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Abstract--Electron tomography is a powerful tool for deriving 
three-dimensional (3D) structural information about biological 
systems within the spatial scale spanning 1 nm3 and 10 mm3. 
With this technique, it is possible to derive detailed models of 
sub-cellular components such as organelles and synaptic 
complexes and to resolve the 3D distribution of their protein 
constituents in situ.  Due in part to exponentially growing raw 
data-sizes, there continues to be a need for the increased 
integration of High-Performance Computing (HPC) and Grid 
technologies with traditional electron tomography processes to 
provide faster data processing throughput.  This is increasingly 
relevant because emerging mathematical algorithms that provide 
better data fidelity are more computationally intensive for larger 
raw data sizes.  Progress has been made towards the transparent 
use of HPC and Grid tools for launching scientific applications 
without passing on  the necessary administrative overhead and 
complexity (resource administration, authentication, scheduling, 
data delivery) to the non-computer scientist end-user.  There is 
still a need, however, to simplify the use of these tools for 
applications developers who are developing novel algorithms for 
computation.  Here we describe the architecture of the 
Telescience Project (http://telescience.ucsd.edu), specifically the 
use of layered workflow technologies to parallelize and execute 
scientific codes across a distributed and heterogeneous 
computational resource pool (including resources from the 
TeraGrid and OptIPuter projects) without the need for the 
application developer to understand the intricacies of the Grid. 
 
Index Terms--Grid Computing, Pegasus, Telescience, Workflow 

 
I. INTRODUCTION 

 
More than a decade ago researchers at the National Center 

for Microscopy and Imaging Research (NCMIR) 
demonstrated the feasibility of remote control of bio-imaging 
instruments (SIGraph Conference 1992).  The progression of 
that nascent software system was achieved under an NSF 
Grand Challenge Award for the Collaboratory for Microscopic 
Digital Anatomy (CMDA) that delivered the first production  
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TelemicroscopyTM [1][2] software system, released in 1999.  
Over the last 5+ years, researchers at NCMIR have developed 
an end-to-end system known as the TelescienceTM Project 
[3][4][5] that combines the use of Telemicroscopy with tools 
for parallel distributed computation, distributed data 
management and archival, and interactive integrated 
visualization tools within a single sign-on portal.  Using 2D 
and 3D multi-scale imaging as the scientific driver, this 
system brings to bear various HPC and Grid components (that 
were previously developed in isolation) to the scientific 
process. 

While Telescience (and other Grid projects such as BIRN 
[6] and GEON [7]) have had increasing success in delivering 
HPC and Grid functionality to the end-user, little progress has 
been made in simplifying adoption of these capabilities by the 
domain specific applications developer.  Often there exists an 
impasse during the integration of scientific codes with the 
Grid.  Application developers are required to become Grid 
experts or Grid developers are required to gain expertise in the 
application domain. 

The contributions of this paper are the development of a 
novel computational infrastructure that utilizes workflow 
technologies to accelerate the time-to-solution for creating 
Grid-based scientific algorithms.  Here we describe the use of 
this infrastructure to create a parallel, Grid-based application 
from its origins in a MATLAB development environment.  
We also discuss how the workflow technologies can be 
integrated within user-friendly portal-based environments to 
deliver high-performance, Grid-based computations to non-
Grid experts. 
 

II. SCIENTIFIC MOTIVATION 
 

Researchers at NCMIR are leaders in the area of electron 
microscopic tomography.  In this cutting edge tomography, 
there are three main stages involved in generating 3D volumes 
from 2D transmission electron microscope (TEM) projection 
data.  The first stage, feature tracking, is a laborious process of 
marking fiducial points (usually nanometer sized colloidal 
gold) throughout a tomographic tilt series and utilizing 
reprojection errors to fine tune the 
correspondences.  Automated and semi-automated methods to 
track features in TEM projection series do exist, but their 
performance, especially for large tilt series (>4K2 pixels in 
XY), is often suboptimal.  Thus, while there continue to be 
efforts to automate the process, due to the frequent user 
intervention required to achieve the necessary level of 
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refinement in the correspondences, this step is currently not 
suitable for Grid-based parallelization. 

