
the respective contour images. All tasks run within a Docker
container that is managed by Pegasus and has a size of 476MB.
For the evaluation of the nowcast workflow we are using 30
minutes of pre-captured data (individual file size 9.6MB, total
size 287MB), which we replay using an accumulation interval
of 1 minute. On the other hand, the wind workflow [23]
has a variable size. The preprocessing phase is responsible
to unzip any zipped input files, and the number of tasks
depends on that. This phase is followed by four compute tasks
that output the wind products and notify points of interest
for severe weather. These four tasks are running within a
Docker container, 523MB in size. For the evaluation of the
wind workflow we are using 40 minutes of pre-captured data
(individual file size ∼12MB, total size ∼6GB), which we
replay using an accumulation interval of 5 minutes. With these
in mind we classify nowcast as a compute intensive workflow
and wind speed as a data intensive workflow.
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Fig. 3: CASA workflow deployment.

B. Experimental Infrastructure

We deployed a realistic scenario that is similar to the real
CASA operational radar data processing setup, on ExoGENI
and Chameleon testbeds using the DyNamo system. It is worth
mentioning that rather than direct performance comparison
between ExoGENI and Chameleon testbeds, our major goal
in this paper is to demonstrate the effectiveness of DyNamo
workflow execution over heterogeneous compute and network-
ing infrastructures based on their resource availability. In our
setup, the ExoGENI compute cluster is located in Jacksonville,
FL, and contains 13 VM nodes, with 1 master node, 11 worker
nodes, and 1 Network File System (NFS) storage node. Each
node has 4 virtual cores, 12 GB RAM, and is connected to
1 Gbps network. The Chameleon compute cluster contains 5
nodes and is located in Chicago, IL. It is comprised of 4
worker nodes and 1 NFS storage node. Each node has 24
cores, 192 GB RAM, 250GB SSD and is connected to a shared
10 Gbps network. The two configurations provide 44 compute
slots and 96 compute slots respectively.

Because the master node doesn’t require much processing
power for a small-sized cluster, we decided it is suitable to
maintain it within ExoGENI and connect all the workers to the
same HTCondor pool. In order to specify which workers we
want to dispatch jobs to, we use HTCondor’s job requirements
filter and request workers on either ExoGENI or Chameleon
based on their hostnames.

Finally, we deployed the Pegasus submit node at the Uni-
versity of North Texas (UNT) in Denton, TX, which receives
data from CASA’s data sources via the TX LEARN research
network and triggers new workflows as new data arrive. Raw
data from the CASA radars and the KFWS NEXRAD radar
are directly transmitted to the submit node. Nowcasts are
first computed on the DROC and then transmitted to the
UNT submit node. The UNT submit node is connected to
the ExoGENI and Chameleon processing clusters via 1 Gbps
stitchable layer-2 VLANs, which are dynamically provisioned
on ExoGENI by Mobius.

Software. On all of the nodes we have installed HTCondor
v8.6, and we have customized its configuration to match the
role of each node. In this setup, the workers are configured
with partitionable slots, that allows us to request multiple cores
per job request. Additionally, on the submit node we have
installed Pegasus v4.9.1 and all of the workers use Docker CE
v.18.09.5. Mobius was used to provision compute resources
on ExoGENI and Chameleon, and the network connections
between ExoGENI, Chameleon and the CASA repository.

C. Experimental Results

During our preliminary tests with the nowcast workflow, we
observed that transferring and loading the Docker container for
every task had a severe impact on performance. To alleviate
this, we configured the nowcast workflow for an environment
that does not have access to shared storage and another one
that shares NFS folders across the worker nodes. In the first
environment, Pegasus uses HTCondor’s file transfer feature
to move data in and out of the worker nodes, and back to
the submit node. For the NFS environment, Pegasus uses
its own data transfer recipes to stage in data to a shared
scratch location on the NFS shared folder and orchestrates
the jobs on the workers to symlink against them. When the
final output products are generated, Pegasus pulls the data
back to the submit node, via scp. This approach allows us
to remove frequent transfers between the submit node and the
workers, and enables us to place large common files (e.g., the
container images) closer to the workers. For both cases, we
tested varying sizes of task clusters, grouping together tasks of
the same type, and evaluating the effect for each configuration.

