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Abstract—Large-scale scientific workflows rely heavily on high-
performance file transfers. These transfers require strict quality
parameters such as guaranteed bandwidth, no packet loss or
data duplication. To have successful file transfers, methods such
as predetermined thresholds and statistical analysis need to be
done to determine abnormal patterns. Network administrators
routinely monitor and analyze network data for diagnosing and
alleviating these, making decisions based on their experience.
However, as networks grow and become complex, monitoring
large data files and quickly processing them, makes it improbable
to identify errors and rectify these.

Abnormal file transfers have been classified by simply setting
alert thresholds, via tools such as PerfSonar and TCP statistics
(Tstat). This paper investigates the feasibility of unsupervised
feature extraction methods for identifying network anomaly pat-
terns with three unsupervised classification methods - Principal
Component Analysis (PCA), Autoencoder and Isolation Forest.
We collect file transfer statistics from two experiment sets -
synthetic iPerf generated traffic and 1000 Genome workflow
runs, with synthetically introduced anomalies. Our results show
that while PCA and a simple Autoencoder finds it difficult to
detect clusters, the tree-variant isolation forest is able to identify
anomalous packets by breaking down TCP traces into tree classes
early.

Index Terms—TCP anomalies, file transfer, unsupervised fea-
ture extraction, PCA, autoencoders, isolation forest

I. INTRODUCTION

Today’s high-performance networked systems are highly
complex, consisting of many heterogeneous hardware devices
and software working together. These systems are essential to
people’s daily lives, from mobile connectivity to inter-cloud
communications, from checking emails to running complex
scientific workflows on distributed cloud infrastructures. Re-
liable and high throughput connectivity, security and 99.9%
availability are just some of the guarantees that are warranted
from them. These networking infrastructures support diverse
user requirements and are constantly under pressure to provide
end-to-end connectivity that is reliable, with high performance,
minimum packet loss, and sometimes providing dedicated
links for certain data-intensive applications.

Performance and reliability of high-speed networks are
affected by many factors, such as congestion, packet loss, end-
host I/O performance, end-host network tuning, and more. The
complexity of data movement also brings increased potential

for failures and performance problems that need to be detected
and mitigated.

Majority of data transfers rely on the TCP protocol to guar-
antee packet delivery with minimum loss. Network researchers
have studied TCP performance by performing anomaly detec-
tion and exploring reliable packet delivery using monitoring
tools such as PerfSonar [1], sFlow [2], TCP statistics [3] and
more [4]. In addition to employing simple statistical analysis,
multivariate machine learning techniques have been used to
find outliers in traffic statistics, hardware/software failures in
security software, and improving utilization [5].

Usually, identification of abnormal transfers is done through
classification or clustering methods. Examples include using
Naive Bayes Theorem, Support Vector Machines, Random
Forests or rule-based approaches to detect traffic anoma-
lies [6], [7]. But using these methods requires large amounts
of data about packet numbers, flow direction, IP addresses,
QoS values, latency or file traces to characterize normal traffic
behavior. These methods also require prior and domain knowl-
edge to help classify what is “normal”. However, networks
are extremely dynamic and what is normal for one, may not
be true for others. Distributed, heterogeneous and complex
nature of end-to-end networked systems makes it difficult to
collect labeled data about anomalies and failures. Additionally,
dynamic characteristics of the platform-induced anomalies
often manifest themselves in unknown manners. Hence, lack of
labeled data sets makes it impossible to appropriately train and
validate any machine learning models for detecting transfer
anomalies. Some researchers have used formula-based meth-
ods to understand packet behaviors or history-based methods
[7]. However, again these methods would work only under
certain conditions, and fail when network systems change or
data set becomes too big to process expeditiously.

In this work, we analyze anomalous network transfers by
utilizing data collected using Tstat [3], which is a tool to
collect TCP traces for transfers. Figure 1 shows how TCP
works. The server sends a packet to a client with a packet
load (in bytes), when the client receives this, it sends an
“acknowledgment” (ACK) back. The total time for receiving
the ACK is recorded as round trip time (RTT). The TCP
protocol also uses time windows to allow servers to wait for



Figure 1: Round Trip Time (RTT) measured in the three way
communication in TCP.

the ACK, before deciding to resend the packet again. The
longer the wait, the window size grows over time, allowing
the protocol to adjust its waiting time. This not only affects
the total RTT recorded but also builds up retransmissions and
overflowing flows in both TCP directions.

