
To appear in the Journal of Concurrency And Computation: Practice And Experience, 2007

Provenance Trails in the Wings/Pegasus System

Jihie Kim, Ewa Deelman, Yolanda Gil, Gaurang Mehta, Varun Ratnakar
Information Sciences Institute,

University of Southern California,
4676 Admiralty Way,

Marina del Rey, CA 90292, U.S.A.
{jihie,deelman,gil,gmehta,varunr}@isi.edu

Abstract

Our research focuses on creating and executing large-scale scientific workflows that
often involve thousands of computations over distributed, shared resources. We describe
an approach to workflow creation and refinement that uses semantic representations to 1)
describe complex scientific applications in a data-independent manner, 2) automatically
generate workflows of computations for given data sets, and 3) map the workflows to
available computing resources for efficient execution. Our approach is implemented in
the Wings/Pegasus workflow system and has been demonstrated in a variety of scientific
application domains. This paper illustrates the application-level provenance information
generated Wings during workflow creation and the refinement provenance by the Pegasus
mapping system for execution over grid computing environments. We show how this
information is used in answering the queries of the First Provenance Challenge.

keywords: Semantic metadata, large scientific workflows, workflow validation, workflow mapping,

workflow provenance, refinement provenance

Introduction

Our research focuses on supporting scientific applications that involve large amounts of
computations operating on large volumes of data. As the number and size of computational
jobs and data sources increase, the creation and the management of such workflows becomes
impractical and even impossible without automatic generation, validation, and resource
selection facilities. Our approach combines artificial intelligence and distributed computing
techniques to create valid specifications of workflows of computations that can be efficiently
executed in distributed shared resources. We use semantic representations to reason about
application-level constraints and create valid execution-independent specifications of the
workflows. These workflow specifications are then mapped to the execution environment taking
into account efficiency and dynamic availability of resources. Our approach is implemented in
the Wings/Pegasus framework [7, 5, 2]. Wings uses semantic representations to reason about

1

application-level constraints, generating not only a valid workflow but also detailed application-
level metadata and provenance information for new workflow data products. Pegasus maps and
restructures the workflow to make its execution efficient, creating provenance information that
relates the final executed workflow to the original workflow specification.

This paper describes our approach to generating provenance information in the
Wings/Pegasus framework. Our provenance capabilities produce 1) application-level

provenance through the semantic representations used in Wings, and 2) execution provenance

through the Pegasus workflow mapping process. We illustrate the provenance information
generated by Wings during workflow instantiation and the refinement provenance by the
Pegasus mapping system for execution over grid computing environments. We show how
this information is used in answering the queries of the First Provenance Challenge [9] and
suggest additional provenance queries supported by the Wings/Pegasus framework. We use
the example workflow from the First Provenance Challenge (an fMRI workflow) in presenting
our approach. All the representations of the workflow and provenance data are available in the
Wings/Pegasus provenance site [14].

Wings/Pegasus: Creating and Executing Large Workflows

To support the creation and validation of very large workflows, we have developed an approach
that considers three stages for workflow creation, where each stage corresponds to a different
level of abstraction, and where new type of information is being added to the workflow. Figure
1 illustrates the process of workflow creation. The same diagrams in a larger size are available
in [5]. Wings supports the first two layers, while Pegasus supports the third.

The first layer of workflow creation defines workflow templates that are data- and
execution-independent specifications of computations. Workflow templates express repetitive
computational structures in a compact manner and identify the types of components to be
invoked and the data flow among them. A workflow template is an abstract specification of a
workflow, with a set of nodes and links where each node is a placeholder for a component or
component collections (for iterative execution of a program over a file collection), and each link
represents how the input and output parameters are connected. It includes the type of data
that the workflow is designed to process, but the specific data to be used are not described
in the template. A workflow template can be shared and reused among users performing the
same type of analysis.

The second layer of workflow creation uses workflow templates as a starting point to create
workflow instances that are execution-independent. Workflow instances specify the input data
needed for an analysis in addition to the application components to be used and the data
flow among them. A workflow instance can be created by selecting a workflow template that
describes the desired type of analysis and binding its data descriptions to specific data to be
used.

The third and final layer of workflow creation maps workflow instances onto executable
workflows. Executable workflows are created by taking workflow instances and assigning actual
resources that exist in the execution environment and reassigning them dynamically as the
execution unfolds. Executable workflows fully specify the resources available in the execution

2

Figure 1: Layers for workflow creation: (a) Layer 1 - workflow template (generic recipe), (b)
Layer 2 - workflow instance (data specific), and (c) Layer 3 - executable workflow (actual run,
files are not shown). Ovals are tasks and rectangles show data in the workflows.

environment (e.g., physical replicas, sites and hosts) that should be used for execution. This
stage is performed by Pegasus.