The second stage is composed of three individual parts: 
(a) the calculation of the final alignment transformations using 
the correspondences established in the first stage, (b) the 
transformation of the projections, and (c) the backprojection 
setup.  Typically, parts (a) and (c) do not consume an 
inordinate amount of time; however, computing the 
transformed projections (part b) can be quite computationally 
intensive (relative to the number of transformations involved).  
The third (and final) stage is the actual backprojection, which 
produces the reconstructed 3D volume from the transformed 
projection series.  This is where the vast majority of time and 
processing power is spent.  Due to the amount of computation 
required (several weeks on a single workstation) and the 
embarrassingly parallel structure of the underlying process, 
the second and third stages are well suited for parallelization 
and Grid computing paradigms.   

A challenge faced by research organizations such as 
NCMIR (and generalizeable to other organizations) is whether 
to allocate limited human resources towards developing 
parallel, Grid-based codes or to spend those resources refining 
these advanced algorithms.  This quandary is amplified by a 
lack of mature technologies to reduce the threshold for 
applications developers to build parallel Grid enabled tools.  
NCMIR developers have created the Telescience ATOMIC [8] 
toolkit to simplify the process of integrating gross Grid 
capabilities with applications (job launching, security, etc), but 
little exists to help navigate the requirements associated with 
coordinating these capabilities within the context of a parallel 
application.  

 
III. TELESCIENCE ARCHITECTURE AND WORKFLOW 

HIERARCHY 
 

The Telescience architecture (shown in Figure 1) has a 
hierarchal design, reducing the complexity of each layer 
relative to its immediate neighbors, allowing developers of 
each layer to focus on the “business logic” and to have the 
“presentation logic” be managed by the layer above.  For 
example a portlet developer needs only be concerned with the 
core business logic of the portlet, the presentation of that 
portlet’s functionality is managed by the higher-level 
presentation services.  Likewise, the portlet developer utilizes 
the ATOMIC presentation API and need not be concerned 
with the business logic of the underlying services. 

Primary user interaction within the Telescience Project 
occurs via a web portal interface.   While the Telescience 
Project currently utilizes the GridSphere Framework, 
(http://www.gridsphere.org) [9] any JSR168 compliant portal 
framework [10], such as JetSpeed [11] or even a desktop 
application can be the primary user interface within the 
Telescience architecture. 

Even within an architecture aimed at reducing the 
complexity of software interactions, there is still a temptation 
to build all-encompassing applications that capture all the 
necessary functionality (across layers) in a single program.  
Workflow tools accelerate the rate of software creation while 
reducing this tendency by working across layers to link 
together disparate code fragments and/or applications (some 

pre-existing) into a single virtual environment, with little to no 
change to the original source code.   Within the context of the 
Telescience architecture and computing environment, we 
believe that workflow tools fall into the following hierarchical 
classes: 

 
• Process Management Workflows that frame the highest 

level scientific (laboratory) process and provide policy, 
process, state management, and administrative tools 
including the coordination and management of lower 
level workflows/pipelines that may comprise a scientific 
study (or instance within that study); 

• Inter-application Workflows that bridge together existing 
tools to streamline computational operations; and provide 
mechanisms to build and replicate computational 
processes 

• Intra-application Workflows that are composed of 
planners and execution engines that optimize the 
execution of these plans on heterogeneous physical 
resources. 

 

 
 

Figure 1: The Telescience architecture insulates users and developers from the 
complexities of the middleware infrastructure, linking client side resources to 

distributed physical resources.  The Telescience project focuses on the 
interaction of systems software between the portal and the core middleware 

services (2nd to 4th boxes from the top). 
 

The Telescience architecture facilitates the coordination 
and sharing of state information among these three workflow 
layers.   Each layer has unique abilities and requirements.  
Process and state management tools (typically portal-based) 
are necessary to preserve and delegate the contextual 
information with regard to the user.  This information includes 
process management, authentication and authorization, and 
high-level state information (represented as the workflow 
portlet in Figure 1).  Inter-application tools create process 
pipelines, which are subcomponents of the highest-level 
experimental process management workflow.  These tools are 
typically user driven GUI environments that are either ordered 
within the process management workflow or presented as a 
general tool to serve the process management workflow as 
needed.  The lowest level “intra-application” tools are 
composed of sub-components of the “inter-application” tools 
and are necessary to map heterogeneously parallel tools to a 
heterogeneous pool of physical resources.   

In this article we focus on the use of the intra-application 
class workflow tools to bring scientific algorithms to the Grid 
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faster than could otherwise be accomplished without these 
tools.  In particular, we focus on the use of the Pegasus 
planner to map scientific workflows to the Grid, and 
ultimately the use of Condor DAGMan [12] to execute the 
workflows. Pegasus [13][14][15][16], which stands for 
Planning for Execution in Grids, is a framework that maps 
complex scientific workflows onto distributed resources, such 
as the Grid. Pegasus maps an abstract workflow description to 
its executable form and Condor DAGMan executes the jobs 
specified in the executable workflow. Pegasus and DAGMan 
are able to map and execute workflows on a variety of 
platforms: Condor pools, clusters managed by LSF or PBS, 
TeraGrid hosts, and individual hosts.  