The TCP protocol is designed to ensure all packets are
delivered reliably. It does this by tracking various packet
information, for example window timeouts, packet numbers,
RTT and more, to calculate if loss has occurred. If yes, it
triggers the host to resend the packets again. Collectively, Tstat
traces contain about 150 variables per packet on both server
and client sides.

Anomalous network transfers have been classified into three
major groups - packet loss, packet duplication and retransmis-
sions [8], [9]. The retransmissions could be triggered by lack
of client acknowledgments or some other error in the link.
The TCP window size measures the waiting time before TCP
sends the packet again. For instance, this may cause more
retransmissions and eventually congestion on the link, causing
packet loss eventually. Current approaches classify anomalous
behaviors using thresholds and prior known formulas, but due
to TCP complexity, it is difficult to understand root causes and
relevant features/variables.

This paper departs from using prior knowledge, and uses
unsupervised feature extraction to learn normal and abnormal
features. Based on three techniques - Principle Component
Analysis (PCA), Autoencoders and Isolation Forest - we build
and train classifiers to help identify anomalous transfers. The
goal of this study is to understand what can be used to classify
TCP abnormal behavior and the feasibility of unsupervised
classification techniques for doing this.

Approach and Contributions: We approach the problem
of anomaly detection by performing unsupervised feature
extraction on TCP traces collected from simple transfers
between two nodes (iPerf [10] transfer) and from transfers
in a real scientific workflow (1000 Genome workflow [11]),
to find unique characteristics from normal transfers and from
transfers with synthetically introduced anomalies (e.g. packet
loss, packet duplication and synthetic reordering).

To inform the machine learning models with some labeled
data sets, the experiments are set up to generate data in a
real network environment. File transfers using the iPerf tool
and a workflow manager are set up on the ExoGENI net-

worked cloud testbed [12], where the traces in these controlled
conditions, are used to inform common features in a reliable
transfer. The purpose of doing two kinds of transfers is (1) to
compare the results of workflow transfer versus iPerf transfer
experiments, and (2) to learn common features of normal
transfers given whatever the infrastructure setup is.

By leveraging innovations in machine learning and existing
research on TCP protocols, we make the following contribu-
tions in this paper:

• We develop and test multiple unsupervised feature extrac-
tion methods, including Principle Component Analysis,
Isolation Forest and Autoencoders, to study TCP traces
and deduce anomalous features.

• We perform experiments on a real testbed (ExoGENI)
with iPerf transfers and real workflow network transfers.
Each experiment was run for one hour with synthetic
anomalies like packet loss, duplication, and reordering.
We extract key features from TCP statistics to understand
packet behavior to improve transfer performance.

• We test anomaly detection methods using a set of synthet-
ically generated network traffic using the iPerf tool and
a real scientific workflow called the 1000 Genome work-
flow, which produces a reference for human variation,
having reconstructed the genomes of 2,504 individuals
across 26 different populations [11].

• We perform in-depth analysis of issues and data depen-
dencies of the algorithms, laying the foundation for fur-
ther research on feature extraction and TCP performance.

Motivation for this work: This work is unique to TCP
anomaly detection and relevant for understanding transfer
performance. With increasing network complexity and transfer
sizes, it is imperative to find classification techniques that
can detect bad transfers as soon as they happen. Exploring
multiple techniques, we can determine what issues are faced
while building these classifiers and whether such tools can be
built to work in tandem with monitoring tools.

The rest of this paper is organized as follows: Section
2 discusses the problem formulation, as well as TCP, data
preparation and machine learning techniques. Section 3 pro-
vides evaluations in two scenarios - iPerf transfer experiments
and 1000 Genome workflow experiments. This section also
discusses how the training data set is collected and features
extracted. Section 4 provides a discussion of the feature ex-
traction methods. Section 5 presents related work, and finally,
Section 6 concludes the paper.

