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Abstract—Workflows are used to orchestrate data-

intensive applications in many different scientific 

domains. Workflow applications typically 

communicate data between processing steps using 

intermediate files. When tasks are distributed, these 

files are either transferred from one computational 

node to another, or accessed through a shared 

storage system. As a result, the efficient management 

of data is a key factor in achieving good performance 

for workflow applications in distributed 

environments. In this paper we investigate some of 

the ways in which data can be managed for 

workflows in the cloud. We ran experiments using 

three typical workflow applications on Amazon’s 

EC2 cloud computing platform. We discuss the 

various storage and file systems we used, describe 

the issues and problems we encountered deploying 

them on EC2, and analyze the resulting performance 

and cost of the workflows. 

1. Introduction 
Computational workflows are an important tool for 

orchestrating complex simulations and data analyses in 

many different scientific domains. Traditionally, large-

scale workflows, which may contain millions of tasks 

and represent tens of thousands of CPU hours and 

terabytes of data, have been run on HPC systems such 

as clusters and grids. With the development of cloud 

computing, workflow developers are interested in the 

benefits this new platform offers for workflow 

applications. Clouds give workflow developers several 

advantages over traditional HPC systems including: root 

access to the operating system, which makes it easier to 

deploy workflows with legacy components by giving 

developers control over the entire software 

environment; the use of VM images to capture and store 

execution environments, which aids in reproducibility 

and the collection of provenance; and on-demand 

provisioning, which helps to reduce time-to-solution 

and improve resource utilization by enabling the 

resource pool to be adjusted to the changing needs of 

the workflow over time. 

One important question when evaluating the 

effectiveness of cloud platforms for workflows is: How 

can workflows best share data in the cloud? Workflows 

are loosely-coupled parallel applications that consist of 

a set of computational tasks linked via data- and 

control-flow dependencies. Unlike tightly-coupled 



applications, such as MPI jobs, in which tasks 

communicate directly via the network, workflow tasks 

typically communicate through the use of files. Each 

task in a workflow produces one or more output files 

that become input files to other tasks. When tasks are 

run on different computational nodes, these files are 

either stored in a shared file system, or transferred from 

one node to the next by the workflow management 

system. This makes workflows a good fit for clouds 

because they are not as dependent upon high-speed, 

low-latency networks as tightly coupled applications. 

There are many existing storage systems that can be 

deployed in the cloud to provide shared storage for 

workflows. These include various network and parallel 

file systems, object-based storage systems, and 

databases. One of the advantages of cloud computing 

and virtualization is that the user has control over what 

software is deployed, and how it is configured. 

However, this flexibility also imposes a burden on the 

user to determine what system software is appropriate 

for their application. The goal of this paper is to explore 

the various options for managing data in the cloud for 

workflow applications, and to evaluate the effectiveness 

of the various solutions in terms of cost and 

performance. 

In previous research [13] we: 

• Compared the performance of different cloud 

resource types to determine which types produce 

the best performance for different workflow 

applications, 

• Compared the performance of cloud resources with 

typical HPC resources, 

• Characterized the impact of virtualization on 

workflow performance and found it to be less than 

10%, 

• Analyzed the cost/performance tradeoff of using 

different cloud resources, and 

• Identified and quantified the various costs 

associated with running workflows in the cloud. 

The contributions of this paper are: 

• A description of an approach that sets up a 

computational environment in the cloud to support 

the execution of scientific workflow applications. 

• An overview of the issues related to workflow 

storage in the cloud and a discussion of the current 

storage options for workflows in the cloud. 

• A comparison of the performance (runtime) of three 

real workflow applications using six different 

storage configurations on Amazon EC2. 

• An analysis of the cost of running workflows with 

different storage systems on Amazon EC2. 

Our results show that the cloud offers a convenient 

and flexible platform for deploying workflows with 

various storage systems. We find that there are many 

options available for workflow storage in the cloud, and 

that the performance of storage systems such as 

GlusterFS [10] is quite good. We also find that the cost 

of running workflows on Amazon EC2 is not 

prohibitive for the applications we tested, however the 

cost increases significantly when multiple virtual nodes 

are used. At the same time we did not observe a 

corresponding increase in performance. 

The rest of the paper is organized as follows: 

Section 2 describes the set of workflow applications we 

chose for our experiments. Section 3 gives an overview 

of the execution environment we set up for the 

experiments on Amazon EC2. Section 4 provides a 

discussion and overview of storage systems (including 

various file systems) that are used to communicate data 

between workflow tasks. Sections 5 and 6 provide 

performance and cost comparisons of different storage 

systems. Section 7 compares the cost and performance 

of running workflows on specialized cluster compute 

nodes versus standard server class nodes. Section 8 



evaluates the impact of choosing to run a submit host in 

the cloud versus outside the cloud. And Sections 9 and 

10 describe related work and conclude the paper. 