1) Effect of cluster parallelism in nowcast: Figure 4a
presents the average workflow makespan, which is defined
as the average runtime of the worklow, for executions of the
nowcast workflow (with 63 tasks) on Chameleon nodes, while
having NFS storage enabled. Pegasus allows to select a task
clustering size (X-axis), which is the number of workflow tasks
grouped in a job, and the desired job parallelism, which is the
number of cores allocated to the job for running the tasks in the
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Fig. 4: Nowcast: Stitchport 1Gbps.

job. For each task clustering size, we plot the runtimes for two
values of job parallelism - a fixed value of 4 and for a value
equal to the task clustering size. We observe that there are
marginal gains in workflow runtimes, ranging between 3 and
28 seconds for all task clustering sizes, but these benefits are
quickly overshadowed by the increased need for more compute
slots, blocking other jobs from being executed concurrently.
Thus, for the rest of our nowcast experiments, when Pegasus
clusters tasks together, a fixed parallelism of 4 is used.

2) Performance study of nowcast workflows: In Figures 4b
and 4c, we present the average nowcast workflow makespan,
while targeting different execution environments on ExoGENI
and Chameleon, with varying task clustering sizes. Figure 4b
shows results from running a single nowcast workflow without
any other workflows competing for resources for different
cluster sizes. Due to the size of the nowcast workflow (63
tasks) we could fit the non-clustered workflow at once in
Chameleon (96 slots available), but there were insufficient
resources on ExoGENI (44 slots available). By submitting
the workflow without clustering (cluster size 1) there is a
noticeable impact on the performance in the cases where
we do not use NFS, observed on both sites. This is due
to the increased network traffic created by transferring the
application container. Additionally, in all cases, Chameleon
executions tend to be a bit slower than the ExoGENI ones.
This is an effect of loading the Docker images to the workers
for every task. Having 11 nodes on ExoGENI helps to spread
out the load imposed by Docker. However, as we increase
the number of clustered tasks, the performance advantage is
almost negligible since for cluster sizes >12 the runtimes of
the configurations are 30-45 seconds apart. Figure 4c presents
results from replaying the test case data, which results in
executing a workflow ensemble, which is defined as a set
of workflows running the same computations on different
input data, possibly arriving at different times. Similar to the
single workflow runs, non clustered configurations perform
very poorly as they saturate the submit node’s link for pro-
longed periods, while overlapping workflows in the ensemble
competing for the same resources, makes the situation even
worse. By increasing the number of clusters to 12 or more,
we improve the average runtime by more than 4500 seconds,
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Fig. 5: Wind: Workflow Ensemble Runs - No Clustering.

reaching a stable point, on both ExoGENI and Chameleon.
3) Better data movement performance: Figure 5 depicts

the distribution of the wind workflow makespans while either
using TX LEARN public layer 3 network or the stitchport with
variable bandwidths. Figure 5a displays makespan statistics
without using NFS, while executions in Figure 5b use NFS to
optimize data placement. For both cases, we observe that the
performance of the 1Gbps stitchport is more consistent than
the 1Gbps LEARN, which is not performance isolated. As we
decrease the stitchport bandwidth to 500Mbps and 100Mbps,
the makespan increases and its distribution spreads, since the
wind workflow, being data-intensive, is sensitive to network
bandwidth. We also observe that the median makespans for
1Gbps LEARN and 1Gpbs or 500Mbps stitchport are similar,
proving that 500Mb/s bandwidth is sufficient to allow our
processing infrastructure to keep up with the incoming data.
These results show the value of dynamically provisioned,
performance isolated networks for data-intensive workflows.

4) Compute slot utilization: Another aspect with great
operational interest is the amount of resources that have to
be allocated for a compute intensive workflow like nowcast.
Figure 6 presents the number of active compute slots while
replaying the nowcast testcase, using task clustering sizes of
4, 16 and 32, on Chameleon nodes, with and without an NFS
server. In both cases, increasing task cluster size decreases
the number of active compute slots, and thus decreases the
number of nodes that need to be provisioned. We observe
that clustering 4 tasks creates high demand, with spikes close
to 80 slots (NFS case). Increasing the task clustering to 16



 0

 20

 40

 60

 80

 100

 0  500  1000  1500  2000  2500

Chameleon - HTCondor Transfers
N

u
m

b
e
r 

o
f 

co
m

p
u
te

 s
lo

ts

Runtime (Seconds)

Task Clustering Size =   4
Task Clustering Size = 16
Task Clustering Size = 32

 0

 20

 40

 60

 80

 100

 0  500  1000  1500  2000  2500

Chameleon - NFS

N
u
m

b
e
r 

o
f 

co
m

p
u
te

 s
lo

ts

Runtime (Seconds)

Task Clustering Size =   4
Task Clustering Size = 16
Task Clustering Size = 32

Fig. 6: Nowcast: Workflow Ensemble Runs - Chameleon
Compute Slot Utilization.

or 32, decreases peak compute slot demand to just 20 slots.
The runtime is most with task cluster size 4 (HTCondor case)
because that case has total 16 jobs moving containers vs. 4
and 2 jobs for task clustering 16 and 32.

