
Science Automation in Practice:
Performance Data Farming in Workflows

Dariusz Król∗, Jacek Kitowski∗, Rafael Ferreira da Silva§, Gideon Juve§, Karan Vahi§, Mats Rynge§, Ewa Deelman§
∗ AGH University of Science and Technology, Department of Computer Science, Krakow, Poland
§ University of Southern California, Information Sciences Institute, Marina Del Rey, CA, USA

Email: {dkrol, kito}@agh.edu.pl, {rafsilva,gideon,vahi,rynge,deelman}@isi.edu

Abstract—This paper describes an approach to conduct large-
scale parameter studies, where each data point in the study
requires the execution of a whole scientific workflow. We show
how a parameter studies system can be integrated with a work-
flow management system to seamlessly execute a large number
of workflows, each with different input parameter values using
large-scale computing infrastructure. The work is motivated
by a need to collect performance-related data to conduct a
sensitivity analysis in the context of relation between workflow
input parameters and the performance of tasks in the workflow
developed for the Spallation Neutron Source facility at the Oak
Ridge National Laboratory.

I. INTRODUCTION

Parameter studies in the form of a collection of independent
tasks is the most common approach to study various phenom-
ena in computational science [1]. Each task receives a config-
uration of input parameter values (representing environmental
conditions for the phenomena), and returns a response, which
constitutes a single data point in the possible output landscape.
Despite their simplicity, parameter studies are generic enough
to be applied in many simulation-centric fields of science such
as fluid dynamics [2] and particle physics [3]. Researchers
often need to explore a large number of input parameter values
to comprehensively understand the output landscape of some
natural phenomena due to their intrinsic complexity.

On the other hand, scientific workflows are an essential
way to organize large-scale computations in the form of a
graph with vertices representing computational tasks and edges
representing data dependencies between the tasks. Examples
of large-scale scientific workflows include: the development
of a comprehensive understanding of earthquakes in Southern
California and elsewhere with Probabilistic Seismic Hazard
Analysis [4]; and detecting and measuring gravitational waves
predicted by Einstein’s theory of general relativity [5]. Other
examples cover data-intensive computing [6] or P systems [7].

The practical application of these two approaches in real-life
use cases is determined by the availability of software tools.
Typically, the parameter studies are incorporated directly into
workflows in the form of split constructions, resulting rather
in monolithic complex workflow applications. It may lead to
unnecessary tightly coupling of tasks in such a large study,
preventing them from being executed in a more distributed
way across multiple computing sites. To mitigate this problem,
we present a novel approach by decoupling the workflow

management from the parametric studies to improve large-
scale scientific computing in distributed environments. Both
functionalities are currently supported by independent devel-
oped systems, integrated for achieving the required function-
ality of parametric studies. More specifically, we use two in-
house developed systems: the Pegasus Workflow Management
System [8], as a state-of-the-art solution for workflows; and the
Scalarm platform [9] for parametric studies, as a data farming
service for the PL-Grid infrastructure [10]. Both systems are
widely used by the research community in several different
domains: Pegasus has a rich record of applications [11], and
Scalarm has been used in a number of applications includ-
ing the study of metallurgical processes [12], and as a use
case of cross-cloud applications within the EU FP7 PaaSage
project [13], [14] that aims at creating a deployment plat-
form for cloud-oriented applications. The proposed approach
enables the deployment of an environment for conducting
automated data-driven parameter studies across heterogeneous
computing sites, where each data point requires the execution
of an entire workflow. Although the presented approach can
only be applied to a subclass of workflows, which can be
decomposed into independent pipelines, this subclass still
represent the majority of the workflows used in practice.

II. PROBLEM STATEMENT

Let’s assume we have a scientific workflow, which takes
several input parameters, and a set of computational sites
capable of executing the workflow. Our goal is to run the
workflow multiple times for different sets of input parameters,
and to collect results from all executions. Then our problem
is to specify distinct configurations of input parameter values
that we want to explore; execute the workflow for each defined
configuration seamlessly and independently on the distributed
resources; and collect results from all executions into a sin-
gle (or centralized) location. Additionally, the scientific code
should not require any further development. All these steps
should be done with minimal programming effort and maximal
automation to enable scientists without in-depth knowledge
about distributed computing to conduct such studies.

