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Abstract. This paper presents a method for performance profiles de-
velopment of scientific workflow. It addresses issues related to: workflows
execution in a parameter sweep manner, collecting performance informa-
tion about each workflow task, and analysis of the collected data with
statistical learning methods. The main goal of this work is to increase
the understanding about the performance of studied workflows in a sys-
tematic and predictable way. The evaluation of the presented approach is
based on a real scientific workflow developed by the Spallation Neutron
Source - a DOE research facility at the Oak Ridge National Laboratory.
The workflow executes an ensemble of molecular dynamics and neutron
scattering intensity calculations to optimize a model parameter value.

1 Introduction

Scientific workflows are a popular way of conducting extreme-scale scientific
research, which may require composing thousands of computational jobs. Work-
flows have been widely used in different science domains, including astronomy
and gravitational wave, seismology, and others [21]. In a workflow, each job
may have different requirements for CPU, I/O, and memory. An accurate spec-
ification of these requirements (along with job’s runtime) is crucial to optimize
the performance and accuracy of resource provisioning and job scheduling algo-
rithms, reduce the overall runtime, decrease resource utilization, etc.

Due to the high complexity of scientific workflows, users often do not have
detailed knowledge about workflow jobs requirements. Typically, users overesti-
mate job requirements, since an underestimation may lead to job termination
(e.g., due to exceeding the maximum job runtime). Resource requirements spec-
ification can also affect job’s execution, e.g. setting too few resources may lead
to extreme execution time in case of large jobs. When considering running sev-
eral instances of the same workflow with different input parameter values, it is
fundamental that job requirements estimation have good accuracy. A common
method to address this issue is to derive predictions from the analysis of past
workflow executions. Therefore, we see the need for fine-grained monitoring tools
to automatically collect such information, and to build workflow profiles.



Most of the work in workflow profiling target the peak data of job require-
ments [7, 12]. Although this information allows the estimation of peak require-
ments (e.g., disk space, memory, etc.), it does not provide any insight into how
how resources are consumed by jobs over time within a workflow. This knowl-
edge not only improves the overall understanding of workflow executions, but
it increases the efficiency of job scheduling and resource utilization, in partic-
ular when planning large-scale workflows. Over the years, several application
monitoring systems have been developed, however their practical application to
produce performance profiles is often constrained by the inability to compare
measurements from multiple executions.

The contributions of this paper include: (1) a holistic process for the develop-
ment and analysis of workflow performance profiles; (2) description of different
phases of the proposed process along with existing software, which can facilitate
its practical application; (3) evaluation of the presented approach using a large
high performance computing (HPC) system available at the NERSC facility [13];
and (4) the profiling of a real workflow application.

2 Performance Profiles of Scientific Workflows

Scientific workflows are often executed multiple times with different input pa-
rameter values to study distinct conditions, e.g. climate modeling with different
mesh resolutions. Variations of the input parameters may lead to significant dif-
ferences in resource requirements for the jobs. Understanding the relationships
between the workflow’s input and job performance metrics is crucial to accu-
rately estimate these requirements. Also, it is important to understand how a
variation in an input parameter may affect job performance. Discovery of these
relationships is often referred to as sensitivity analysis [19], i.e. the assessment
of how output variables are affected based on variations in the input variables.
This type of analysis is mostly performed on the final values of responses, and
it does not include variability of performance during job runtime. We propose
an approach to conduct such analysis, which includes the temporal aspect of the
workflow performance behavior, i.e. performance is measured not only at job
completion, but also at different time instants during the job execution.

In this context, a performance profile for a given job and a metric can be de-
scribed as a time series with values of the metric measured in equidistant points
in time during the job execution. By collecting data from multiple executions of
the same workflow configuration, we can compute statistically significant per-
formance profiles for each job in a workflow.

