
An Evaluation of the Cost and Performance of Scientific
Workflows on Amazon EC2

Gideon Juve, Ewa Deelman

USC Information Sciences Institute

{gideon,deelman}@isi.edu

Bruce Berriman

NASA Exoplanet Science Institute, Infrared

Processing and Analysis Center, Caltech

gbb@ipac.caltech.edu

Benjamin P. Berman

USC Epigenome Center

bberman@usc.edu

Phil Maechling

Southern California Earthquake Center

maechlin@usc.edu

Abstract—Workflows are used to orchestrate data-

intensive applications in many different scientific

domains. Workflow applications typically

communicate data between processing steps using

intermediate files. When tasks are distributed, these

files are either transferred from one computational

node to another, or accessed through a shared

storage system. As a result, the efficient management

of data is a key factor in achieving good performance

for workflow applications in distributed

environments. In this paper we investigate some of

the ways in which data can be managed for

workflows in the cloud. We ran experiments using

three typical workflow applications on Amazon’s

EC2 cloud computing platform. We discuss the

various storage and file systems we used, describe

the issues and problems we encountered deploying

them on EC2, and analyze the resulting performance

and cost of the workflows.

1. Introduction
Computational workflows are an important tool for

orchestrating complex simulations and data analyses in

many different scientific domains. Traditionally, large-

scale workflows, which may contain millions of tasks

and represent tens of thousands of CPU hours and

terabytes of data, have been run on HPC systems such

as clusters and grids. With the development of cloud

computing, workflow developers are interested in the

benefits this new platform offers for workflow

applications. Clouds give workflow developers several

advantages over traditional HPC systems including: root

access to the operating system, which makes it easier to

deploy workflows with legacy components by giving

developers control over the entire software

environment; the use of VM images to capture and store

execution environments, which aids in reproducibility

and the collection of provenance; and on-demand

provisioning, which helps to reduce time-to-solution

and improve resource utilization by enabling the

resource pool to be adjusted to the changing needs of

the workflow over time.

One important question when evaluating the

effectiveness of cloud platforms for workflows is: How

can workflows best share data in the cloud? Workflows

are loosely-coupled parallel applications that consist of

a set of computational tasks linked via data- and

control-flow dependencies. Unlike tightly-coupled

applications, such as MPI jobs, in which tasks

communicate directly via the network, workflow tasks

typically communicate through the use of files. Each

task in a workflow produces one or more output files

that become input files to other tasks. When tasks are

run on different computational nodes, these files are

either stored in a shared file system, or transferred from

one node to the next by the workflow management

system. This makes workflows a good fit for clouds

because they are not as dependent upon high-speed,

low-latency networks as tightly coupled applications.

There are many existing storage systems that can be

deployed in the cloud to provide shared storage for

workflows. These include various network and parallel

file systems, object-based storage systems, and

databases. One of the advantages of cloud computing

and virtualization is that the user has control over what

software is deployed, and how it is configured.

However, this flexibility also imposes a burden on the

user to determine what system software is appropriate

for their application. The goal of this paper is to explore

the various options for managing data in the cloud for

workflow applications, and to evaluate the effectiveness

of the various solutions in terms of cost and

performance.

In previous research [13] we:

• Compared the performance of different cloud

resource types to determine which types produce

the best performance for different workflow

applications,

• Compared the performance of cloud resources with

typical HPC resources,

• Characterized the impact of virtualization on

workflow performance and found it to be less than

10%,

• Analyzed the cost/performance tradeoff of using

different cloud resources, and

• Identified and quantified the various costs

associated with running workflows in the cloud.

The contributions of this paper are:

• A description of an approach that sets up a

computational environment in the cloud to support

the execution of scientific workflow applications.

• An overview of the issues related to workflow

storage in the cloud and a discussion of the current

storage options for workflows in the cloud.

• A comparison of the performance (runtime) of three

real workflow applications using six different

storage configurations on Amazon EC2.

• An analysis of the cost of running workflows with

different storage systems on Amazon EC2.

Our results show that the cloud offers a convenient

and flexible platform for deploying workflows with

various storage systems. We find that there are many

options available for workflow storage in the cloud, and

that the performance of storage systems such as

GlusterFS [10] is quite good. We also find that the cost

of running workflows on Amazon EC2 is not

prohibitive for the applications we tested, however the

cost increases significantly when multiple virtual nodes

are used. At the same time we did not observe a

corresponding increase in performance.

The rest of the paper is organized as follows:

Section 2 describes the set of workflow applications we

chose for our experiments. Section 3 gives an overview

of the execution environment we set up for the

experiments on Amazon EC2. Section 4 provides a

discussion and overview of storage systems (including

various file systems) that are used to communicate data

between workflow tasks. Sections 5 and 6 provide

performance and cost comparisons of different storage

systems. Section 7 compares the cost and performance

of running workflows on specialized cluster compute

nodes versus standard server class nodes. Section 8

evaluates the impact of choosing to run a submit host in

the cloud versus outside the cloud. And Sections 9 and

10 describe related work and conclude the paper.

2. Workflow Applications
In order to evaluate the cost and performance of

scientific workflows in the cloud we conducted

experiments using three real workflow applications: an

astronomy application (Montage), a seismology

application (Broadband), and a bioinformatics

application (Epigenome). These three applications were

chosen because they cover a wide range of application

domains and a wide range of resource requirements.

Table 1 shows the relative resource usage of the

applications in three different categories: I/O, memory,

and CPU. The resource usage of the applications was

determined using a workflow profiler1, which measures

the I/O, CPU usage, and peak memory by tracing all the

tasks in the workflow using ptrace [24].