D. Operational Experience

The architecture and the workflows were used for CASA
operations during the spring of 2019, with ongoing severe
weather, and live radar and nowcast data sent to the DyNamo
server and into the DyNamo framework for product generation.
Cloud resources were provisioned with Mobius. Initial expe-
riences lead us to migrate several parameters out of statically
defined json configuration files, and into command line argu-
ments for ease of scripted integration and automation, without
the need for error prone string replacements in files. Among
these were lease duration times, network domain addresses,
number of worker nodes, and the ability to specify directories
containing instructions for different workflows. What remained
in json file structures were only parameters unlikely to be
changed with regularity such as layer 2 bandwidth definitions,
memory, and CPU types. In general, there is only a brief
interval from when resources are requested to when they
are online, configured, and begin processing data. This is
an important consideration as in some cases where unstable
atmosphere thunderstorms can develop rapidly, resulting in a
small lead time from initial detection to when the workflow
data are urgently needed. We used observed radar data as
the cue to procure and release resources, but the preferred
manner may eventually be to use short term forecast data to
provide enough lead time to not miss early stage activity.
Provisioning ExoGENI nodes only was found to take 2-4
minutes from request to being ready for operations. A hybrid
setup using both ExoGENI and Chameleon nodes took up to
10 minutes at times, with the selected number of worker nodes
contributing to the variability. Because it can be impossible
or expensive to reserve external IP addresses on different
clouds, it was decided for operational purposes to dedicate
particular VLANs to specific workflows. This was convenient,
as our secure publish/subscribe data transfer software, Unidata
LDM [24], requires the explicit listing of allowed downstream

IP addresses in advance for data forwarding. When Mobius
provisions the stitchport it uses the VLAN tag associated with
the workflow in question, and assigns an IP address in that
range to the cloud instance on ExoGENI. LDM configuration
scripts are generated in advance with VLAN IP addresses and
the naming convention patterns defined for workflow input
and output data. In addition, the VLANs are matched to the
input/output data rates of individual workflows. The DyNamo
server uses a single 1Gbps link upon which up to 10 VLANs
may be used. As the number of workflows increase, it will
be of greater importance to partition the links according to
workflow I/O. For these initial experiments a high bandwidth
500Mbps link for the wind workflow that operates on vo-
luminous radar moment data was selected, and a 100Mbps
link which is more than sufficient for the nowcast workflow.

Fig. 7: Nowcast output
with DyNamo from live
storm event (05/18/19).

Often, the algorithmic runtimes
of the workflow processes are
dependent on the nature of the
weather regimes contained in the
data. Whereas the test cases re-
moved variability with respect to
weather to isolate network, com-
pute, and HTCondor/Pegasus pa-
rameters, the realtime operations
quickly demonstrated the variabil-
ity of algorithmic load over time.
During periods of clear weather,
there is very little processing to be
done, and runtime drops sharply.
During these times, workers can
be released back into the cloud
pool, or the workflow could be
ceased altogether and the instances terminated. As weather
develops and coverage and intensity increases, it will be
important to monitor processing times and increase worker
nodes to ensure that they stay within tolerable latencies, and
conversely, that unnecessary resources are not allocated.

Upon the development of weather in the radar network, a
single Mobius command was used to spawn our predefined
architectures. First we tested with a master, a submit, and 6
worker nodes on the University of Houston ExoGENI cloud.
A stitchport is created from the CASA server at UNT and
the submit node at UH. Later we tested with a single node
at UH ExoGENI, and four worker nodes and an NFS shared
data node located at the Chameleon site at the University of
Chicago (UC). The latter setup requires a second stitchport
to be created by Mobius to connect UH and UC servers,
along with simple routing rules defined to move data back
and forth across the networks. In both cases, as soon as
the architecture is spawned and post-processing scripts are
executed, no further intervention is necessary and the workflow
progresses as intended. After algorithm output is returned from
the workers, monitoring routines ensure that data is moved out
and back to UNT for transport to the CASA Google Maps
based website for live display (Figure 7).

In the case of the max wind product, a single image of the



highest observed velocities from various radars in the network
was generated every 90 seconds, along with GeoJSON files
containing contoured windspeed levels. These were compared
with hospital locations in the DFW metroplex and automated
email notifications sent when winds exceeded severe levels.
This workflow was selected because of its large input data
bandwidth for networking purposes, and to evaluate the ease
with which a complex chain of processes could be scripted
for the Pegasus workflow management system.