III. PROPOSED SOLUTION

Typically, since the simulation run for each parameter value
is a simple pipeline containing several steps, the simplest
approach is to add all the pipelines for all the parameter values

1



to a single, large workflow. This could be easily accomplished
if all of the parameter values are known a priori. If the
values are generated dynamically based on the results of
previous simulations, then the workflow, which incorporates
management of input parameters, may become too complex.
In addition, even if the values are known a priori, for very
large parameter studies the resulting workflow might contain
millions of tasks, which would be difficult to manage the
execution of each study independently. Although there are a
few approaches to tackle this problem by using workflows
solely (e.g. workflow ensembles) [15], the complexity may
significantly impact the usability of the solution.

An alternative way to model the problem is to move the
parameter study outside the workflow. In this approach, the
workflow description is much simpler and is intended to eval-
uate only a single set of parameters. Different configurations
can be run and managed independently since there are no
dependencies between them. The specification of the input
parameter values and the management of workflow execu-
tions are delegated to a parameter study system. This clear
decoupling of the experiment definition from the workflow
description also fosters workflow reuse. The proposed solution
is based on the integration of two science automation tools:
Pegasus for handling workflow orchestration, and the Scalarm
platform for parameter studies organization.

Pegasus enables workflow applications to execute on dis-
tributed computing infrastructures by mapping abstract work-
flow descriptions onto distributed resources. It enables sci-
entists to construct high-level descriptions of their workflows
without worrying about the details of the underlying execution
environment. These workflows are represented as directed
acyclic graphs, where nodes represent jobs and edges represent
data dependencies. Pegasus locates the necessary input data
and computing resources required for workflow execution,
and generates an executable description of the workflow.
Scalarm is a tool supporting input parameter space specifi-
cation, execution, and collecting results in parameter studies.
Scalarm integrates with applications thorugh adapters that are
executed in different phases of a parameter study. Adapters are
executable scripts created by the application developer, and are
executed by Scalarm to exchange data with the application as
shown in Fig. 1.

Scalarm executes the user application for each point in the
input parameter space. For each execution, Scalarm creates
a file (input.json) using JSON format that contains input
parameter values representing a single point in the parameter
space. The input_writer adapter is responsible for con-
verting data from the file to the required application-specific
format. The executor adapter then starts the application
and waits for its completion. Application results are handled
by the output_reader adapter, which collects information
in a Scalarm-defined format. Additionally, Scalarm handles
intermediate results from the application using another adapter
called progress_monitor, which is executed periodically
to check the current status of the running application.

To integrate Pegasus and Scalarm, we implemented

Fig. 1: An integration pattern of a generic application and the
Scalarm platform.

Scalarm adapters using the following Pegasus commands:
(1) pegasus-plan—to plan and schedule a workflow
with prepared input files; (2) pegasus-status—to check
the current status of the workflow (e.g., information about
running and completed tasks, error occurrences, etc.); and
(3) pegasus-statistics—to collect information about
tasks statistics (e.g., execution and queue time, etc.).

IV. EXPERIMENTAL EVALUATION

The integrated system was evaluated by running a workflow
developed for the Spallation Neutron Source (SNS) facility
at Oak Ridge National Laboratory. The workflow executes
an ensemble of molecular dynamics and neutron scattering
intensity calculations to optimize a model parameter value,
which are then compared with data from experiments such as
QENS [16]. This is a typical parameter study case, where
a simulation takes a few input parameters and the goal is
twofold: to validate simulation model by comparing simulation
results with physical experiments results and to provide a
sensitivity analysis in the context of relation between input
parameters used in simulation and the execution performance
of each task in the workflow.

Definition of the input parameter space. The input parameters
of the SNS workflow include: type of atomistic structure of the
material, the number of CPU cores used for computation, the
number of timesteps in simulations, and the frequency at which
the output data is written. For demonstration purposes, we
used a factorial design, called 2k, to investigate two levels of
each factor, e.g. for an application with two input parameters
(A,B), Alow represents the lower level of A, and Ahigh

represents the higher level; and similarly Blow and Bhigh

represent two levels of factor B. The main effect of factor
A is calculated as a difference between the average response
for high and low values of A. The result should be interpreted
as a change in the response due to a change in the level of
the factor. In our case, this method led to 16 configurations of
input parameter values.



Fig. 2: Testing environment for experimental evaluation.

Orchestrating workflow execution. In the presented use case,
Scalarm determines which instance of the SNS workflow and
where it should be executed (i.e., the remote computing site),
while Pegasus determines where and in which order workflow
tasks should be executed to satisfy task dependencies. While
this organization is very flexible, we used the testbed shown in
Fig. 2. In the integrated system, the management of workflow
executions is transparent to the user—automatically managed
by Scalarm’s adapters. In the user’s perspective, each workflow
execution is seen as a study of the input parameter space.
Scalarm and Pegasus run on two separate desktop PCs, while
the workflow tasks are scheduled onto the NERSC Hopper
supercomputer, a Cray XE6 system with peak performance of
1.28 petaflops.