Table 1: Application resource usage

comparison

Application I/O Memory CPU

Montage High Low Low

Broadband Medium High Medium

Epigenome Low Medium High

The first application, Montage [16], creates

science-grade astronomical image mosaics using data

collected from telescopes. The size of a Montage

workflow depends upon the area of the sky (in square

degrees) covered by the output mosaic. In our

experiments we configured Montage workflows to

generate an 8-degree square mosaic. The resulting

workflow contains 10,429 tasks, reads 4.2 GB of input

1 http://pegasus.isi.edu/wfprof

data, and produces 7.9 GB of output data (excluding

temporary data). We consider Montage to be I/O-bound

because it spends more than 95% of its time waiting on

I/O operations.

The second application, Broadband [26], generates

and compares seismograms from several high- and low-

frequency earthquake simulation codes. Each

Broadband workflow generates seismograms for several

sources (scenario earthquakes) and sites (geographic

locations). For each (source, site) combination the

workflow runs several high- and low-frequency

earthquake simulations and computes intensity

measures of the resulting seismograms. In our

experiments we used 6 sources and 8 sites to generate a

workflow containing 768 tasks that reads 6 GB of input

data and writes 303 MB of output data. We consider

Broadband to be memory-intensive because more than

75% of its runtime is consumed by tasks requiring more

than 1 GB of physical memory.

The third and final application, Epigenome [27],

maps short DNA segments collected using high-

throughput gene sequencing machines to a previously

constructed reference genome using the MAQ software

[17]. The workflow splits several input segment files

into small chunks, reformats and converts the chunks,

maps the chunks to the reference genome, merges the

mapped sequences into a single output map, and

computes the sequence density for each location of

interest in the reference genome. The workflow used in

our experiments maps human DNA sequences from

chromosome 21. The workflow contains 529 tasks,

reads 1.9 GB of input data, and produces 300 MB of

output data. We consider Epigenome to be CPU-bound

because it spends 99% of its runtime in the CPU and

only 1% on I/O and other activities.

3. Execution Environment
In this section we describe the execution

environment that was used in our experiments. We ran

experiments on Amazon’s EC2 Infrastructure as a

Service (IaaS) cloud [1]. EC2 was chosen because it is

currently the most popular, feature-rich, and stable

commercial cloud available.

There are many ways to configure an execution

environment for workflow applications in the cloud.

The environment can be deployed entirely in the cloud,

or parts of it can reside outside the cloud. For the

majority of this paper we have chosen the latter

approach, mirroring the configuration used for

workflows on the grid. In this configuration, shown in

Figure 1, we have a submit host that runs outside the

cloud to manage the workflows and set up the cloud

environment, several worker nodes that run inside the

cloud to execute tasks, and a storage system that also

runs inside the cloud to store workflow inputs and

outputs. In Section 8 we evaluate a similar architecture

where the submit host is also provisioned in the

cloud.Software

The execution environment is based on the idea of a

virtual cluster [4,9]. A virtual cluster is a collection of

virtual machines that have been configured to act like a

traditional HPC cluster. Typically this involves

installing and configuring job management software,

such as a batch scheduler, and a shared storage system,

such as a network file system. The challenge in

provisioning a virtual cluster in the cloud is collecting

the information required to configure the cluster

software, and then generating configuration files and

starting services. Instead of performing these tasks

manually, which can be tedious and error-prone, we

have used Wrangler [14] to provision and configure

virtual clusters for this paper.

All workflows were planned and executed using the

Pegasus Workflow Management System [6], which

includes the Pegasus mapper, DAGMan workflow

engine [5] and the Condor scheduler [18]. Pegasus is

used to transform a resource-independent, abstract

workflow description into a concrete plan, which is then

executed using DAGMan to manage dependencies

between tasks, and Condor to manage task execution.

With the exception of a few minor modifications to

Pegasus, which were required to support Amazon S3

(see Section 4.1), the workflow management system did

not require modifications to run on EC2.

To deploy software on the virtual cluster we

developed a virtual machine image based on the stock

Fedora 8 image provided by Amazon. To the stock

image we added the Pegasus worker node tools, Globus

clients, Condor worker daemons, and all other packages

required to compile and run the selected workflows,

including the application binaries. We also installed the

Wrangler agent to manage the configuration of the

virtual machines, and wrote shell scripts to generate

configuration files and start the required services.

Finally, we installed and configured the software

necessary to run the storage systems that will be

described in Section 4. The resulting image was used to

deploy worker nodes on EC2.

Figure 1: Execution environment on Amazon

EC2.

3.2. Resources

Amazon EC2 offers several different virtual

machine configurations called instance types. Each

instance type is configured with a specific amount of

memory, CPUs, and local storage. In our previous work

[13] we examined the impact of different instance types

on the performance and cost of workflow applications.

Here we summarize those results in the form of cost-

performance plots.

Figure 2 shows the cost-performance plots for the

three example applications on Amazon EC2. Instances

labeled m1.* have significant amounts of memory, c1*

have powerful cores, and cc1.4xlarge is a cluster

instance. Although in most cases these plots do not

indicate the specific instance type to choose, they can

highlight instance types that should not be used. For

example, for Montage (top of Figure 2) the m1.small

type can be eliminated from consideration because

c1.medium is both faster and cheaper. Similar

arguments can be made for m1.large, and c1.xlarge. The

other instance types—cc1.4xlarge, m1.xlarge, and

c1.medium—are all optimal solutions in the sense that

there are no other instance types that are both faster and

cheaper. The cc1.4xlarge type is the fastest, c1.medium

is the cheapest, and m1.xlarge is faster than c1.medium,

but cheaper than cc1.4xlarge. Formally, these three

instance types comprise the Pareto set for Montage, and

are called Pareto optimal solutions. Because the Pareto

sets for the example applications all contain more than

one instance type, there is no “best” choice for these

applications. Choosing an instance type from the Pareto

set still involves a cost-performance tradeoff based on

the user’s requirements. Application developers should

be aware of the various tradeoffs between different

instance types, and benchmark their applications to

decide which type meets the requirements of their

application, rather than blindly choosing the type with

the most power or the lowest hourly rate.