2. Workflow Applications 
In order to evaluate the cost and performance of 

scientific workflows in the cloud we conducted 

experiments using three real workflow applications: an 

astronomy application (Montage), a seismology 

application (Broadband), and a bioinformatics 

application (Epigenome). These three applications were 

chosen because they cover a wide range of application 

domains and a wide range of resource requirements. 

Table 1 shows the relative resource usage of the 

applications in three different categories: I/O, memory, 

and CPU. The resource usage of the applications was 

determined using a workflow profiler1, which measures 

the I/O, CPU usage, and peak memory by tracing all the 

tasks in the workflow using ptrace [24]. 

 

Table 1: Application resource usage 

comparison  

Application I/O Memory CPU 

Montage High Low Low 

Broadband Medium High Medium 

Epigenome Low Medium High 

 

The first application, Montage [16], creates 

science-grade astronomical image mosaics using data 

collected from telescopes. The size of a Montage 

workflow depends upon the area of the sky (in square 

degrees) covered by the output mosaic. In our 

experiments we configured Montage workflows to 

generate an 8-degree square mosaic. The resulting 

workflow contains 10,429 tasks, reads 4.2 GB of input 

                                                             
1 http://pegasus.isi.edu/wfprof 

data, and produces 7.9 GB of output data (excluding 

temporary data). We consider Montage to be I/O-bound 

because it spends more than 95% of its time waiting on 

I/O operations. 

The second application, Broadband [26], generates 

and compares seismograms from several high- and low-

frequency earthquake simulation codes. Each 

Broadband workflow generates seismograms for several 

sources (scenario earthquakes) and sites (geographic 

locations). For each (source, site) combination the 

workflow runs several high- and low-frequency 

earthquake simulations and computes intensity 

measures of the resulting seismograms. In our 

experiments we used 6 sources and 8 sites to generate a 

workflow containing 768 tasks that reads 6 GB of input 

data and writes 303 MB of output data. We consider 

Broadband to be memory-intensive because more than 

75% of its runtime is consumed by tasks requiring more 

than 1 GB of physical memory. 

The third and final application, Epigenome [27], 

maps short DNA segments collected using high-

throughput gene sequencing machines to a previously 

constructed reference genome using the MAQ software 

[17]. The workflow splits several input segment files 

into small chunks, reformats and converts the chunks, 

maps the chunks to the reference genome, merges the 

mapped sequences into a single output map, and 

computes the sequence density for each location of 

interest in the reference genome. The workflow used in 

our experiments maps human DNA sequences from 

chromosome 21. The workflow contains 529 tasks, 

reads 1.9 GB of input data, and produces 300 MB of 

output data. We consider Epigenome to be CPU-bound 

because it spends 99% of its runtime in the CPU and 

only 1% on I/O and other activities. 



3. Execution Environment 
In this section we describe the execution 

environment that was used in our experiments. We ran 

experiments on Amazon’s EC2 Infrastructure as a 

Service (IaaS) cloud [1]. EC2 was chosen because it is 

currently the most popular, feature-rich, and stable 

commercial cloud available. 

There are many ways to configure an execution 

environment for workflow applications in the cloud. 

The environment can be deployed entirely in the cloud, 

or parts of it can reside outside the cloud. For the 

majority of this paper we have chosen the latter 

approach, mirroring the configuration used for 

workflows on the grid. In this configuration, shown in 

Figure 1, we have a submit host that runs outside the 

cloud to manage the workflows and set up the cloud 

environment, several worker nodes that run inside the 

cloud to execute tasks, and a storage system that also 

runs inside the cloud to store workflow inputs and 

outputs. In Section 8 we evaluate a similar architecture 

where the submit host is also provisioned in the 

cloud.Software 

The execution environment is based on the idea of a 

virtual cluster [4,9]. A virtual cluster is a collection of 

virtual machines that have been configured to act like a 

traditional HPC cluster. Typically this involves 

installing and configuring job management software, 

such as a batch scheduler, and a shared storage system, 

such as a network file system. The challenge in 

provisioning a virtual cluster in the cloud is collecting 

the information required to configure the cluster 

software, and then generating configuration files and 

starting services. Instead of performing these tasks 

manually, which can be tedious and error-prone, we 

have used Wrangler [14] to provision and configure 

virtual clusters for this paper. 