Pegasus operates on abstract workflow descriptions where 
the analysis is described in terms of application components 
and the data that the components use. The workflow is abstract 
because it does not identify the resources necessary for 
execution. Pegasus takes this abstract workflow description 
and produces an executable workflow which identifies the 
compute resources needed and includes data management 
nodes which stage the data in and out of the computations. 
Additional workflow nodes are added to register the newly 
derived data products so that they can be located at a later 
time. 

 

 
 

Figure 2:  NCMIR’s scientific computing environment places a common 
interface across a heterogeneous mix of resources 

 
The first step in the process was to develop a unified 

scientific computing environment for the Telescience Project.  
Like many distributed virtual organizations, Telescience has 
access to a series of heterogeneous internal resources and is a 
scientific gateway for a number of external virtual 
organizations such as the TeraGrid (http://www.teragrid.org) 
and the OptIPuter (http://www.optiputer.net).  With such a 
heterogeneous mix of resources, it was necessary to create an 
environment that had a common interface so that the workflow 
description would be easier to develop.  Figure 2 outlines the 
scientific computing environment at NCMIR that is utilized by 
the Telescience Project.  

A notable implementation choice of the Telescience 
scientific computing environment that differs from other 
distributed computing environments is that the Submit Node 
and the Central Manager do not share a file system with the 
worker nodes.  This is in part to ensure modularity across the 
architecture, treating both internal and external pools of 

resources in the same manner.  While this modularity provides 
a more consistent image for connecting to the worker 
resources, it has a number of implications for designing the 
system.  The most significant is the need for robust systems 
for data delivery and authentication, authorization, accounting, 
and auditing (AAAA) services.  Telescience is working with 
the TeraGrid project to refine the development AAAA 
services to effectively address the needs of application VOs 
like Telescience [17].  Implications of data transfers described 
in subsequent sections of this article. 
 

IV. SCIENTIFIC DRIVER: ELECTRON TOMOGRAPHY 
 

The software suite we have used in this experiment is the 
Transformed based Tracking, Bundle adjustment, and 
Reconstruction (TxBR) package [18] developed at 
NCMIR.   TxBR relies on bundle adjustment to estimate 
simultaneously the 3D positions of the tracked feature points 
and the transforms of these positions associated with each 
projection in the series.   Bundle adjustment is a useful 
technique for aligning TEM projection data because it 
accounts for the nonlinear distortions produced by the twisting 
of the electron trajectories in a TEM's magnetic lenses.  The 
backprojection algorithm implemented in TxBR is an 
extension of the standard orthogonal backprojection process 
adapted to the general case of curvilinear electron trajectories 
[19].  While the transformation step of the second stage is a 
time--consuming process in its own right, as an initial test of 
the system we have currently only parallelized TxBR's 
backprojection (3rd stage).  

There are three versions of TxBR's backprojection code: 
projective, quadratic, and cubic.  As the names suggest, each 
version in the ordered list capitalizes upon a higher degree of 
approximation in the alignment transformations, albeit with a 
concomitant increase in processing time. 

Quadratic and cubic backprojection both require 
significant amounts of processing time, with the serial runtime 
of a quadratic backprojection of a standard projection series 
measured in days, and that of a cubic backprojection of the 
same series measured in weeks.  These long runtimes are 
partially the result of the experimental status of the TxBR 
codebase.  With the exception of a C version of the quadratic 
backprojection program parallelized for clusters using MPI, all 
the programs and function libraries comprising TxBR are 
developed and implemented solely as MATLAB M-files.  
While the conversion of MATLAB M-files to C/C++ (or other 
compiled programming languages) may be undertaken and 
will ultimately yield more efficient run times (whether parallel 
Grid-enabled or not), the manpower effort required to 
undertake that conversion comes at the cost of refining the 
backprojection algorithm itself (as the application developer is 
is no longer refining the algorithm but rather spending time on 
programmatic language conversions). 