We used the c1.xlarge instance type for the

majority of experiments described here. A few

experiments were conducted using the cc1.4xlarge

“cluster compute” instance type. These experiments and

the reasoning behind them are described in Section 7.

Figure 2: Cost versus performance comparison

for Montage (top), Broadband (middle) and

Epigenome (bottom). The gray ovals indicate

Pareto optimal instance types.

An exhaustive survey of all the possible combinations

of application, storage system, and instance type is

beyond the scope of this study.

3.3. Storage

To run workflows we need to allocate storage for 1)

application executables, 2) input data, and 3)

intermediate and output data. In a typical workflow

application executables are pre-installed on the

execution site, input data is copied from an archive to

the execution site, and output data is copied from the

execution site to an archive. Since the focus of this

paper is on the storage systems we did not perform or

measure data transfers to/from the cloud. Instead,

executables were included in the virtual machine

images, input data was pre-staged to the virtual cluster,

and output data was not transferred back to the submit

host.

Each of the c1.xlarge nodes used for our

experiments has 4 “ephemeral” disks. These disks are

virtual block-based storage devices that provide access

to physical storage on local disk drives. Ephemeral

disks appear as devices to the virtual machine and can

be formatted and accessed as if they were physical

devices. They can be used to store data for the lifetime

of the virtual machine, but are wiped clean when the

virtual machine is terminated. As such they cannot be

used for long-term storage.

Ephemeral disks have a severe first write penalty

that should be considered when deploying an

application on EC2. One would expect that ephemeral

disks should deliver performance close to that of the

underlying physical disks, most likely around 100

MB/s, however, the observed performance is only about

20 MB/s for the first write. Subsequent writes to the

same location deliver the expected performance. This

appears to be the result of the virtualization technology

used to expose the drives to the virtual machine. This

problem has not been observed with standard Xen

virtual block devices outside of EC2, which suggests

that Amazon is using a custom disk virtualization

solution, perhaps for security reasons. Amazon’s

suggestion for mitigating the first-write penalty is for

users to initialize ephemeral disks by filling them with

zeros before using them for application data. However,

initialization is not feasible for many applications

because it takes too much time. Initializing enough

storage for a Montage workflow (50 GB), for example,

would take almost as long (42 minutes) as running the

workflow using an uninitialized disk. If the node using

the disk is going to be provisioned for only one

workflow, then initialization does not make economic

sense.

For the experiments described in this paper we have

not initialized the ephemeral disks. In order to get the

best performance without initialization we used

software RAID. We combined the 4 ephemeral drives

on each c1.xlarge node into a single RAID 0 partition.

This configuration results in first writes of 80-100

MB/s, and subsequent writes around 350-400 MB/s.

Reads peak at around 110 MB/s from a single

ephemeral disk and around 310 MB/s from a 4-disk

RAID array. The RAID 0 disks were used as local

storage for the systems described in the next section.

4. Storage Options
In this section we describe the storage services we

used for our experiments and any special configuration

or handling that was required to get them to work with

our workflow management system. We tried to select a

number of different systems that span a wide range of

storage options. Given the large number of network

storage systems available it is not possible for us to

examine them all. In addition, it is not possible to run

some file systems on EC2 because Amazon does not

allow kernel modifications (Amazon does allow

modules, but many file systems require source code

patches as well). This is the case for Lustre [21] and

Ceph [30], for example. Also, in order to work with our

workflow tasks (as they are provided by the domain

scientists), the file system either needs to be POSIX-

compliant (i.e. we must be able to mount it and it must

support standard semantics), or additional tools need to

be used to copy files to/from the local file system,

which can result in reduced performance.

It is important to note that our goal with this work

is not to evaluate the raw performance of these storage

systems in the cloud, but rather to examine application

performance in the context of scientific workflows. We

are interested in exploring various options for sharing

data in the cloud for workflow applications and in

determining, in general, how the performance and cost

of a workflow is affected by the choice of storage

system. Where possible we have attempted to tune each

storage system to deliver the best performance, but we

have no way of knowing what combination of parameter

values will give the best results for all applications

without an exhaustive search. Instead, for each storage

system we ran some simple benchmarks to verify that

the storage system functions correctly and to determine

if there are any obvious parameters that should be

changed. We do not claim that the configurations we

have used are the best of all possible configurations for

our applications, but rather represent a typical setup.

In addition to the systems described below we ran a

few experiments using XtreemFS [12], a file system

designed for wide-area networks. However, the

workflows performed far worse on XtreemFS than the

other systems tested, taking more than twice as long as

they did on the storage systems reported here before

they were terminated without completing. It is possible

that these issues with XtreemFS were a result of

incompatibilities between XtreemFS and the kernel

supplied by Amazon. We were unable to resolve these

issues and, as a result, we did not perform a full range of

experiments with XtreemFS.

4.1. Amazon S3

Amazon S3 [2] is a distributed, object-based

storage system. It stores un-typed binary objects (e.g.

files) up to 5 GB in size. It is accessed through a web

service that supports both SOAP and REST. Objects in

S3 are stored in directory-like structures called buckets.

Each bucket is owned by a single user and must have a

globally unique name. Objects within a bucket are

named by keys. The key namespace is flat, but path-like

keys are allowed (e.g. “a/b/c” is a valid key).

Because S3 does not have a POSIX interface, in

order to use it, we needed to make some modifications

to the workflow management system. The primary

change was adding support for an S3 client, which

copies input files from S3 to the local file system before

a job starts, and copies output files from the local file

system back to S3 after the job completes. The

workflow management system was modified to wrap

each job with the necessary GET and PUT operations.