2.1 End-to-end approach to performance profiles generation

The process of generating workflow performance profiles takes as input a work-
flow and a set of distinct input parameters. For each possible combination of
these parameters, a workflow execution is performed. The workflow performance
data gathered using monitoring tools is then used to build average profiles, and



Fig. 1. Overview of the process for generating workflow performance profiles.

to derive the sensitivity analysis. The ultimate goal of this process is to provide
quantitative information about relationships between the input parameters and
jobs’ performance over time. An overview of the proposed approached is shown
in Fig. 1. Below, we describe each of the process’ phases in detail:

Phase 1 (Data gathering). In this phase, a workflow execution is performed for
each set of different input parameters (referred to as workflow configurations).
To increase statistical significance, each configuration runs multiple times. Each
workflow execution produces a set of time series for various performance metrics
including CPU and memory usage, I/O load, among others. Note that for tightly-
coupled parallel programs, time series performance values are collected for each
individual process executed within the program.

Phase 2 (Averaging execution profiles). Time series of performance measure-
ments are then used to compute averaged execution profiles—a time series de-
scribing a performance metric for a given job. Averaged performance profiles
are computed based on multiple workflow executions of the same configuration
(same set of input parameter values). The outcomes of this phase are execution
profiles for each collected performance metric and for each job in a workflow.

Phase 3 (sensitivity analysis). The goal of this phase is to assess the impact on
jobs performance by varying input parameters values. In this paper, we address
this analysis with well-known statistical methods.

2.2 Generating performance profiles in practice with HPC

The presented approach may pose difficulty in practice, specially when manually
implementing it in HPC environments. We identify two detached aspects of our
approach, which can be done in an automatic way with existing software: (1) ex-
ecuting and monitoring workflow executions, and (2) conducting data collection.

We use the Pegasus [4] workflow management system to run scientific work-
flows on different computational infrastructures. It includes in-situ online mon-
itoring [8] that collects detailed information about jobs performance and the



compute resources, including: system and process CPU utilization and memory
usage, and process I/O. Each process in a job is monitored separately using
information from the proc virtual filesystem and with system calls intercep-
tion. This detailed monitoring information constitutes the basis of the workflow
performance profiles.

We use Scalarm [9,10] as a platform for parameter studies on heterogeneous
computational infrastructures, i.e. to execute the same application (a scientific
workflow in our case), with different input parameters. Scalarm supports different
steps of this process including: input parameter space specification, application
execution, and data collection. It is currently used within the EU FP7 PaaSage
project [14] that aims at creating a solution for modelling and optimized deploy-
ment of cloud-oriented applications.

By combining Pegasus and Scalarm, we enable the data gathering phase of
the process for generating and analyzing workflow performance profiles (Fig. 1).
Both tools are generic, and support a vast number of different high performance
and high throughput systems, which significantly increases the probability of
successful practical application of the proposed approach.

3 Experimental Evaluation

In this section, we present an application of our method for generating and
analyzing workflow performance profiles. We focus on phases 2 and 3 from the
process described in Fig. 1, i.e. calculating averaged performance profiles, and
conducting a sensitivity analysis of the workflow performance for different input
parameters. The data gathering process (phase 1) is not discussed in this paper,
since the data generation process is automatically performed by Scalarm and
Pegasus. Due to limited space and a large amount of data collected, we focus our
analysis to a subset of the data, which provides the most relevant information.

3.1 Scientific workflow application

To evaluate our approach, we use a material science-related workflow developed
at the Spallation Neutron Source (SNS) facility. The workflow executes an en-
semble of molecular dynamics and neutron scattering intensity calculations to
optimize a model parameter value, e.g. to investigate temperature and hydrogen
charge parameters for models of water molecules. The results are compared with
experimental data from experiments such as QENS [2].

The SNS workflow takes as input a set of temperature values and 4 additional
parameters: type of material, the number of required CPU cores, the number
of timesteps in simulation, and the frequency the output data is written. Fig. 2
shows a branch of the workflow to analyze one temperature value. First, each set
of parameters is fed into a series of parallel molecular dynamics simulations us-
ing NAMD [16]. The first simulation computes an equilibrium (namd ID0000002),
which is used by the second (namd ID0000003) to compute the production dy-
namics. The output from the MD simulations has the global translation and
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Fig. 2. A diagram of a branch of the SNS workflow.

rotation removed using AMBER’s [18] cpptraj utility (ptraj ID0000004), which
is passed into Sassena [11] to compute coherent (sassena ID0000005) and incoher-
ent (sassena ID0000006) neutron scattering intensities from the trajectories. The
final outputs of the workflow are transferred to the user’s desktop and loaded
into Mantid [1] for analysis and visualization.