Wings implements the first two layers of workflow creation, from workflow templates to
workflow instances. Pegasus transforms a workflow instance into an executable workflow
through a mapping that assigns workflow tasks to available grid resources for execution.

Generating Application-Level Provenance during Work-
flow Creation

This section describes our approach for representing and reasoning about workflow constraints.
We show how Wings represents constraints on file collections and their elements, constraints
on inputs and outputs of each component, and global constraints among multiple components.
These constraints are used during workflow creation to generate application-level provenance.

3

Figure 2: Semantic metadata constraints in Wings/Pegasus.

4

Wings uses the Web Ontology Language (OWL) from W3C [10] for representing this
provenance information.

The first type of metadata constraints is on individual files and nested collections. Each file
class can have one or more metadata properties associated with it. Metadata of a file describe
what the file contains, how it was generated, etc. For example, an AnatomyImage file has
hasIndexID that represents what it contains. These are represented in OWL and stored in the
file library (FL). The creation of a Brain Atlas needs several anatomy image files, and several
Brain Atlases can be created for each patient over different time periods. That is, the anatomy
image files for a patient are naturally structured as a collection of files. In our ontology, the
concept collection represents both simple file collections and nested collections. Each collection
should specify the type for the collection element using the hasType property. There can be
constraints between a collection and its elements. For example, for an image collection for a
time period, the PeriodID for an individual image file should be the same as the PeriodID of
the collection, as shown in Figure 2 part(a).

The second type of metadata constraints is on components and their inputs and outputs.
In the component library (CL), each workflow component is described in terms of its input
and output data types. In Figure 2 part(b), the Align Warp component has two inputs: an
AnatomyImage file and an AnatomyHeader file. Each AnatomyHeader file has an IndexID
that should be the same as the IndexID of the AnatomyImage file. Given these inputs,
the Align Warp component produces a WarpParam file. The metadata for the generated
WarpParam file depends on the metadata of the inputs. In the above example, the IndexID
and the PatientID of the AnatomyImage are propagated to corresponding metadata properties
of the output WarpParam file when Wings generates the workflow instance.

The third type of constraints is on different components and files in templates. These
constraints are global to the workflow. First of all, the components should use image data
for the same patient. In Figure 2 part(c), the PatientID of the XYZInput file used in the
Convert step should be the same as the PatientID of the collection Collection AnatomyImage of
AlignWarp. (We use a isSameAs property in representing equalities of metadata.) In addition,
the components should use the same number of images throughout the workflow.

The Wings algorithm for reasoning about these constraints while creating workflow instances
is described in detail in [7]. The system starts with a template in the workflow library (WL)
and the metadata of the initial input data. Wings identifies dependencies among the data
based on metadata constraints, and propagates and creates metadata using the component
constraints and the workflow template constraints. The created workflow instances are stored
in WL.

Generating Execution Provenance during Workflow
Refinement and Execution

The workflow instance from Wings is sent to Pegasus for mapping onto the available
execution resources. This mapping process consists of various refinement operations. First,
the workflow instance can be partitioned into several smaller sub-workflows. Pegasus can run
further refinement operations on each individual sub workflow. Figure 3 shows an example

5

Figure 3: Workflow refinement: executable partitions are mapped onto resources.

of the Pegasus refinement process. The original workflow (workflow1) is partitioned into
two subworkflows (workflow2 and workflow3). Since in this example, there is a dependency
between the two sub-workflows, workflow2 is refined first. A reduction is performed where
unnecessary tasks in the given workflow are pruned out. This is applicable when datasets to
be generated by these tasks have already been previously computed and it is more efficient
to access them than to recompute them. Next, the site selection is performed where tasks in
the workflow are mapped to available resources. The next two refinement steps augment the
workflow with data management steps, first by adding data stage-in and stage-out jobs that
transfer the data to and from where the computations are to take place, and then by adding
data registration jobs that register data in various catalogs so that it can be subsequently
found. Jobs scheduled for execution on the same resource can be clustered together to improve
the overall workflow performance. Thus, the final refinement step performs this optimization.
The original sub-workflow workflow2 results in workflow8 which can be submitted to the
Condor DAGMan execution engine[3]. Upon the successful execution of this part of the original
workflow, the following subworkflow workflow3 is refined in a similar series of steps.