Transferring data for each job individually

increases the amount of data that must be moved and, as

a result, has the potential to reduce the performance of

the workflow. Using S3 each file must be written twice

when it is generated (program to disk, disk to S3) and

read twice each time it is used (S3 to disk, disk to

program). In comparison, network file systems enable

the file to be written once, and read once each time it is

used. In addition, network file systems support partial

reads of input files and fine-grained overlapping of

computation and communication. In order to reduce the

number of transfers required when using S3 we

implemented a simple whole-file caching mechanism.

Caching is possible because all the workflow

applications used in our experiments obey a strict write-

once file access pattern where no files are ever opened

for updates. Our simple caching scheme ensures that

each file is transferred from S3 to a given node only

once, and saves output files generated on a node so that

they can be reused as input for future jobs that may run

on the node.

The scheduler that was used to execute workflow

jobs does not consider data locality or parent-child

affinity when scheduling jobs, and does not have access

to information about the contents of each node’s cache.

Because of this, if a file is cached on one node, a job

that accesses the file could end up being scheduled on a

different node. A more data-aware scheduler could

potentially improve workflow performance by

increasing cache hits and further reducing transfers.

4.2. NFS

 NFS [25] is perhaps the most commonly used

network file system. Unlike the other storage systems

used, NFS is a centralized system with one node that

acts as the file server for a group of machines. This puts

it at a distinct disadvantage in terms of scalability

compared with the other storage systems.

We deployed NFS on EC2 in two different

configurations. The first configuration used a dedicated

m1.xlarge node to host the NFS file system. We used

m1.xlarge instead of c1.xlarge because it has a

comparatively large amount of memory (16GB vs

8GB), which improves cache performance. Using a

dedicated node improves performance, but increases

cost. In order to evaluate the impact of this on

performance and cost, we deployed a second

configuration that used one of the c1.xlarge nodes to

both host the file system and run compute jobs. In both

cases we configured the NFS clients to use the async

option, which allows calls to NFS to return before the

data has been flushed to disk, and we disabled atime

updates.

4.3. GlusterFS

GlusterFS [10] is a distributed file system that

supports many different configurations. It has a modular

architecture based on components called translators that

can be composed to create novel file system

configurations. All translators support a common API

and can be stacked on top of each other in layers. As a

result of these translators, there are many ways to

deploy a GlusterFS file system. We used two

configurations: NUFA (non-uniform file access) and

distribute. In both configurations nodes act as both

clients and servers. Each node exports a local volume

and merges it with the local volumes of all other nodes.

In the NUFA configuration, all writes to new files are

performed on the local disk, while reads and writes to

existing files are either performed across the network or

locally depending on where the file was created.

Because files in the workflows we tested are never

updated, the NUFA configuration results in all write

operations being directed to the local disk. In the

distribute configuration, GlusterFS uses hashing to

distribute files among nodes. This configuration results

in a more uniform distribution of reads and writes

across the virtual cluster compared to the NUFA

configuration, but may result in more network I/O.

4.4. PVFS

PVFS [3] is a parallel file system for Linux

clusters. It distributes file data via striping across a

number of I/O nodes. In our configuration we used the

same set of nodes for both I/O and computation. In

other words, each node was configured as both a client

and a server. In addition, we configured PVFS to

distribute metadata across all nodes instead of having a

central metadata server.

Although the latest version of PVFS was 2.8.2 at

the time our experiments were conducted, we were not

able to run any of the 2.8 series releases on EC2 reliably

without crashes or loss of data. Instead, we used an

older version, 2.6.3, and applied a patch for the Linux

kernel used on EC2 (2.6.21). This version ran without

crashing, but does not include some of the changes

made in later releases to improve support and

performance for small files.

5. Performance Comparison
In this section we compare the performance of the

selected storage options for workflows on Amazon EC2.

The critical performance metric we are concerned with

is the total runtime of the workflow (also known as the

makespan). The runtime of a workflow is defined as the

total amount of wall clock time from the moment the

first workflow task is submitted until the last task

completes. The runtimes reported in the following

sections do not include the time required to provision

and configure the VMs, which typically averages

between 50 and 110 seconds to boot the operating

system, and 90 to 120 seconds to boot the OS and

configure the storage systems [14]. The runtimes also

do not include the time required to transfer input and

output data. Because the sizes of input files are constant,

and the resources are all provisioned at the same time,

the file transfer and provisioning overheads are assumed

to be independent of the storage system chosen.

In discussing the results for various storage systems

it is useful to consider the I/O workload generated by

the applications tested. All of the applications generate a

large number (thousands) of relatively small files (on

the order of 1 MB to 10 MB). The write pattern is

sequential and strictly write-once (no file is updated

after it has been created). The read pattern is primarily

sequential, with a few tasks performing random

accesses. Because many workflow jobs run

concurrently, many files will be accessed at the same

time. Some files are read concurrently, but no file is

ever read and written at the same time. These

characteristics will help to explain the observed

performance differences between the storage systems in

the following sections.

When comparing the results for different storage

systems, note that the GlusterFS and PVFS

configurations that were used require at least two nodes

to construct a valid file system, so results with one

worker are reported only for S3 and NFS. Also, in

addition to the storage systems described in Section 4,

we have included performance results for experiments

run on a single c1.xlarge node with 8 cores using the

local disk from our previous work [13]. These results

are shown as a single point in the graphs and are labeled

“Local”.