3.2 Experiment configuration and execution environment

The data gathering was prepared to run 16 different configurations of the work-
flow created as combinations of the input parameter values. We define a two-level
analysis: low (L) representing small values, and high (H) representing large values
of each parameter. There are many sampling methods available in the literature
(especially in case of sensitivity analysis popular techniques include Morris and
Sobol’ samplings) however the use of the proposed 2k method is justified by:

– time-consuming calculations - running a production workflow hundreds of
time to calculate input sensitivity would be infeasible,

– interpretation simplicity during the analysis phase,
– exploratory approach where we first use a coarse-grain sampling to develop

initial understanding and then we move to a fine-grain sampling in a subspace
of the input parameter space to improve initial findings.

Table 1 summarizes the values used for the analyzes. Atoms represent the ma-
terial used for simulation. Cores represent the number of cores used by NAMD
and Sassena jobs, respectively. Each configuration was executed 3 to 5 times
to confirm performance homogeneity of task executions and to eliminate any
outliers created by using shared resources, e.g. storage systems. To assess the
performance impact of each parameter value on the workflow execution, we limit
our analysis to pairs of configurations, where only one parameter value is var-
ied. We focus on two specific configurations where the material used is varied:
atoms L cores L timesteps H outfreq L and atoms H cores L timesteps H outfreq L.
In this case, we can evaluate the impact of different material types on the work-
flow performance for small number of cores and output data frequency (L), and
large timesteps (H). Sequential jobs (e.g., ptraj ID0000004) have a very short
runtime (below 1 minute), thus we do not consider them in our analysis.

Fig. 3 shows an overview of the testbed used in the experiments. Workflows
ran on the Hopper Supercomputer at NERSC [13], a Cray XE6 system with a
peak performance of 1.28 Petaflops, while Scalarm and Pegasus were deployed



Table 1. Input parameter values for the SNS workflow in the experimental evaluation.

Factor level Atoms Cores Timesteps Data write freq.

L 3,692 144/72 50,000 = 0.005 ns 1,000 = 0.0001 ns
H 7,496 288/144 500,000 = 0.5 ns 5,000 = 0.0005 ns
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Fig. 3. Overview of the testbed used during the experimental evaluation.

on external hosts. A Pegasus workflow was launched for each configuration ob-
tained from the set of parameters. A message broker and a time series database
server were also deployed to collect online monitoring data during the work-
flow execution. Performance metrics were collected every 5 seconds, and include
CPU utilization (stime and utime), I/O (read and write bytes, iowait, syscr,
and syscw), memory (vmRSS and vmSize), and number of threads.

3.3 Experimental results and discussion

We focus our analysis on the four MPI jobs for performing molecular simulation
(NAMD and Sassena), since they represent most of the total CPU hours of
the workflow. Although several analyzes could be derived from this data, we
focus in: (1) determining whether a job is CPU- or I/O-bound; (2) studying job
behavior as a function of I/O- and CPU-related metrics; and (3) studying the
job performance behavior with averaged profiles.

Resource-boundedness. Determining whether an application is CPU- or I/O-
bound may aid the resolution of poor performance issues, in particular for large-
scale applications. Typically, applications are classified into one of these cate-
gories based on the ratio between the time spent in the user (utime) and kernel
(stime) spaces—handling I/O-related interruptions, etc. However, for long run-
ning jobs (several hours or days), an application may behave differently along
its execution. For instance, an application can be mostly CPU-bound with sev-
eral instants where I/O operations prevail. Therefore, computing platforms may
consider this dynamic behavior during scheduling or performance tuning.

We computed averaged workflow performance profiles for every MPI job.
We combined time series from runs of the same workflow input configuration for
each monitored performance metric, and then computed the average value of the
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Fig. 4. Averaged performance profiles of stime [s] (left) and utime [s] (right) for a
namd ID0000002 job.

metric at each monitoring interval (5 seconds). Averaged performance profiles
show how resources are consumed by a job over time.