II. PROBLEM FORMULATION

Networks have a significant impact on scientific workflow
performance. Gaikwad et al. [13] show how science work-
flows can suffer on multiple levels of hardware infrastructure,
software, middleware, application and workflows reacting to
anomalous events during execution. To monitor these behav-
iors, researchers deploy measurement tools (e.g. perfSONAR,
Tstat, netflow, sflow, to name a few), monitoring various
properties like usage traffic, router health, link performance,
and more. Each of these tools focuses on different aspects:



No. Experiment type (runs for 1 hour) Tstat Sample
1 Normal Traffic 152
2 No flow 120
3 1% Loss 120
4 5% Loss 120
5 1% Packet Duplication 60
6 5% Packet Duplication 60
7 25% - 50% Packet reordering 50
8 50% - 50% Packet reordering 60

Table I: Scenario 1: iPerf Transfer Experiments

No. Experiment type Tstat Sample
1 Normal workflow runs 1475
2 1% Loss 1563
3 2% Loss 1636
4 3% Loss 1948
5 1% Packet Duplication 1574
6 5% Packet Duplication 1527
7 25% - 50% Packet reordering 1491
8 50% - 50% Packet reordering 1592

Table II: Scenario 2: 1000 Genome Workflow Experiments

PerfSONAR actively probes packet loss, delay, jitter and
utilization, whereas netflow records packet data with IP ad-
dresses, bytes sent and the hops taken. In this paper, we
primarily focus on TCP statistics to determine features for
file transfers.

The Tstat tool records TCP statistics such as client/server
IP address, packets sent/received, end-to-end RTT, packets
observed in a TCP window, payload and more [3]. Mellia
et al. [8] discuss TCP packet anomalies collected at the
source. Other works such as [14], [15] capture web behavior
by mining Tstat to understand passive and active network
attacks. However, they use statistical thresholds and some prior
knowledge to help determine if an anomaly is present.

A. What makes a good data set for feature extraction?

Machine learning techniques need correct and large data sets
for training purposes. A better training set can greatly improve
the accuracy of the machine learning model. In this paper, we
use two sets of network experiments: (1) controlled experiment
with two nodes generating synthetic iPerf traffic, and (2)
real scientific workflow experiment using the 1000 Genome
workflow software [11]. Traces are recorded for successful
transfers and anomalous transfers with packet loss, duplication
and reordering packets. These labeled traces are then fed to
unsupervised feature extraction methods to extract features.

Table I and II document the traces collected per experiment
run. Both experiments, have different network topology se-
tups and different transfers, as seen in the initial throughput
recorded (Figure 2).

B. Data preparation

1) Processing skewed iPerf transfers: iPerf sometimes ran-
domly sends very large packets in one flow. This creates
various throughput discrepancies and affects the overall sample
reliability. To prevent this, large transfers were removed using
k-means clustering. These clusters help group the very large

transfers as shown in (Figure 3), ensuring the generation of
correct data samples.

2) Tstat logs: Tstat collects logs where each record corre-
sponds to a single TCP flow. It collects data in both directions:
(1) Client-to-Server (C2S) and (2) Server-to-Client (S2C),
while each Tstat record contains approximately 150 variables.
Among these variables there are details on the source and
destination IP addresses, ports, number of bytes transferred,
completion times, congestion window sizes and more. Each
TCP connection is established by the first SYN segment and
ends either when a FIN segment is observed or the default
timeout of 10s is reached. Tstat discards all connections for
which the three-way handshake is not properly seen in the
log tcp nocomplete log file, while it logs the rest of them
in the log tcp complete file. A comprehensive list of Tstat
variables can be found in [16].

C. Unsupervised feature extraction algorithms

A feature is a property of a data sample. Average, mean,
median and standard deviation can also be features. In TCP
transfer, each recorded detail can be a feature which can be
recognized for successful transfers, or “normal”, or packet
loss, as “bad” features. Unsupervised feature extraction can
be used to identify these features from a trace log data.

1) Principal Component Analysis: Principal Component
Analysis (PCA) [17] is an unsupervised feature extraction
algorithm that can be used to reduce dimensions and extract
vectors summarizing data properties and correlation among
variables. PCA depends on linear combinations and constructs
new features (e.g. eigenvectors) that summarize variation
among data variables. These eigenvectors can help find the
most influential variables (out of 150) and also reduce the data
dimension for faster processing. In this paper, we use PCA to
extract eigenvectors as features of the packet transfer. The kth

principal component of a data vector x(i) can be given a score
tk(i) = x(i)⊗ w(k) in a transformed coordinates space. The
corresponding vector in this space is x(i)⊗ w(k), where w(k)
is the kth eigenvector of XTX .

The transfers are labeled per scenario and fed into the PCA
algorithm. To visualize these eigenvectors, we can plot these
to identify if two clear clusters are formed.