5.1. Montage

The performance results for Montage are shown in

3. The characteristic of Montage that seems to have the

most significant impact on its performance is the large

number (~29,000) of relatively small (a few MB) files it

accesses. GlusterFS seems to handle this workload well,

with both the NUFA and distribute modes producing

significantly better performance than the other storage

systems. NFS does relatively well for Montage, beating

even the local disk in the single node case. This may be

because we used the async option with NFS, which

results in better NFS write performance than a local disk

when the remote host has a large amount of memory in

which to buffer writes, or because using NFS results in

less disk contention. Surprisingly, the shared NFS

configuration performed better than the NFS

configuration using a dedicated node. This is likely a

result of the fact that in the shared configuration 1/N of

the file accesses are local (where N is the number of

nodes), while in the dedicated configuration all accesses

are performed over the network, which has larger

latencies and lower bandwidth than the local disk. The

relatively poor performance of S3 and PVFS may be a

result of Montage accessing a large number of small

files. As we indicated in Section 4, the version of PVFS

we have used does not contain the small file

optimizations added in later releases. S3 performs worse

than the other systems on small files because of the

relatively large overhead of fetching and storing files in

S3. In addition, the Montage workflow does not contain

much file reuse, which makes the S3 client cache less

effective.

5.2. Broadband

The performance results for Broadband are shown

in Figure 4. In contrast to the other applications, the best

overall performance for Broadband was achieved using

Amazon S3 and not GlusterFS. This is likely due to the

fact that Broadband reuses many input files, which

improves the effectiveness of the S3 client cache. Many

of the transformations in Broadband consist of several

executables that are run in sequence like a mini

workflow. This would explain why GlusterFS (NUFA)

results in better performance than GlusterFS

(distribute). In the NUFA case all the outputs of a

transformation are stored on the local disk, which

results in much better locality for Broadband’s

workflow-like transformations. An additional

Broadband experiment was run using a different NFS

server (m2.4xlarge, 64 GB memory, 8 cores) to see if a

more powerful server would significantly improve NFS

performance. The result was better than the smaller

server for the 4-node case (4368 seconds vs. 5363

seconds), but was still significantly worse than

GlusterFS and S3 (<3000 seconds in all cases). The

decrease in performance using NFS between 2 and 4

nodes was consistent across repeated experiments and

was not affected by any of the NFS parameter changes

we tried. Similar to Montage, the shared NFS

configuration performed better than the dedicated

configuration, most likely due to the larger proportion

of local file accesses. Also similar to Montage,

Broadband appears to have relatively poor performance

on PVFS, possibly because of the large number of small

files it generates (>5,000).

5.3. Epigenome

The performance results for Epigenome are shown

in Figure 5. Epigenome is mostly CPU-bound, and

performs relatively little I/O compared to Montage and

Broadband. As a result, the choice of storage system has

less of an impact on the performance of Epigenome

compared to the other applications. In general, the

performance was almost the same for all storage

systems, with S3 and PVFS performing slightly worse

than NFS and GlusterFS. Unlike Montage, for which

NFS performed better than the local disk in the single

Figure 3: Performance of Montage using

different storage systems.

node case, for Epigenome the local disk was

significantly faster.

6. Cost Comparison
In this section we analyze the cost of running

workflow applications using the selected storage

systems. There are three different cost categories when

running an application on EC2. These include: resource

cost, storage cost, and transfer cost. Resource cost

includes charges for the use of VM nodes in EC2;

storage cost includes charges for keeping VM images

and input data in S3 or EBS; and transfer cost includes

charges for moving input data, output data and log files

between the submit host and EC2.

One important issue to consider when evaluating

the cost of a workflow is the granularity at which the

provider charges for resources. In the case of EC2,

Amazon charges for resources by the hour, and any

partial hours are rounded up. One important result of

this is that there is no cost benefit to adding resources

for workflows that run for less than an hour, even

though doing so may improve runtime. Another result

of this is that it is difficult to compare the costs of

different solutions. In order to better illustrate the costs

of the various storage systems we use two different

ways to calculate the total cost of a workflow: per hour

charges, and per second charges. Per hour charges are

what Amazon actually charges for the usage, including

rounding up to the nearest hour, and per second charges

are what the experiments would cost if Amazon charged

per second. We compute per second rates by dividing

the hourly rate by 3,600 seconds.

It should be noted that the storage systems do not

have the same cost profiles. NFS with a dedicated file

server is at a disadvantage in terms of cost because of

the extra node that was used to host the file system. This

results in an extra cost of $0.68 per workflow for all

applications. S3 is also at a disadvantage compared to

the other systems because Amazon charges a fee to

store data in S3. This fee is $0.01 per 1,000 PUT

operations, $0.01 per 10,000 GET operations, and $0.15

per GB-month of storage (transfers are free within

EC2). For Montage this results in an extra cost of $0.28,

for Epigenome the extra cost is $0.01, and for

Broadband the extra cost is $0.02. Note that the S3 cost

is somewhat reduced by caching in the S3 client, and

that the storage cost is insignificant for the applications

tested (<< $0.01).

The resource cost for Montage, Epigenome and

Broadband using actual cost, and including extra

charges for NFS and S3, is shown in Figure 6. In

Figure 5: Performance of Epigenome using

different storage systems.

Figure 4: Performance of Broadband using

different storage systems.

addition to the cost of running on the storage systems

described in Section 4, we also include the cost of

running on a single node using the local disk from our

previous work [13] (Local in the figures). For Montage

the lowest cost solution was GlusterFS on two nodes.

This is consistent with GlusterFS producing the best

performance for Montage. For Epigenome the lowest

cost solution was a single node using the local disk.

Also notice that, because Epigenome is not I/O

intensive, the difference in cost between the various

storage solutions is relatively small. For Broadband the

local disk, GlusterFS and S3 all tied for the lowest cost.

One final point to make about the cost of these

experiments is the effect of adding resources. Assuming

that resources have uniform cost and performance, in

order for the cost of a workflow to decrease when

resources are added the speedup of the application must

be super-linear. Since this is rarely the case in any

parallel application it is unlikely that there will ever be a

cost benefit for adding resources, even though there

may still be a performance benefit. In our experiments

adding resources reduced the cost of a workflow for a

given storage system in only 2 cases: 1 node to 2 nodes

using NFS for both Epigenome and Broadband. In both

of those cases the improvement was a result of the non-

uniform cost of resources due to the extra node that was

used for NFS. In all other cases the cost of the

workflows only increased when resources were added.