Overall, jobs present similar profiles for stime and utime, with larger config-
urations (atoms H) having longer runtimes. Fig. 4 shows an example of averaged
profiles for namd ID0000002. Most of the execution time is spent on the user space.
I/O operations are mostly executed in the beginning of the execution, and then
few (nearly negligible) write operations are performed along the job execution.
In the utime analysis (Fig. 4-right), occasional spikes disrupt the linear behavior
once the heaviest I/O operations have completed. These spikes are due to the
short timespan of the monitoring interval. Note that peaks are often followed by
troughs of similar magnitude, or vice-versa.

Jobs behavior analysis. Understanding jobs behavior is fundamental to the de-
sign and optimization of computing systems (e.g., job scheduling, resource pro-
visioning, etc.). Therefore, we assess how different workflow input parameters
impact jobs performance. We analyze relative cumulative value (RCV) of a per-
formance metric as a function of normalized job runtime, which describes how
many resources where consumed from the beginning of execution till the speci-
fied time moment. Since runtime varies among executions (mostly influenced by
the machine’s performance or external load), the scaled runtime values allow the
analysis of (1) overall resource consumption over time, and of (2) infrastructure-
related anomalies between different executions of the same workflow configu-
ration. Anomalies can be inferred from abnormal behaviors of the RCV. The
analysis and handling of these behaviors is out of the scope of this work.

Fig. 5 shows RCVs for stime and utime from the NAMD jobs previously an-
alyzed. Notice: for each configuration, a RCV graph was plotted for each run.
There is a visible difference between both configurations for stime (Fig. 5-left).
The configuration with the lower number of atoms (atoms L) performs most of
the I/O operations within the first 15% of its runtime, while atoms H spreads I/O
operations over time. This difference is due to: (1) the lower percentage num-
ber of I/O operations performed by atoms H in the beginning of the execution;
or (2) a significant increase on the number of I/O operations by atoms H along
the execution. In the subsequent analysis, we investigate this difference in de-
tail. The utime behavior is similar and linearly correlated to the job runtime in
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Fig. 5. RCVs of stime (left) and utime (right) for a namd ID0000002 job.
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Fig. 6. Performance profile of write (left) and read (right) operations for

namd ID0000002.

both cases. This result indicates that computations in both configurations follow
nearly the same pattern, and have a consistent number of operations throughout
the job execution. This analysis confirms similarity between different runs of the
workflow.

Performance profiles. Although RCVs are useful for modeling job behaviors,
they cannot characterize and quantify the differences obtained using different
input parameters. The difference in stime between both configurations can be
explained by analyzing performance profiles for I/O-related metrics. Fig. 6 shows
the performance profile of write bytes and read bytes for namd ID0000002 jobs
with different number of atoms. The amount of data written per time inter-
val (Fig. 6-left) is nearly identical for both configurations, except that atoms H

takes longer. Note that for the larger configuration, the magnitude of peaks
and troughs on average is similar to atoms L. In contrast, a significant difference
on the amount of bytes read is observed in the first stage of the execution for
atoms H (Fig. 6-right). Furthermore, there is a significant amount of data that
is continuously read during the job execution, while almost no read operations
are performed for atoms L (notice the scale difference between Fig. 6-right and
Fig. 6-left). This result indicates that most of the time spent in the kernel space
(Fig. 5-left) is due to read operations.

Fig. 7 shows the I/O profile for sasenna ID0000005 jobs. Write operations
(Fig. 7-left) present a particular behavior of writing significant amounts of data
in a regular time interval. Moreover, atoms H writes about twice as much data
as atoms L. In contrast to the previous analysis for the NAMD jobs, here the
increase in the number of atoms seems to enable an iteration process (e.g., a
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Fig. 8. Cumulative normalized sensitivity of the NAMD jobs in the SNS workflow.

loop condition). Read operations (Fig. 7-right) present a similar behavior, but
scaled up to the configuration with the higher number of atoms.

Sensitivity analysis. The main effect of an input parameter on a response is
calculated with Eq. 1 as a difference between the average response for high and
low values of the input.