2) Autoencoders: Autoencoders [18] belong to the class
of deep learning algorithms and are used for data or image
compression and decompression. Autoencoders take training
data input, compress it to reduce the dimensions into a
compressed representation. These are then decoded from the
compressed version to find the original data set, by calculating
a loss between the result and the original input. Therefore, the
algorithm removes noise (or randomness) in the input data and
learns key features only. Autoencoders are often used in image
recognition and text analysis, where they can successfully
compress features into learned sets.

Autoencoders take a high-dimensional space (e.g. 150x100
(150 variables and 100 transfers)) and reduce it to vectors of
size 15000. We train the autoencoder to minimize the loss
rate between the original input and output data. The reduced



(a) iPerf Transfer Experiments.

(b) 1000 Genome Workflow.

Figure 2: Throughput (in one direction) across iPerf Transfer and 1000 Genome Workflow Experiments.

Figure 3: K-means to identify bad iPerf transfers.

dimensions can then be visualized on a 2D space to visualize
clusters formed. Autoencoders consist of two parts: (1) the
encoder φ and (2) the decoder ψ of the input data set X ,
represented by:

φ : X → F (1)

ψ : F → X (2)

φ, ψ = argmin||X − (ψ ∩ φ)X||2 (3)

In our case, the transfers are labeled based on their experi-
ment number and fed to Autoencoder to reduce the dimensions
and extract features.

3) Isolation Forest: Isolation Forest [19] is a relatively
new, unsupervised classification algorithm that is commonly
used for outlier detection in high-dimensional data sets. This
algorithm is based on the fact that anomalies are data points
that are usually fewer in number and have different distribution
patterns from the normal data. The algorithm constructs a
separation by first creating isolation trees, or random decision
trees, and then calculates the score as the path lengths to
isolate observations. It isolates these observations by ran-
domly selecting a feature and then randomly selecting a
split value between the maximum and minimum values of
the selected feature. Usually, random partitioning produces
noticeably shorter paths for anomalies. Hence, when a forest
of random trees collectively produces shorter path lengths for
particular samples, they are highly likely to be anomalies.

With X as input data, L as a number of trees and N as
training samples, the Isolation Forest algorithm is shown in
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Figure 4: Experiment set up for iPerf transfers and 1000
Genome workflow.

Algorithm 1 Random forest
Initialize Forest = ( )
Set i tree height h = ceiling(log2N)
for i=1 to L do
X = sample(X,N)
Forest = iT ree(X, 0, h)

end for
return Forest

Algorithm 1. In our scenario, we train the Isolation Forest
algorithm using the data collected from normal workflow
transfers. The other experiments are then fed into the algorithm
as test data, to check if the Isolation Forest can predict whether
the corresponding network flow is normal or anomalous.

III. EXPERIMENTAL EVALUATION

In this section, we discuss the evaluation of our anomaly
detection classifiers.

A. Experiment setup

In the iPerf transfer experiment (Figure 4a), we set up two
nodes on ExoGENI testbed, each node has 4 cores and 12
GB RAM. The two nodes are connected via a dedicated 500
Mbps network link. We use iPerf to generate TCP traffic and
use Linux TC [20] to introduce synthetic network anomalies,
like packet loss, duplication and reordering.

For the second experiment, we set up an HTCondor cluster
with 4 worker nodes on ExoGENI, (shown in Figure 4b).
The bandwidth is set to 500 Mbps for all links and we use
the 1000 Genome workflow composed of five different tasks:

(a) iPerf transfer experiments.

(b) 1000 Genome Workflow.

Figure 5: Feature extraction using PCA.

(1) individuals - task fetches and parses the data from the
1000 genomes project per chromosome; (2) populations - The
task fetches and parses five super populations (African, Mixed
American, East Asian, European, and South Asian), and a set
of all individuals; (3) sifting - task computes the SIFT scores
of all of the SNPs (single nucleotide polymorphisms) variants,
as computed by the Variant Effect Predictor; (4) pair overlap
mutations - task measures the overlap in mutations (SNPs)
among pairs of individuals; and (5) frequency overlap muta-
tions - task calculates the frequency of overlapping mutations
across subsamples of certain individuals.

B. Extracting TCP Features

Here, we present the results of testing the TCP traces with
the different techniques.

1) PCA - Dimension Reduction for Identifying Variance
Features: PCA is a commonly used dimension reduction
method allowing large sets of variables to be reduced to
smaller sets containing most information. The new dimensions
are sectioned into principal components, where the first com-
ponent accounts for the major variability in the data, with
remaining components containing the rest of the variability. It
also allows to select a subset of variables, which have high
correlation in the data set.