Assuming that cost is the only consideration and that

resources are uniform, the best strategy is to either

provision only one node for a workflow, or to use the

fewest number of resources possible to achieve the

required performance.

7. Cluster Compute Instance Type
Recently Amazon introduced two new instance

types that are designed specifically for high-

performance computing. The new “cluster compute”

(cc1.4xlarge) and “cluster GPU” (cg1.4xlarge) nodes

use 10Gbps Ethernet in comparison with the 1Gbps

Ethernet used by the other instance types, and it is

possible to ensure that cluster nodes are provisioned

“close” to each other (in terms of network locality) in

order to minimize network latency. These features

Figure 6: Actual cost of Montage (top),

Broadband (middle), and Epigenome (bottom)

using different storage systems.

provide significantly better network performance for

parallel applications using the new instance types. The

new types are also fully virtualized using Xen HVM

[15] instead of using paravirtualization. HVM improves

application performance by reducing virtualization

overhead, and enables the nodes to deploy custom

kernels, which is not possible with the older instance

types. Both new cluster types have higher-performance,

dual, quad-core 2.93 Ghz Intel Xeon “Nehalem”

processors. In comparison, most of the c1.xlarge

instance types have older, dual, quad-core 2.13 or 2.33

Ghz Intel Xeon processors. The cluster GPU types also

include two NVIDIA Tesla “Fermi” GPUs.

The new instance types come at a significantly

higher cost than the older instance types. Cluster

compute nodes cost $1.60 per hour, while cluster GPU

nodes cost $2.10 per hour. In comparison, the c1.xlarge

instance type used in the previous storage comparison

Figure 7: Performance and cost comparison between c1.xlarge and cc1.4xlarge for Montage (top),

Broadband (middle), and Epigenome (bottom).

cost $0.68 per hour—58-68% less than the new instance

types. In order to offset the increased cost, the cluster

compute nodes would have to deliver twice the

performance of the c1.xlarge type.

To compare the new, high-performance instance

types to the older instance types we ran a set of

experiments using the three example workflow

applications. Since these applications cannot take

advantage of the GPUs provided by the cluster GPU

nodes without being modified (which would require

significant changes to the application code), we

restricted our comparison to the cluster compute

(cc1.4xlarge) nodes. We compared the performance of

these new nodes to the c1.xlarge results obtained in the

previous experiments. Since GlusterFS in the NUFA

configuration performed well for all three applications

in the previous experiments, we restrict the comparison

to that storage system.

The performance and cost comparison are shown in

Figure 7. In all cases, the use of cc1.4xlarge nodes

resulted in significantly better performance, but

significantly increased cost, compared with the

c1.xlarge nodes.

The performance improvement decreases as the

number of nodes increases due to the limited scalability

of the application. Also, the cost curves diverge as a

result of weaker performance improvements as the

number of nodes increases, so that the cost increases

with cc1.4xlarge at a faster rate than with c1.xlarge.

In a few cases, the performance benefit of

switching from c1.xlarge to cc1.4xlarge might be worth

the increased cost. Table 2 compares the percent change

in runtime versus the percent change in cost. In most

cases, the improvement in runtime is less than the

increase in cost, suggesting that the benefit is not worth

the cost. For Montage with 2 or 4 nodes, however, the

improvement in performance is greater than the

increased cost.

8. Submit Host in the Cloud
In the previous experiments we provisioned worker

nodes in the cloud, but used a submit host outside the

cloud to manage the workflows. This configuration was

used for a number of reasons: it is the way we assumed

most people would want to deploy their workflows, it

made experiment management and setup easier, and it

provided a stable and permanent base from which we

could run identical experiments over time. It also

required us to provision one less node, which reduced

cost. The drawback of this approach is that, although the

amount of data transferred between the submit host and

the workers is small, the overhead of communication

over the WAN could impact the performance of the

application.

In order to quantify the impact of submit node

placement on performance and cost, we ran a set of

experiments where the submit node was provisioned in

the cloud and outside. Once again we used the c1.xlarge

instance types for worker nodes, and GlusterFS in the

NUFA configuration for shared storage. For the

experiments were the submit host was provisioned

inside the cloud we used the m1.xlarge instance type for

the submit host, which costs $0.68 per hour. For the

experiments where the submit host was outside the

Table 2: Performance and cost comparison when switching from c1.xlarge to cc1.4xlarge.

cloud, the total cost of the data transfer required was

computed in previous work and found to be much less

than $0.01 per workflow instance [13].

The results of these experiments are shown in

Figure 8. Overall, the location of the submit host does

have an impact on the performance of the workflow,

with the submit host inside the cloud resulting in

somewhat better performance in almost every case. Of

all the applications, Epigenome has the least benefit,

most likely because there are fewer jobs in the

Epigenome workflow and therefore less traffic between

the submit host and the worker nodes. Montage has the

greatest benefit, which is a result of having the most

jobs and the most traffic between the submit host and

the workers.

Interestingly, the cost of running with the submit

host in the cloud is in many cases less than the cost of

running with the submit host outside, despite the fact

Figure 8: Performance and cost comparison when running the submit host inside the cloud, or outside

the cloud for Montage (top), Broadband (middle), and Epigenome (bottom).

that using a submit host inside requires an extra node.

This is a result of the decrease in total runtime across all

nodes, which offset the cost of the additional node.

Table 3 shows the performance and cost

comparison when switching from a submit host outside,

to a submit host inside the cloud. In 5 out of 9 cases the

change is beneficial, and in 3 of 9 cases the cost actually

decreases.