Gathering the execution results. The last part of the evaluation
is results gathering. This step is handled automatically by
Scalarm and the output_reader adapter created to trans-
mit workflow outputs to Scalarm. Monitoring data is collected
and stored for each task during the workflow execution. In the
presented use case, the collected results are used to compute
sensitivity analysis of workflow task performance and input
parameters as shown in Figs 3 and 4.

Each presented bar chart includes normalized values of main
effects for input parameters grouped by performance metrics
related to CPU (stime, utime) and IO usage (write bytes,
read bytes). Each bar is calculated as a ratio of the main effect
of a given input parameter to total main effects of all input
parameters on the given performance metric (hence no units).

In this way, the most influential input parameters can be easily
determined in the context of different performance metrics.
For example, the timestamp value of 0.65 for utime in Fig. 3
means that the timestamps parameter is responsible for 65%
of the total change in the utime performance metric.

CPU usage and the write bytes metric of a NAMD task
(which is a software package for parallel molecular dynamics
simulation) is influenced primarily by the number of timesteps
in the simulation, which is expected as the parameter deter-
mines the duration of the simulation and thereby influences the
number of intermediate data dumps. The read bytes metric is
influenced by the type of atomistic structure of the material
as it determines the amount of data that has to be read from
files as input of these tasks. Rather strong influence of the
number of cores on the stime metric is not obvious, it can
be explained by a very small value of stime in these tasks,
therefore its relevance is limited.

In the case of Sassena (which are calculating neutron and
xray scattering intensities), its performance utime, write bytes,
and read bytes metrics are mainly influenced by the number of
timesteps in the simulation. Explaining sensitivity of the IO-
related metrics as highly influenced by the number of timesteps
will be subject of our future work as it was not expected. The
actual value of stime is very small in these tasks as well,
therefore its relevance is limited as in NAMD tasks.

utime stime write_bytes read_bytes

atoms
cores
timesteps
outfreq

Sensitivity for task 
namd_ID0000002

N
or

m
al

ize
d 

se
ns

iti
vi

ty
 o

f i
np

ut
 p

ar
am

et
er

s 
[1

]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 3: Sensitivity for a NAMD task in the SNS workflow.

V. RELATED WORK

Currently, parameter studies are mainly supported by tools
aimed to perform computation on distributed computing re-
sources, e.g. workflow management systems, grid middleware,
and queuing systems. HTCondor [17] is a well-established
system for building high-throughput computing environments.
The system has been used by the research community as a
batch system for distributed computing resources for more
than three decades. In spite of its ability to efficiently handle
complex workloads in distributed environments, its support
to parameter studies, in terms of experiment definition and
handling, is rather manual—the user needs to manually specify
the input parameter values for each subsequent task. Also,
there is no support for any other parametrization types.



utime stime write_bytes read_bytes

atoms
cores
timesteps
outfreq

Sensitivity for task 
sassena_ID0000005

N
or

m
al

ize
d 

se
ns

iti
vi

ty
 o

f i
np

ut
 p

ar
am

et
er

s 
[1

]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 4: Sensitivity for a Sassena task in the SNS workflow.

MOTEUR [18], [19] is a workflow management system that
provides an asynchronous grid-aware enactor. The MOTEUR
enactor is architected as a two-level engine. At the upper
level, the core engine interprets the workflow representation,
evaluates the resulting data flows and produces computational
tasks ready for remote execution through a generic interface.
At the lower level, the tasks descriptions are converted into
jobs targeting a specific computing infrastructure. MOTEUR
provides data composition patterns to explore the input pa-
rameter space. Such patterns include one-to-one, all-to-all
(Cartesian product), or ternary operator (combination of the
two previous patterns). However, there is no support to design
of experiment techniques, nor structured outputs.

In general, from the above review it follows that no one
solution offers a dedicated support for workflows used for
parametric studies.