If we look at the series of refinements conducted on the workflow, this is simply a
series of transformations where the inputs and outputs are the workflows undergoing the
refinement. For example, we apply the site selection transformation on workflow4 and obtain
a worfklow5. The workflows, just as the data in the application workflow may have provenance
associated with them, including information about which transformation generated them,
on which system, with what performance and input data. We are currently working on a
model that would uniformly treat the refinement provenance records and the application
execution provenance records. One simple representation for these records could be the
following structure: <object id> [[data I/O][function performed][performance info][optional
annotations]]. The data I/O would define the inputs and outputs to a transformation.
The function performed refers to the transformation. The optional annotations include a
justification of the reasons for the tasks performed. Currently these refinement processes
records are not captured in our provenance system but we are planning to implement an
instrumentation facility in the near future.

Currently, the details of the job executions are recorded in the Virtual Data System(VDS)[13]
provenance tracking catalog (PTC). Each job in the planned workflow is followed by a postscript

6

that stores information in the PTC. Information such as the job executable name and
arguments, start time for execution and duration of each job, machine information on which
the job ran etc are stored in PTC. For a failed job, the error message and the exit status are
stored in PTC.

Answering Provenance Challenge Queries

The queries of the First Provenance Challenge are expressed as queries to the workflow
library, component library, file library, and execution provenance catalog. The Wings/Pegasus
capabilities can address all such queries. Table 1 shows how each query is mapped to queries
to the Wings/Pegasus libraries and catalogs. Answers to a few of the queries (marked with
asterisk) were not delivered, but the table shows how the query would be answered by
information that is already captured in the current system. All the answers are available at
the ISI provenance site [14]. Since Wings uses OWL for representing metadata, components,
and workflows, the W3C Candidate Recommendation SPARQL [12] for RDF/OWL queries is
used to express application-level provenance queries. Pegasus stores information on resource
mappings and execution provenance in a database format and SQL is used to express execution
provenance queries. An important observation is that provenance questions do not have to be
pre-defined and can be answered on the fly by deriving the answer from the information that
is recorded by Wings/Pegasus. This is the case with queries such as Q1, Q3, Q5, Q6, and Q8,
which involved figuring out which component created the given file, which input files were used
for the component, which component generated the input files, etc. Instead of recording this
provenance information directly as metadata, Wings derives this information by navigating the
structure of the associated workflow. The next section illustrates this by showing additional
types provenance queries that Wings/Pegasus could answer based on the information currently
recorded. Another important observation is that most of the queries of the First Provenance
Challenge can be answered using information that is available in Wings/Pegasus before the
execution of the workflow begins. For example Q2 only needs the template or an abstract
description of the steps involved: ”Find the process that led to Atlas X Graphic, excluding
everything prior to the averaging of images with softmean.” Such queries can be mapped to
a sequence of SPARQL queries that extract relevant information from the template or one of
the workflow instances. The following shows a SPARQL query that retrieves any collections
that contain an Atlas X Graphic file:

SELECT DISTINCT ?url ?coll

FROM <http://www.isi.edu/ikcap/Wingse/domains/fMRI/fileLibrary.owl>

WHERE { flib:run1_atlas_x.gif flns:hasCreationMetadata ?url .

OPTIONAL { ?coll flns:hasItems ?list .

?list apf:list flib:run1_atlas_x.gif .

FILTER jfn:print(jfn:listIndex(?list, flib:run1_atlas_x.gif)) }}

Most queries in the First Provenance Challenge concerned application-level provenance.
Queries regarding provenance of input or output datasets can be answered by navigating the
relevant workflow instance. For example the following query constrains the retrieval workflow
instances based on a metadata property of output files (global maximum value): ”Find all

7

Table 1: Answering Provenance Queries.(Provenance Information Used: FL - file library, CL -
component library, WL - workflow library, PTC - Provenance Tracking Catalog)

Query Provenance provenance queries involved
Q1 FL WL Find workflow instances that contain relevant files and traverse the workflow

instances for extracting relevant portion.
Q2 FL WL Find workflow instances that contain relevant files and traverse the workflow

instances for extracting relevant portion.
Q3* FL WL Find workflow instances that contain relevant files and traverse the workflow

instances for computing stage levels and extracting relevant portion.
Q4 PTC Join of the invocation and job tables.
Q5 FL WL Find relevant files in the file library and traverse the associated workflow

instances for extracting relevant portion.
Q6 FL CL WL Find workflow instances that contain relevant files and find relevant

component instances, and traverse the workflow instances for extracting
relevant portion.