Aside from performance and cost, however,

developers of workflow applications should consider

application requirements and convenience when

deciding upon the location of the submit host. Having a

submit host outside the cloud provides a permanent base

for storing workflow descriptions, execution logs, data,

and metadata that will not be lost when the workflow

completes. If a submit host is provisioned in the cloud,

then additional measures must be taken to ensure that

this information is transferred to a permanent storage

location before the submit host is deprovisioned. Other

issues, such as the availability of an existing local

submit host, the use of multiple clouds, and the

combination of local resources with cloud resources

would also affect the decision. On the other hand,

provisioning submit hosts in the cloud has the advantage

of being able to support multiple, large-scale workflows

at the same time by enabling the developer to provision

a separate submit host for each workflow instance.

9. Related Work
Much previous research has investigated the

performance of parallel scientific applications on

virtualized and cloud platforms

[7,8,11,19,22,23,29,31,32]. Our work differs from these

in two ways. First, most of the previous efforts have

focused on tightly-coupled applications such as MPI

applications. In comparison, we have focused on

scientific workflows, which are loosely-coupled parallel

applications with very different requirements (although

it is possible for individual workflow tasks to use MPI,

we did not consider workflows with MPI tasks here).

Second, previous efforts have focused mainly on micro

benchmarks and benchmark suites such as the NAS

parallel benchmarks [20]. Our work, on the other hand,

has focused on the performance and cost of real-world

applications.

Vecchiola, et al. have conducted research similar to

our work [28]. They ran an fMRI workflow on Amazon

EC2 using S3 for storage, compared the performance to

Grid’5000, and analyzed the cost on different numbers

of nodes. In comparison, our work is broader in scope.

We use several applications from different domains

with different resource requirements, and we

experiment with six different storage configurations.

10. Conclusion
In this paper we examined the performance and

cost of several different storage systems that can be

used to communicate data within a scientific workflow

running on the cloud. We evaluated the performance

and cost of three workflow applications representing

diverse application domains and resource requirements

on Amazon’s EC2 platform using different numbers of

Table 3: Performance and cost comparison when switching from a submit host outside the cloud to a submit

host inside the cloud

resources (1-8 nodes corresponding to 8-64 cores) and

six different storage configurations. Overall we found

that cloud platforms like EC2 can be a practical solution

for deploying workflow applications. The performance

of EC2 was good enough for many applications, and the

cost was within reason for the applications and

scenarios studied.

One of the major factors inhibiting storage

performance on EC2 is the first write penalty on

ephemeral disks. We found that this significantly

reduced the performance of storage systems deployed in

EC2. This penalty appears to be unique to EC2, so

repeating these experiments on another cloud platform

may produce better storage system performance given a

similar setup.

We found that the choice of storage system has a

significant impact on workflow runtime. This is

consistent with what we expect for non-cloud

environments, so the use of clouds does not appear to be

the most significant factor in storage system

performance. GlusterFS delivered good performance for

all the applications tested and seemed to perform well

with both a large number of small files, and a large

number of clients. S3 produced good performance for

one application, possibly due to the use of caching in

our implementation of the S3 client, but it’s

performance suffered from long latencies to access data

on applications with many small files. NFS performed

surprisingly well in cases where there were either few

clients, or when the I/O requirements of the application

were low. Like S3, PVFS performed poorly on

workflows with many small files, although the version

of PVFS we used did not contain optimizations for

small files that were included in subsequent releases.

As expected, we found that cost closely follows

performance. In general, the storage systems that

produced the best workflow runtimes resulted in the

lowest cost. NFS was at a disadvantage compared to the

other systems when it used an extra, dedicated node to

host the file system, however, overloading a compute

node would not have significantly reduced the cost.

Similarly, S3 is at a disadvantage, especially for

workflows with many files, because Amazon charges a

fee per S3 transaction. For two of the applications

(Montage, I/O-intensive; Epigenome CPU-intensive)

the lowest cost was achieved with GlusterFS, and for

the other application (Broadband—memory-intensive)

the lowest cost was achieved with S3.

Although the runtime of the applications tested

improved when resources were added, the cost did not.

This is a result of the fact that adding resources only

improves cost if speedup is superlinear. Since that is

rarely ever the case, it is better from a cost perspective

to either provision one node to execute an application,

or to provision the minimum number of nodes that will

provide the desired performance. Also, since Amazon

bills by the hour, it is more cost-effective to run for

long-periods in order to amortize the cost of unused

capacity. One way to achieve this is to provision a

single virtual cluster and use it to run multiple

workflows in succession.

The new cluster compute instance types offered by

Amazon EC2 do result in significant performance gains

over the older instance types, but in most cases the

improvements were not significant enough to offset the

increased cost.

We saw that performance gains could be achieved

without increasing cost, or with only a small increase in

cost, by provisioning a submit host inside the cloud to

manage the workflow. However, we have found that

using a submit host outside the cloud is more

convenient because it provides a permanent base for

storing workflow descriptions, execution logs, data, and

metadata that would otherwise be lost when the

workflow completes and the submit host is

deprovisioned.

Acknowledgements
This work was supported by the National Science

Foundation under the SciFlow (CCF-0725332) and

Pegasus (OCI-0722019) grants. This research made use

of Montage, funded by the National Aeronautics and

Space Administration's Earth Science Technology

Office, Computation Technologies Project, under

Cooperative Agreement Number NCC5-626 between

NASA and the California Institute of Technology.

References
[1] Amazon.com, Elastic Compute Cloud (EC2),

http://aws.amazon.com/ec2.
[2] Amazon.com, Simple Storage Service (S3),

http://aws.amazon.com/s3.
[3] P. Carns, W. Ligon, R. Ross, and R. Thakur, “PVFS: A

Parallel File System for Linux Clusters,” 4th Annual
Linux Showcase and Conference, 2000.