VI. CONCLUSIONS

In this paper, we described a novel approach for the organi-
zation of parameter studies using workflow-like applications,
with efficient separation of concerns, resulting in flexibility
in setting of computational experiments, hence worth for
computational problems. The approach is based on integration
of two widely used tools, one for parameter studies (Scalarm)
and the other a workflow management system (Pegasus). The
integration is based on a decoupled architecture, where inter-
actions between the systems are performed through adapters.
As a result, this approach maximizes the individual capability
of each system: Scalarm focuses on the specification and man-
agement of the input parameter space, data points handling,
and output data structuring; while Pegasus addresses workflow
orchestration and execution. A key advantage of this solution
is that workflows can be used as standalone applications, or as
part of parameter studies (workflow reuse). The feasibility of

the integration was evaluated using a performance sensitivity
analysis problem involving workflow input parameters. For
each data point of the input parameter space, we collected
performance monitoring data that was aggregated and struc-
tured by the system. Future work include the execution of
scientific workflows in cross-cloud environments with the
PaaSage platform.

ACKNOWLEDGMENT

This work has been supported by the EU FP7-ICT project
PaaSage (317715), Polish grant 3033/7PR/2014/2, and DOE
contract #DE-SC0012636, “Panorama—Predictive Modeling
and Diagnostic Monitoring of Extreme Science Workflows”.

REFERENCES

[1] A. Iosup and D. Epema, “Grid computing workloads,” Internet Com-
puting, IEEE, vol. 15, no. 2, pp. 19–26, March 2011.

[2] A. Almuttahar and F. Taghipour, “Computational fluid dynamics of high
density circulating fluidized bed riser: Study of modeling parameters,”
Powder Technology, vol. 185, no. 1, pp. 11–23, 2008.

[3] T. Åkesson, “The lhc computing grid project,” Tech. Rep., 2007.
[4] R. Graves et al., “Cybershake: A physics-based seismic hazard model

for southern california,” Pure and Applied Geophysics, vol. 168, no. 3-4,
pp. 367–381, 2011.

[5] E. Deelman, et al., “Griphyn and ligo, building a virtual data grid for
gravitational wave scientists,” in High Performance Distributed Com-
puting, 2002. HPDC-11 2002. Proceedings. 11th IEEE International
Symposium on, 2002, pp. 225–234.

[6] D. Monge and C. G. Garino, “Logos: Enabling local resource managers
for the efficient support of data-intensive workflows within grid sites,”
COMPUTING AND INFORMATICS, vol. 33, no. 1, pp. 109–130, 2014.

[7] A. Balasko, “On a workflow model based on generalized communicating
p systems,” Computer Science, vol. 17, no. 1, pp. 45–68, 2016.

[8] E. Deelman, et al., “Pegasus, a workflow management system for science
automation,” Future Generation Computer Systems, vol. 46, pp. 17–35,
2015.

[9] D. Król and J. Kitowski, “Self-scalable services in service oriented
software for cost-effective data farming,” Future Generation Computer
Systems , vol. 54, pp. 1 – 15, 2016.

[10] J. Kitowski, et al., “Distributed computing instrastructure as a tool for
e-science,” in Parallel Processing and Applied Mathematics. Springer,
2015, pp. 271–280.

[11] The Pegasus group, “Showcase of Pegasus WMS applications,”
https://pegasus.isi.edu/application-showcase, last viewed June 2016.

[12] D. Król, et al., “Model-based approach to study hot rolling mills with
data farming,” in Proc. of 30th European Conf. on Modelling and
Simulations, Regensburg, OTH Regensburg, 2016, pp. 495–501.

[13] “FP7 PaaSage project website,” http://www.paasage.eu/.
[14] D. Król, et al., “A cloud-based data farming platform for molecular

dynamics simulations,” in Utility and Cloud Computing (UCC), 2014
IEEE/ACM 7th International Conference on, Dec 2014, pp. 579–584.

[15] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Algorithms
for cost-and deadline-constrained provisioning for scientific workflow
ensembles in iaas clouds,” Future Generation Computer Systems, vol. 48,
pp. 1–18, 2015.

[16] A. al-Wahish, et al., “A new apparatus design for high temperature
(up to 950c) quasi-elastic neutron scattering in a controlled gaseous
environment,” Review of Scientific Instruments, vol. 86, no. 9, p. 095102,
2015.

[17] D. Thain et al., “Distributed computing in practice: The condor experi-
ence: Research articles,” Concurr. Comput.: Pract. Exper., vol. 17, no.
2-4, pp. 323–356, Feb. 2005.

[18] T. Glatard et al., “Flexible and efficient workflow deployment of data-
intensive applications on grids with moteur,” International Journal of
High Performance Computing Applications, vol. 22, no. 3, pp. 347–360,
2008.

[19] R. Ferreira da Silva et al., “Multi-infrastructure workflow execution for
medical simulation in the virtual imaging platform,” in HealthGrid 2011,
2011, pp. 1–10.