Figure 6: Optimal PCA clusters in 1000 Genome workflow
based on variance.

Mainly the two principal components can be used to create
a linear combination of variables based on the maximum
variance among them. The second linear combination explains
the maximum proportion of the remaining variance. PCA
produces eigenvectors which plot the variance and weight
correlations explaining the weighted component directions. By
applying PCA on our two datasets of approx. 150 variables,
we are able to extract useful information about them.

Figure 5 shows the 2D PCA plots of both iPerf transfers
and 1000 Genome workflow. Reducing the feature dimensions,
Figure 5a shows that all normal transfers lie along a diagonal
of the two components, while all transfers with anomalies have
a higher variance in the second principal component. However,
this behavior is not observed in the 1000 Genome workflow.
Here all good and bad transfers, all lie along the diagonal
of the two principal components (Figure 5b). Therefore the
variance in the data is less distinct in the 1000 Genome
workflow transfers.

Further, PCA clusters can be analyzed to study how many
clusters contain the most variance. Figure 6 shows that in the
1000 Genome workflow, about 60% of the variance is captured
in the first two components, justifying the 2D plots. However,
unique variance features are still not detected.

PCA is also able to extract the most relevant variables out of
the 150 variables we collected to describe the transfer. These
influential variables are reduced into 26 variables that include
Round Trip time (RTT), Return time Observed (RTO), con-
gestion window details (including size, scaling and segment
sizes), which are known as the most important variables in
other TCP research [8].

2) Autoencoders - Compressing and Decompressing to Find
Features: Autoencoders use artificial neural networks to learn
unique data features by first compressing the data into lower
dimensions and then reconstructing the compressed data into
the original data that are as close to the original set as possible.
Using backpropagation, most autoencoder architectures extract
features of the input distribution as a good representation
of the data and remove any noise by computing the loss
between the reconstructed output and original input. Trained
on linear combinations, autoencoders behave very similar to
PCA, where the weights of the hidden layers represent the

Figure 7: Autoencoder architecture constructed to extract TCP
features.

variance among the principal components [18]. However, these
weights are not the same as principal components. In our
experiments, we encoded the TCP traces into a three-layer
fully connected dense neural network, using one layer to
encode the traces, one hidden layer and one output layer to
decode them. Figure 7 shows the layer architecture of the
autoencoder used. This autoencoder had only three layers–
layer 1 for encoder using RELU activation to process the input
data, two neuron layer for learning representations and, finally
third layer for the decoder that uses the SIGMOID activation
function.

During the training phase, the autoencoders learn a 2-
dimension feature vector, extracted as learned features. These
are presented in Figure 8.

Comparing to PCA results, the autoencoders also reduce the
TCP dimension. however, no clear clusters are formed for good
and bad file transfers. While autoencoder have given successful
results in images, for text data they are more complicated to
work with and require additional layers and training.

3) Isolation Forest - Detecting anomalies through tree clas-
sification and scoring: Isolation forest works by building a
tree and classifying data into known nodes on a normal data
set. Test data are then parsed using the same data assigning
scores of how close the data point lies on the tree. This score
can be used to identify data points which lie far from the
tree classes (or anomalies) or not. Figures (9, 10, 11) and
(12, 13, 14) show the results of isolation forest on the two
experiments. In Figure 9a, the no-flow experiment shows that
there is some TCP noise in the system, which are random
monitoring tool transfers recorded in the link1. As packet loss
is increased, most transfers are not detected as bad, which is
also the case with packet duplication. In packet reordering, the
anomaly score is quite high and catches most of the transfers
as bad, giving an error rate of 0.05% (Figure 15a).

In the 1000 Genome workflow (Figure 12, 13, 14), the error
rate is slightly better, as it is able to predict more bad transfers.
However, it is still unable to extract key features between the
experiments with loss and duplication.

1PerfSonar tool generates TCP transfers for its monitoring purposes.



(a) iPerf Transfer Experiment. (b) 1000 Genome workflow.

Figure 8: Feature extraction using Autoencoder.

(a) No Flow. (b) Packet loss 1%. (c) Packet Loss 5%.

Figure 9: Isolation Forest identifying good and bad transfers in iPerf transfer experiments with packet loss.

(a) Packet Duplication 1%. (b) Packet Duplication 5%.