To address this issue, Telescience capitalizes on the 
planning and execution capabilities of Pegasus and Condor to 
remove the requirement of the developer to code the logic of 
the parallelism directly into the application.  That logic is 
ultimately captured within a Directed Acyclical Graph (DAG), 
allowing the developer to concentrate on the core process 
algorithm to be executed on the distributed resources.  Figure 
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3 shows excerpts of sample DAG, submit, and component 
files that were manually created for this experiment.  To 
further reduce the burden on applications developers, we have 
adopted the use of the Pegasus workflow planner.   

 
DAG 
[…] 
Job Job1 1.submit 
Job Job2 2.submit 
Job Job3 3.submit 
[…] 
Submit File 
Universe = vanilla 
Executable = matlab_tool_run.sh 
[…] 
Arguments = 
    run_quadratic_recon_subset mlp_ko3 1 1 
[…] 
Requirements = (FileSystemDomain =!= "")  

&& (Arch =!= "IA64")  
&& (Arch =!= "INTEL")  
&& (Memory >= ImageSize)  
&& ((OpSys == "LINUX")  
|| (OpSys == "SOLARIS29")  
|| (OpSys == "SOLARIS5.10") )  

should_transfer_files = IF_NEEDED 
transfer_executable = False 
when_to_transfer_output = ON_EXIT  
Queue 
matlab_tool_run.sh 
[…] 
basedir="M-Files" 
executable="matlab -nodesktop -nosplash -r" 
archID=`uname -m` 
args="'$2', '$3', '$4'" 
[…] 
case $archID in 
    x86_64) 
    LD_LIBRARY_PATH="[…]/lib/glnxa64/" 
    export LD_LIBRARY_PATH 
esac 
[…] 
cd $basedir 
hostname 
exec nice $executable "$1($args)" 

 
Figure 3:  Example of DAGs, Submit Files, and other components 
 
With this system, the developer supplies the necessary 

instructions to describe the logic underlying the parallelization 
using a single and simple abstract workflow in an XML 
format (DAX file).  Pegasus then automatically produces an 
executable workflow from this DAX, identifying all necessary 
end data and computational resources that are needed (and 
eventually coordinating the use of resource discovery and 
scheduling tools to generate tuned workflows on demand).  

As an initial trial we employed a embarrassingly parallel 
division of labor, assigning to each participating process the 
reconstruction of a contiguous subset of the entire 
reconstructed volume (along the Z axis).  Using Pegasus and 
Condor, we were able to launch the MATLAB M-files on a 
number of heterogeneous systems within our lab. Using this 
method we have already achieved an approximate 6x increase 
in throughput, from 12+ days to just under 2 days for a 
“standard volume” (approximately 17GB raw data resulting in 
a 45GB 3D volume). 

Currently this version is up and running for end-users 
from the Telescience Portal.  Similar to the previous 

computational applications, the user interface completely 
shields the user from the components shown in Figure 3.  
Rather, the user is presented with a simplified GUI where only 
biologically relevant contextual information is required.  The 
job is launched by a single button click and an email is sent to 
the user upon completion of the job. 

 
SUN4u/SOLARIS29 4 

SUN4u/SOLARIS5.10 10 
X86_64/LINUX 8 

Total 22  
 

Figure 4:  Resources Used During a Trial Run using Matlab M-Files (each 
machine averages 1GB RAM/ per processor across a 100MB-1GB network) 

 
We believe that we can further increase the throughput for 

three primary reasons.  First, our test currently only utilizes 22 
of the CPUs within the internal NCMIR resources (see Figure 
4); due to network performance issues and potential 
MATLAB licensing concerns, external resources such as 
TeraGrid were not included (see discussion for details).  
Second, this version is suboptimal as every process involved 
in the reconstruction must have access to the entire aligned 
projection series.  This limits the number of CPUs we can 
effectively utilize as the time it takes to transfers large data 
will largely negate gains in computation.  To avoid large 
transfer of data we plan to add to the Pegasus-managed 
workflow a pre-processing step that divides the aligned 
projection series horizontally along the Y axis and have each 
process reconstruct a horizontal strip of a subset of contiguous 
Z slices.  Also we have also begun to test the employment of 
predictive submissions, with Pegasus, where a heavier load is 
placed on more capable processors.  Third, as previously 
mentioned, conversion of the MATLAB code to C/C++ 
binaries will further increase the speed of the computation. 
 