Q7* WL Run graph comparison algorithm over the templates (expensive) and
compare the bindings in the workflow instances.

Q8 FL CL WL Find workflow instances that contain relevant files and find relevant
component instances, and traverse the workflow instances for extracting
relevant portion.

Q9* FL CL WL Retrieve the annotations and find workflow instances that contain relevant
files and find relevant component instances, and traverse the workflow
instances for extracting relevant portion.

Atlas Graphic images outputted from workflows where at least one of the input Anatomy
Headers had an entry global maximum=4095.”

SELECT DISTINCT ?url

FROM <http://www.isi.edu/ikcap/Wingse/domains/fMRI/fileLibrary.owl>

WHERE { ?arg flns:hasValue "4095" .

?file domflns:hasGlobalMaximum ?arg .

?file flns:hasCreationMetadata ?url }

Execution provenance queries are answered accessing the execution provenance catalog. An
example of such a query is: ”Find all invocations of procedure align warp using a twelfth order
nonlinear 1365 parameter model (see model menu describing possible values of parameter ”-m
12” of align warp) that ran on a Monday.” The following SQL query provides that information:

SELECT i.creator, i.creationtime, i.start, i.duration, i.tr_name, i.resource, i.host, j.args,

j.exitcode FROM ptc_invocation i, ptc_job j WHERE i.tr_name="align_warp" and

i.wf_label="fmri" and i.id=j.id and j.args like "%m 12%" and DAYNAME(i.start)=’Monday’;

Additional Provenance Queries Answered by Wings/Pegasus

The First Provenance Challenge did not exercise some of the unique capabilities of
Wings/Pegasus: 1) extensive semantic metadata created and propagated during the workflow

8

creation process to describe workflow tasks and data products before execution, 2) detailed
records of optimization transformations to prepare the workflow for execution that can explain
why the workflow actually executed was different from the workflow originally submitted for
execution. These are some provenance query types enabled by Wings/Pegasus:

1. Queries on mutually constrained datasets in a workflow : The system can query relations
among the files used or produced by different components in a workflow. The following
provides an example: ”What are the collections that should have the same number of
elements as the anatomy header file collection?”

SELECT ?coll_same_N_elements

FROM <http://www.isi.edu/ikcap/Wingse/domains/fMRI/templates/Template.owl>

WHERE { fmrit:AnatomyHeaderCollection_1 flns:hasN_items ?n_imgs .

?coll_same_N_elements flns:hasN_items ?n_imgs}

2. Queries to justify provenance information in datasets: The system can query the value
of a metadata property that is dependent on other existing properties. The following
provides an example: ”When the index value of an anatomy image is 2, what is the index
value of the resulting warp parameter file?”

SELECT ?warp_param_file_idx

FROM <http://www.isi.edu/ikcap/Wingse/domains/fMRI/templates/run11_ExpandedInstance.owl>

FROM <http://www.isi.edu/ikcap/Wingse/domains/fMRI/fileLibrary.owl>

WHERE {

?link rdf:type wflns:InputLink . ?link wflns:hasFile ?afilec .

?link wflns:hasDestinationNode ?node . ?afilec rdf:type domflns:AnatomyImageCollection .

?afilec flns:hasItems ?list . ?list apf:list ?file_item .

?file_item domflns:hasIndexVal ?v . ?v flns:hasValue "2" .

?olink wflns:hasOriginNode ?node . ?olink wflns:hasFile ?wfilec .

?wfilec rdf:type domflns:WarpParamsCollection . ?wfilec flns:hasItems ?wlist .

?wlist apf:list ?wfile_item .

FILTER (jfn:listIndex(?list, ?file_item) = jfn:listIndex(?wlist, ?wfile_item)) .

?wfile_item domflns:hasIndexVal ?wv . ?wv flns:hasValue ?warp_param_file_idx}

3. Queries regarding execution and optimization transformations : Job execution details are
stored in the executable provenance catalog. The following provides simple example
queries: ”What is the total time taken for generating a given dataset?”

SELECT wf_label as workflow , sum(duration) as "duration(s)" FROM ptc_invocation

WHERE wf_label="fmri" group by wf_label;

Another example query regarding execution provenance is: ”What is the total time taken
to run each type of executable?”.

SELECT tr_name as executable, count(id) as count, sum(duration) as duration(s)

FROM ptc_invocation WHERE wf_label="fmri" group by tr_name;

The overall execution times may be much shorter than expected, and provenance queries
may be posed to find out the optimizations that led to such performance improvements.
For example, follow up queries could be answered regarding why a given component was
not executed, by walking through the transformations applied to the original workflow
submitted for execution and pointing out the reductions applied.