Figure 10: Isolation Forest identifying good and bad transfers in iPerf transfer experiments with packet duplication.



(a) Packet reordering 25%-50%. (b) Packet reordering 50%-50%.

Figure 11: Isolation Forest identifying good and bad transfers in iPerf transfer experiments with packet reordering.

(a) Packet Loss 1%. (b) Packet loss 2%. (c) Packet Loss 3%.

Figure 12: Isolation Forest identifying good and bad transfers in 1000 Genome Workflow in packet loss.

(a) Packet Duplication 1%. (b) Packet Duplication 5%.

Figure 13: Isolation Forest identifying good and bad transfers in 1000 Genome Workflow in packet duplication.



(a) Packet reordering 25%-50%. (b) Packet reordering 50%-50%.

Figure 14: Isolation Forest identifying good and bad transfers in 1000 Genome Workflow in packet reordering.
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(a) iPerf transfer experiment.
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(b) 1000 Genome Workflow.

Figure 15: Isolation Forest Prediction Error Rate.

IV. DISCUSSIONS

In this section, we discuss the lessons learned from building
unsupervised feature extraction classifiers.

A. Transfer learning does not work in networks

Transfer learning can be used to generate training data
from smaller sets of experiments to use machine learning
models to learn from the representative sets (or simulation-
based scenarios) about the real-world problems, where data
is often difficult to collect. For example, using simulators to
learn real-world driving conditions help improve the models
about certain road conditions, for which data does not exist at
present [18].

Most machine learning approaches assume that the training
and the test data belong to the same distribution. However, in
situations where labeled data is generated via transfer learning,
it is often that machine learning models trained on controlled
experiments cannot recognize reasonable conclusions and fea-
tures in real-world examples. This implies that test data is a
different data distribution than the training data. In traditional
transfer learning, the labeled and unlabeled data, both come
from the same class to aid with classification [21]. However,
in situations where this is not possible, [22] talks about using
a learner which can calculate the difference between training
and test data, to improve the overall predictions.

This behavior was also witnessed in both network transfer
experiments. Any features learned in the iPerf transfers were
not detected in the 1000 Genome workflow experiments,
which means transfer learning cannot be used here to learn
unique features with different network topologies.

B. PCA, as a feature extraction, is not enough
Dimension reduction is a useful technique to extract higher-

level features of a data set. PCA is a useful technique which
caters to this by using variance matrix, covariance matrix,
eigenvector and eigenvalues. However, for our application, we
see that PCA is highly dependent on the numerical data. Thus,
these cannot be general vector spaces, that can be applied in
all situations.

The feature extraction method allows us to reduce the
dimension space of 150 TCP variables to 26 key variables,
including Round trip time (RTT), Return time observed (RTO),
segment size and TCP window details. Additionally, both sce-
narios have different network topologies. The iPerf transfers
had two nodes versus the 1000 genome workflow experiment
used ExoGENI sites in Jacksonville, FL and Chicago, IL. This
makes the RTT in the workflow to be much higher than the
iPerf experiment. Because PCA is dependent on variables, this
completely threw off the results and was not able to classify
good or bad transfers.

C. Autoencoders cannot capture behavior data through com-
pressed features

Similar to PCA, autoencoders capture the learned weights
of the hidden layers to determine the best reconstruction



ratio from input to output. Results show that although these
do not capture variance, the learned representations are not
sufficient to identify unique clusters of good and bad transfer
characteristics.

D. Isolation features show that high-level relationships exist

Our experiments are able to capture packet reordering cases
which shows that decision trees are able to build some high-
level relationships among the data set. The anomaly score to
reordered packets is very high and extracting this feature can
help researchers to look for particular relationships. Further
work in this area is needed to extract these features separately.

V. RELATED WORK

Computing workflows leverage a collection of many ele-
ments including compute, storage and networks. In a recent
paper, [23] presented a framework that used machine learning
to predict workflow performance and forecast workflow be-
havior. Presenting results on independent workflows like on
the XSEDE SDSC Comet cluster, the paper highlights the
dependency of multiple components when trying to predict
overall performance. Although most workflow performance
improvement techniques have looked at distributed computing
to improve performance of computing jobs, networks are
becoming overloaded and are prone to breakdowns affecting
overall performance. Additionally, [13] presented an anomaly
detection method based on autoregression and time-series
prediction to understand how workflow anomalies can be
detected on networked cloud infrastructures. This highlights
the different experimental setups and the anomalies that can
affect a healthy workflow based on network topologies.