In the case of Nowcasting, 31 image files and GeoJ-
SON formatted polygons are calculated every minute. Before
utilizing the DyNamo framework, we only had available
processing power to script the workflow for 3 of the 31
grids produced every minute by the Nowcasting algorithm,
without risking increasing backlog during the worst cases with
widespread weather. With Dynamo and 6 ExoGENI workers,
or 4 Chameleon workers, we could run the workflow on all
31 grids per minute (representing 0-30 minutes into the fu-
ture) without steadily increasing latency. Were the nowcasting
algorithm extended beyond 30 minutes, the workflow could
remain identical, requiring only a scaling of the number of
worker nodes in the Mobius request! Looking ahead to larger,
national-scale networks and increasingly complex algorithms,
this has substantial potential to reduce costs by matching
compute with demand and simplifying integration efforts.

V. RELATED WORK

The related work can be classified into three categories:
research cloud platforms, resource provisioning for workflows,
and workflow management for science applications.

Cloud platforms. A number of public cloud providers, such
as Amazon EC2 [25], Microsoft Azure [26], Rackspace [27],
offer IaaS abstractions and some ability to orchestrate them
together with networks through mechanisms like CloudFor-
mation [28] and Heat [29]. However, their closed nature and
difficulty of moving data in and out of their infrastructure,
limit their uses in science applications. This is especially true
when science applications need to be deployed on a multi-
cloud environment [13]. Existing cloud research testbeds like
FutureGrid [30] are not programmable from a networking per-
spective. GlobusOnline [31] project permits users to efficiently
move data from one computing resource to another, however, it
does not provide unified environments for science workloads.
We have focused on integration of scalable, reconfigurable dis-
tributed testbeds, including ExoGENI [1] and Chameleon [3]
with emphasis on data movements.

Resource provisioning for science workflows. Recent
survey papers [32]–[34] focused on the effectiveness of IaaS
cloud resource provisioning for executing scientific workflows.
Wang et al. [35] propose an approach to build and run
scientific workflows on a federation of multiple clouds using
Kepler and CometCloud. Moreover, there has been strategies
for workflow systems focusing on the deployment of virtual
machines in the cloud with limited support for on demand
provisioning and elasticity, while none or minimal support
to infrastructure optimization is enabled. In particular, data

placement/movement and network configuration/provisioning
decisions are crucial to achieving high performance for big
data applications [36]. Ostermann et al. [37] discussed a set
of VM provisioning policies to acquire and release cloud re-
sources for overflow grid jobs from workflows, and the impact
of those policies on execution time and overall cost. In a
previous work, we presented dynamic provisioning techniques
that spawn resources based on compute elasticity using Mo-
bius [16]. Our current work differs from above by presenting
easy-to-use, on-demand resource provisioning mechanisms for
malleable data movement and compute provisioning for inter-
cloud workflows.

Science workflow management systems. Several workflow
management systems focus on the execution and management
of science applications on cloud platforms. Malawski et al.
[38] focused on cost optimization modeling for scheduling
workflows on public clouds to minimize the cost of workflow
execution under deadline constraints. Abrishami et al. [39] pre-
sented workflow scheduling algorithms based on partial critical
paths, which also optimize for cost of workflow execution
while meeting deadlines. With the rise of multi-clouds, many
workflow management systems have focused on this type of
platform. Matthew et al. [40] discuss workflow management
on multi-cloud brokering among multi-cloud domains with
heterogeneous security postures. Senturk et al. [41] deals
with bioinformatics applications on multi-clouds with focus on
resource provisioning. In this paper, we propose a set of new
approaches to enable dynamic resource provisioning which is
integrated with workflow management systems, with example
deployments with science applications.

VI. CONCLUSIONS AND FUTURE WORK

We presented the DyNamo system that addresses the com-
puting and networking challenges for CASA distributed, at-
mospheric science workflows by enabling high-performance,
adaptive data flows and coordinated access to distributed cloud
resources and data repositories. We showed how the Mobius
platform encapsulates the different DyNamo capabilities and
makes it easier for scientists to provision end-to-end infrastruc-
ture. Through performance evaluation of our system executing
CASA workflows orchestrated by Pegasus, we have shown
that our approach results in timely processing of Nowcast
workflows under different infrastructure configurations and
network conditions. We also show the effect of workflow
task clustering on throughput of an ensemble of Nowcast
workflows. We found that using our network-centric platform
powered by advanced layer2 networking techniques results in
faster, more reliable data throughput, makes cloud resources
easier to provision, and the workflows easier to configure
for operational use and automation. In future, we plan to
extend the DyNamo system by stitching to other resource
providers, supporting streaming workflows, developing new
CASA workflows, developing policies and mechanisms for
monitoring and control to transparently maintain the QoS
of the provisioned infrastructure, and incorporating virtual



software defined exchanges [19] as a basis for link adaptation,
flow prioritization and traffic control between endpoints.
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