9

Many more provenance queries can be composed on the fly and answered from the libraries
and catalogs of provenance trails kept by the Wings/Pegasus workflow system. The integration
of application-level and execution-level provenance information into a single query is possible
since the system uses unique identifiers for the workflow templates, instances, and executables
involved obtaining a given result.

Related Work

Various data provenance and metadata approaches have been developed, including the
approaches that contributed to the Provenance Challenge [9, 11]. The metadata reasoning
capabilities of most existing systems focus on files and simple collections but as the size
and the complexity of the workflows increase, representation and management of nested
collections are becoming more important[7, 1]. Existing work on analyzing dependencies among
metadata is limited to validation of input data of individual components [15] or causal relations
between events and data [8]. However, often there are global constraints on inputs and outputs
of multiple components. Semantic web techniques including OWL and RDF are used in
other systems for representing semantic provenance [6, 16]. They use OWL/RDF reasoners
to infer connections among files and processes in workflows in answering the Provenance
Challenge queries. However, most of the existing metadata approaches focus on analyses of
provenance information created during execution. The Pegasus/Wings framework has two
distinct features over these approaches: detailed semantic metadata available before execution,
and rich optimization trails that led to the workflow actually executed.

Summary and Conclusion

We have described our approach to the First Provenance Challenge queries, and proposed
additional provenance queries that are supported by the Wings/Pegasus workflow system.
In particular, we presented several novel provenance capabilities that result from the creation
and propagation of semantic information about workflow components and data products before
execution occurs, and the recording of optimization transformations performed on submitted
workflows to improve execution performance.

Acknowledgement

This work is supported by the National Science Foundation, EAR-0122464,SCI-0455361.

References

[1] Bowers, S., McPhillips, T., Ludaescher, B. A Provenance Model for Collection-Oriented
Scientific Workflows. In Concurrency and Computation: Practice and Experience, 2007.

10

[2] Deelman, E., Singh, G., Su, M., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K.,
Berriman, B., Good, J. Laiety, A., Jacob J., Katz, D., Pegasus: a Framework for Mapping
Complex Scientific Workflows onto Distributed Systems. In Distributed Systems Scientific

Programming Journal, Vol. 13(3), 2005.

[3] Frey, J., Tannenbaum, T., Livny, M., Foster, I., Tuecke., S., Condor-G: A Computation
Management Agent for Multi-Institutional Grids., In Cluster Computing, Vol. 5, pp. 237-
246, 2002.

[4] Jena – Semantic Web Framework for Java. http://jena.sourceforge.net, 2007.

[5] Gil, Y., Ratnakar, V., Deelman, E., Mehta, G., Kim, J., Wings for Pegasus: A Semantic
Approach to Creating Very Large Scientific Workflows. In The Eighteenth Conference on

Innovative Applications of Artificial Intelligence, Vancouver, BC, July 2007.

[6] Golbeck, J., Hendler, J., A Semantic Web Approach to Tracking Provenance in Scientific
Workflows. In Concurrency and Computation: Practice and Experience, 2007.

[7] Kim, J., Gil, Y., Ratnakar, V. Semantic Metadata Generation for Large Scientific
Workflows. In Proceedings of the International Semantic Web Conference, Atlanta, GA,
November 2006.

[8] Miles, S., Groth, P., Munroe, S., Jiang, S., Assandri T., Moreau, L., Extracting Causal
Graphs from an Open Provenance Data Model, In Concurrency and Computation:

Practice and Experience, 2007.

[9] Moreau, L. et al., The First Provenance Challenge. In Concurrency and Computation:

Practice and Experience, 2007.

[10] OWL. http://www.w3.org/TR/owl-guide, 2007.

[11] Simmhan Y., Plale B., Gannon, D. A Survey of Data Provenance in e-Science In SIGMOD

Record, vol. 34, 2005.

[12] SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-sparql-query, 2007.

[13] VDS. http://vds.isi.edu, 2007.

[14] Wings/Pegasus for the First Provenance Challenge. http://vtcpc.isi.edu/provenance,
2007.

[15] Wong, S., Miles, S., Fang, W., Groth, P., Moreau, L. Validation of E-Science Experiments
using a Provenance-based Approach. In Proceedings of the 4th International Semantic

Web Conference, Galway, Ireland, November 2005.

[16] Zhao, J., Goble, C., Stevens, R., Turi D., Mining Taverna’s Semantic Web of Provenance.
In Concurrency and Computation: Practice and Experience, 2007.

11