Jiang et al. [24] used network topology and destination
data for detecting anomalous behaviors. This method was
able to identify ill behaving devices and users. Similarly,
[25] proposed using entropy methods to extract multiple
traffic features about flows. While entropy was successful in
detecting low-volume anomalies, this method was unable to
detect anomalies in high-volume data. In these approaches,
the feature extraction method was dependent on the current
traffic’s nature, which can vary dynamically in a large-scale
distributed network system. Therefore, these features were
not sufficient to identify common anomalies in abnormal file
transfers.

Further, [5] also performed a classification of anomalies
based on application identification. Using feature selection
techniques for finding optimal flow attributes, the algorithm
was able to predict accurate anomalous behavior up to 86%.

Traffic anomalies can also be a result of malicious user
or faulty device behavior and can lead to network disruption.
Often they can show a degradation of networks, as investigated
by [26] detecting slow file transfers as symptoms of failures.
The authors detect slow transfers, based on a performance
model and on the observed distribution of file transfer rates.
The authors find that both methods found different results
in different workflow transfers, based on the nature of the
transfer.

Just analyzing file transfer, researchers [27] have been inves-
tigating anomalies in GridFTP transfers, by creating controlled
experiments and injecting faults such as disk injection, latency
perturbations and loss, to measure effects on performance.
Although this study is focused on GridFTP and statistical
methods, it discusses the nature of how anomalies can affect
healthy transfers. But et al. [28] showed that just monitoring
RTT is not enough for studying network issues. Applying
the Jacobson’s algorithm, the authors showed the effect of
minimizing packet transfer times on TCP stream jitters, which
showed additional factors affecting network behaviors. Luca
et al. [29] proposed a heuristic classification approach to
identify possible anomalies by quantifying the sensitivity of
certain parameters on flow measurements. Although based on
established literature data, this technique showed that RTT
had a high dependence on current traffic load that affected
prediction accuracy.

Feature extraction can also be used to investigate user
behavior with traffic models [30]. Zhang et al. [31] described
anomaly detection as a significant step for network intrusion
detection systems (NIDS) to work, but highlighted that these
systems are based on known or supervised data sets. The
authors recognize that a more robust unsupervised feature
extraction method is needed, with features learned from real
network data sets, to make the NIDS systems more reliable.

In this paper, we focus on using simple unsupervised feature
extraction, based on domain knowledge, to extract certain
characteristics from known transfer datasets. Using feature
extraction and dimension reduction we build relationships
among sensitive parameters such as congestion and availability
with a transfer file type. These feature filters can be leveraged
for any future machine learning methods. With the goal for
understanding packet loss, congestion and impact on end-
to-end performance. Our results show positive results with
isolation forest in identifying packet reordering features, where
PCA and autoencoders have failed. Further investigation of
these experiments and future work are discussed in the next
section.

VI. CONCLUSION

Feature extraction is a powerful technique to identify behav-
ior characteristics, which can be used to identify anomalous
transfers as they happen. In this paper, we used a variety
of unsupervised feature extraction, where algorithms were
fed only training data sets, to learn and extract what they
thought was a feature to predict an anomaly. Using PCA
we were able to find clear clusters of normal and abnormal
transfer, but this was not seen for the 1000 genome workflow
experiment. Alternatively, autoencoders completely failed in
extracting clusters on normal or abnormal transfers in both
experiments. Isolation Forest, being trained on the normal
transfers, was able to give better results, but sometimes did
not work (Figure 15).

The results have given a number of unique conclusions.
Firstly, the nature of the two scenarios was completely differ-
ent. The iPerf transfer experiment was run on two VMs that



existed on the same rack, whereas the 1000 Genome workflow
involved geographically distributed nodes, Jacksonville and
Chicago respectively. The added RTT in the second scenario
affected the performance of the PCA. Second, isolation forest
is worth exploring further with more extensive experiments
across multiple workflows. Third, we were able to identify out
of 150 variable only 26 are the most influencing TCP statistics
that could give good results of their behaviors - belonging to
RTT, RTO, segment size and window details.

In the future, we plan to extend these experiments to build a
real-time classifier that can predict anomalous transfers as they
happen. We will be extending the isolation forest result with
more loss, duplication and reordering experiments, to find key
relationships to reduce error rates as experiments have more
anomalies in them.
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