Ek = |Rk,H −Rk,L| (1)

where Rk,H denotes averaged simulation output (in our case resource con-
sumption) when input parameter k is set to high values H. This difference should
be interpreted as a change in the response due to a change in the input. We use
main effects to describe how input parameters influence workflow performance.
Fig. 8 shows the normalized sensitivity for workflow jobs calculated as:

Sk =
Ek∑
i

Ei
(2)

where k denotes an input parameter, Ek is the effect of the input parameter
on the model output measure at the end of job’s execution. It doesn’t have a
unit since it is a ratio between the effect of a single parameter to summarised
effect of all parameters. NAMD jobs (Fig. 8a and 8b) are mostly influenced by
the number of simulation steps and the type of material used in the simulation.

In order to provide enhanced sensitivity analysis of workflow performance
profiles, we compute sensitivity over time, i.e. the impact of each input parameter
on the application response during task runtime. It is still calculated with Eq.
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Fig. 9. Normalized sensitivity over time for namd ID0000002 (calculated with Eq. 2
for each monitoring period).

2 however this time we calculate sensitivity for each monitoring period. Due to
limited space, we only include results for the namd ID0000002 job (Fig. 9). For
utime (Fig. 9a), the number of cores has significant impact at the beginning of
the execution. However, the number of timesteps becomes more influential along
the execution. For runs above 500s, there is not much variation. This behavior is
due to the small number of jobs with longer runtime. In Fig. 9b, stime is mostly
influenced by the material type (atoms), however cores has important impact
at the beginning of the execution. Note that the output writing frequency has
no significant impact for time-related metrics. Not surprisingly, write bytes is
substantially influenced by outfreq (Fig. 9c) and the number of timesteps. The
material type (atoms) becomes irrelevant after the initial phase, and the number
of cores does not drive any influence. In contrast, read bytes (Fig. 9d) is heavily
influenced by atoms—as it is related to the amount of data read from input files.
The influence of timesteps and cores increases along the execution.

In summary, the main behaviors identified in this analysis include: 1) linear
correlations between the amount of computations and job runtime in the namd



jobs; 2) accumulation of I/O operations in the first stage of the execution in the
namd jobs; and 3) periodic data dumps in the sassena jobs.

4 Related Work

Workflow profiling analysis is often used to drive advancements on workflow
optimization studies, including job scheduling and resource provisioning. For in-
stance, in [5,17] workflow profiles are used to model and predict execution time
of workflow activities on distributed resources. In [3,6], heuristics and models are
developed from workflow profiles to estimate the number of resources required to
execute a workflow. We recently used profiling data from Pegasus workflows to
estimate job resource consumption on distributed platforms [20]. Although our
techniques yield satisfactory estimates, our studies were limited to the aggre-
gated performance information, i.e. no time series analysis was considered. Sev-
eral papers have profiled scientific workflow executions on real platforms [7,12],
however none of them have collected time series data from workflow executions
at the job level. Workload archives [15] are used for research on distributed
systems, e.g. to evaluate methods in simulation or in experimental conditions.
Although the data is collected at the infrastructure and application level, the
gathered data is also limited to aggregated performance information. To the best
of our knowledge, this is the first work that builds and analyzes workflow profiles
based on time series data collected from real workflow executions.

5 Conclusions and Future Work

In this paper, we described a generic approach for the development and analysis
of workflow performance profiles, which describes application resource consump-
tion over time. Such profiles provide much more information than the aggregated
information given at the end of the execution. The presented approach is com-
prehensive, i.e. it takes into account the processes of generating, preparing, and
analysis of data. It is independent of the analyzed workflow and can be used with
existing, large-scale HPC infrastructures. The proposed approach was validated
with a real-life workflow from material science running on a TOP500 machine.
The analysis conducted unveiled useful insights about the workflow regarding
the effect of input parameters on task performance.

As part of future we will integrate the proposed solution with Scalarm and
Pegasus to minimize workflow runtime by improving job scheduling onto dis-
tributed resources based on information extracted from performance profiles,
e.g. to identify which tasks can be executed in parallel on the same resource
without performance disruption. We will also use the PaaSage framework to de-
ploy and manage both tools and to run scientific workflows on cloud resources
in a cost-effective way.
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