[4] J.S. Chase, D.E. Irwin, L.E. Grit, J.D. Moore, and S.E.
Sprenkle, “Dynamic virtual clusters in a grid site
manager,” Proceedings of the 12th IEEE International
Symposium on High Performance Distributed
Computing (HPDC03), 2003.

[5] DAGMan, http://cs.wisc.edu/condor/dagman.
[6] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C.

Kesselman, G. Mehta, K. Vahi, G.B. Berriman, J.
Good, A. Laity, J.C. Jacob, and D.S. Katz, “Pegasus: A
framework for mapping complex scientific workflows
onto distributed systems,” Scientific Programming, vol.
13, no. 3, pp. 219–237, 2005.

[7] C. Evangelinos and C.N. Hill, “Cloud Computing for
Parallel Scientific HPC Applications: Feasibility of
Running Coupled Atmosphere-Ocean Climate Models
on Amazon’s EC2,” Cloud Computing and Its
Applications (CCA 2008), 2008.

[8] R.J. Figueiredo, P.A. Dinda, and J.A.B. Fortes, “A case
for grid computing on virtual machines,” 23rd
International Conference on Distributed Computing
Systems, 2003.

[9] I. Foster, T. Freeman, K. Keahey, D. Scheftner, B.
Sotomayer, and X. Zhang, “Virtual Clusters for Grid
Communities,” Sixth IEEE International Symposium on
Cluster Computing and the Grid (CCGRID06), 2006.

[10] Gluster, Inc., GlusterFS, http://www.gluster.org.
[11] W. Huang, J. Liu, B. Abali, and D.K. Panda, “A Case

for High Performance Computing with Virtual
Machines,” 20th annual international conference on
Supercomputing (ICS 06), 2006.

[12] F. Hupfeld, T. Cortes, B. Kolbeck, J. Stender, E. Focht,
M. Hess, J. Malo, J. Marti, and E. Cesario, “The
XtreemFS architecture - a case for object-based file
systems in Grids,” Concurrency and Computation:
Practice & Experience, vol. 20, no. 17, pp. 2049–2060,
2008.

[13] G. Juve, E. Deelman, K. Vahi, and G. Mehta,
“Scientific Workflow Applications on Amazon EC2,”
Workshop on Cloud-based Services and Applications in
conjunction with 5th IEEE International Conference on
e-Science (e-Science 2009), 2009.

[14] G. Juve and E. Deelman, “Automating Application
Deployment in Infrastructure Clouds,” 3rd IEEE
International Conference on Cloud Computing
Technology and Science (CloudCom), 2011.

[15] P. Kärkkäinen and L. Kurth, XenOverview - Xen Wiki,
http://wiki.xensource.com/xenwiki/XenOverview.

[16] D.S. Katz, J.C. Jacob, E. Deelman, C. Kesselman, S.
Gurmeet, S. Mei-Hui, G.B. Berriman, J. Good, A.C.
Laity, and T.A. Prince, “A comparison of two methods
for building astronomical image mosaics on a grid,”
34th International Conference on Parallel Processing
Workshops (ICPP ’05), 2005.

[17] H. Li, J. Ruan, and R. Durbin, “Mapping short DNA
sequencing reads and calling variants using mapping
quality scores,” Genome Research, vol. 18, no. 11, pp.
1851–1858, 2008.

[18] M.J. Litzkow, M. Livny, and M.W. Mutka, “Condor: A
Hunter of Idle Workstations,” 8th International
Conference of Distributed Computing Systems, 1988.

[19] J. Napper and P. Bientinesi, “Can Cloud Computing
Reach the Top500?,” Proceedings of the Workshop on
UnConventional High Performance Computing, 2009.

[20] NASA Advanced Supercomputing Division, NAS
Parallel Benchmarks,
http://www.nas.nasa.gov/Resources/Software/npb.html.

[21] Oracle Corporation, Lustre parallel filesystem,
http://www.lustre.org.

[22] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T.
Fahringer, and D. Epema, “A Performance Analysis of
EC2 Cloud Computing Services for Scientific
Computing,” Proceedings of Cloudcomp 2009, 2009.

[23] M.R. Palankar, A. Iamnitchi, M. Ripeanu, and S.
Garfinkel, “Amazon S3 for science grids: a viable
solution?,” Proceedings of the 2008 international
workshop on Data-aware distributed computing
(DADC 08), 2008.

[24] “ptrace - process trace,” Linux Programmer’s Manual.
[25] R. Sandberg, D. Golgberg, S. Kleiman, D. Walsh, and

B. Lyon, “Design and Implementation of the Sun
Network Filesystem,” USENIX Conference
Proceedings, 1985.

[26] Southern California Earthquake Center, Broadband
Platform,
http://scec.usc.edu/scecpedia/Broadband_Platform.

[27] USC Epigenome Center, http://epigenome.usc.edu.
[28] C. Vecchiola, S. Pandey, and R. Buyya, “High-

Performance Cloud Computing: A View of Scientific
Applications,” International Symposium on Parallel
Architectures, Algorithms, and Networks, 2009.

[29] E. Walker, “Benchmarking Amazon EC2 for High-
Performance Scientific Computing,” Login, vol. 33, no.
5, pp. 18–23.

[30] S.A. Weil, S.A. Brandt, E.L. Miller, D.D.E. Long, and
C. Maltzahn, “Ceph: A scalable, high-performance
distributed file system,” 7th Symposium on Operating
Systems Design and Implementation (OSDI 06), 2006.

[31] L. Youseff, R. Wolski, B. Gorda, and C. Krintz,
“Paravirtualization for HPC Systems,” Workshop on
Xen in High-Performance Cluster and Grid Computing,
2006.

[32] W. Yu and J.S. Vetter, “Xen-Based HPC: A Parallel
I/O Perspective,” 8th IEEE International Symposium on
Cluster Computing and the Grid (CCGrid ’08), 2008.