V. DISCUSSION 
 

We have been pleasantly surprised at the efficiency of 
moving from MATLAB-based research and development 
codes to a parallel Grid-based solution.  Historically, these 
advanced mathematical algorithms have been developed using 
MATLAB in a serial fashion.  MATLAB is utilized for its 
obvious advantages in developing mathematical algorithms. 
Programs were written serially because the charge of the 
mathematician is not to develop parallel, Grid-based 
applications, but rather novel algorithms.  Unlike previous 
Grid-application undertakings, it took relatively little time to 
create a Grid-based version of TxBR when compared to the 
development of the actual algorithm.  Previous efforts have 
required almost equal time spent on the development of the 
algorithm and the Grid-enablement.  Moreover, in this case the 
parallel code was developed by a domain scientist with little 
knowledge of the Grid. 

It used to take several months to convert a MATLAB 
based set of programs to a parallel Grid-based application. By 
utilizing a modular (and resource transparent) framework, it 
can now accomplished (using real world data) in a matter of 
just a couple of weeks (or even days).  Streamlining the 
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development process in such a manner helps take some load 
off of our mathematics and development staff so that they can 
focus on perfecting the cutting edge math they're 
implementing.  By first encapsulating our MATLAB level 
codes into a Grid solution, we're able to significantly 
accelerate our “time-to-Grid”.  This “time-to-Grid” 
acceleration not only benefits our end-users, but also serves as 
a platform for the mathematicians to be able to debug and test 
their programs on real data without have to wait days/weeks 
for results from serial MATLAB programs. 

We are currently developing a workflow to move away 
from the un-optimized, naively parallel version now utilized.   
We are also constructing workflows for the 2nd stage of the 
reconstruction process.  We believe that with a new 
parallelized routine (in a compiled language), coupled with 
more CPUs, we can easily compute a standard volume in a 
few hours and smaller volume within minutes, with 
throughput increase in a manner that is roughly linear to the 
number of processors tasked.   

One of the driving forces for the Telescience Project is to 
develop a real-time feedback scenario for instrumentation.  In 
this scenario, the Grid is not only utilized to compute data 
faster but also to refine the collection of raw data.  Electron 
tomography (like other data collection processes) involves a 
great deal of time-consuming trial-and-error.  Due to the 
nature of the data collection process, researchers are never 
100% sure that the data collected from the instrument is 
actually from the desired region-of-interest (ROI) until after 
the processing and the visualization of the 3D model generated 
of that area. This leads to wasted time, and loss of overall 
sample quality as the electron beam degrades the specimen.  If 
we could calculate smaller volumes of the ROI (during live 
instrument use) and give the researcher a 3D volume 
representation of the ROI, we could greatly limit the overall 
collection time and ultimately increase the fidelity of the raw 
data. 

The developments described here clearly demonstrate that 
access to computational resources for applications is no longer 
a bottleneck in the establishment of a real-time Grid.  Network 
performance, however, still remains a critical hurdle.  TxBR 
generates approximately three to four times the amount of 
output data compared to input data.  This means, for example, 
that a relatively small amount of raw data (10GB) can 
generate a relatively significant amount of output data (40GB).  
Distributed across 128 processors, the computation time alone 
would be approximately 2 hours, not including any queue wait 
times (a second bottleneck which can be significant).  
Considering an average network performance of 
approximately 100Mb/s (with real world disk I/O and TCP 
network sharing overhead) to external NCMIR computational 
resources (such as TeraGrid), it will take nearly 1.5 hours to 
transfer the input data to the computational end point and 3 
hours to return the output to the data origin.  In this example, 
over 50% of the end-to-end process time is due solely to data 
transfers.  The problem, however, is that this data transfer 
overhead is conserved as the level of parallelism is increased.  
In other words, even if TeraGrid could compute the entire job 
instantaneously the data transfer overhead (approximately 4.5 
hrs in this example) would be preserved.  The time necessary 
to transfer this amount of data is unwieldy and partially or 

totally negates any gains in computational times attained by 
using TeraGrid resources. 

Another consideration that is worth mentioning, but 
perhaps outside the scope of this paper, is the issue of 
distributed software licensing.  Here we described the use of 
MATLAB, which is issued as part of a campus wide license at 
UCSD.  Had this not been the case, the logistics of rights to 
their licenses between VOs (i.e. TeraGrid) would have to be 
examined (or at least negotiated).  This issue remains a 
challenge facing the Grid community. 

    
VI. CONCLUSION 

 
Workflow tools were originally designed to bring together 

multiple existing applications instead of building a single 
monolithic application.  While that remains true, we have also 
found that classes of workflow tools are useful and capable of 
managing the intra-application transaction requirements of 
parallel applications.  Using that capability we have been able 
to develop MATLAB based parallel codes with relative ease.  
This is a significant development as the Grid becomes 
available to applications developers that are outside of the 
established Grid community. 
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