All workflows were planned and executed using the 

Pegasus Workflow Management System [6], which 

includes the Pegasus mapper, DAGMan workflow 

engine [5] and the Condor scheduler [18]. Pegasus is 

used to transform a resource-independent, abstract 

workflow description into a concrete plan, which is then 

executed using DAGMan to manage dependencies 

between tasks, and Condor to manage task execution. 

With the exception of a few minor modifications to 

Pegasus, which were required to support Amazon S3 

(see Section 4.1), the workflow management system did 

not require modifications to run on EC2. 

To deploy software on the virtual cluster we 

developed a virtual machine image based on the stock 

Fedora 8 image provided by Amazon. To the stock 

image we added the Pegasus worker node tools, Globus 

clients, Condor worker daemons, and all other packages 

required to compile and run the selected workflows, 

including the application binaries. We also installed the 

Wrangler agent to manage the configuration of the 

virtual machines, and wrote shell scripts to generate 

configuration files and start the required services. 

Finally, we installed and configured the software 

necessary to run the storage systems that will be 

described in Section 4. The resulting image was used to 

deploy worker nodes on EC2. 

 
Figure 1: Execution environment on Amazon 

EC2. 



3.2. Resources 

Amazon EC2 offers several different virtual 

machine configurations called instance types. Each 

instance type is configured with a specific amount of 

memory, CPUs, and local storage. In our previous work 

[13] we examined the impact of different instance types 

on the performance and cost of workflow applications. 

Here we summarize those results in the form of cost-

performance plots. 

Figure 2 shows the cost-performance plots for the 

three example applications on Amazon EC2. Instances 

labeled m1.* have significant amounts of memory, c1* 

have powerful cores, and cc1.4xlarge is a cluster 

instance. Although in most cases these plots do not 

indicate the specific instance type to choose, they can 

highlight instance types that should not be used. For 

example, for Montage (top of Figure 2) the m1.small 

type can be eliminated from consideration because 

c1.medium is both faster and cheaper. Similar 

arguments can be made for m1.large, and c1.xlarge. The 

other instance types—cc1.4xlarge, m1.xlarge, and 

c1.medium—are all optimal solutions in the sense that 

there are no other instance types that are both faster and 

cheaper. The cc1.4xlarge type is the fastest, c1.medium 

is the cheapest, and m1.xlarge is faster than c1.medium, 

but cheaper than cc1.4xlarge. Formally, these three 

instance types comprise the Pareto set for Montage, and 

are called Pareto optimal solutions. Because the Pareto 

sets for the example applications all contain more than 

one instance type, there is no “best” choice for these 

applications. Choosing an instance type from the Pareto 

set still involves a cost-performance tradeoff based on 

the user’s requirements. Application developers should 

be aware of the various tradeoffs between different 

instance types, and benchmark their applications to 

decide which type meets the requirements of their 

application, rather than blindly choosing the type with 

the most power or the lowest hourly rate. 

We used the c1.xlarge instance type for the 

majority of experiments described here. A few 

experiments were conducted using the cc1.4xlarge 

“cluster compute” instance type. These experiments and 

the reasoning behind them are described in Section 7. 

 

 

 
Figure 2: Cost versus performance comparison 

for Montage (top), Broadband (middle) and 

Epigenome (bottom). The gray ovals indicate 

Pareto optimal instance types. 



An exhaustive survey of all the possible combinations 

of application, storage system, and instance type is 

beyond the scope of this study. 

3.3. Storage 

To run workflows we need to allocate storage for 1) 

application executables, 2) input data, and 3) 

intermediate and output data. In a typical workflow 

application executables are pre-installed on the 

execution site, input data is copied from an archive to 

the execution site, and output data is copied from the 

execution site to an archive. Since the focus of this 

paper is on the storage systems we did not perform or 

measure data transfers to/from the cloud. Instead, 

executables were included in the virtual machine 

images, input data was pre-staged to the virtual cluster, 

and output data was not transferred back to the submit 

host. 

Each of the c1.xlarge nodes used for our 

experiments has 4 “ephemeral” disks. These disks are 

virtual block-based storage devices that provide access 

to physical storage on local disk drives. Ephemeral 

disks appear as devices to the virtual machine and can 

be formatted and accessed as if they were physical 

devices. They can be used to store data for the lifetime 

of the virtual machine, but are wiped clean when the 

virtual machine is terminated. As such they cannot be 

used for long-term storage. 

Ephemeral disks have a severe first write penalty 

that should be considered when deploying an 

application on EC2. One would expect that ephemeral 

disks should deliver performance close to that of the 

underlying physical disks, most likely around 100 

MB/s, however, the observed performance is only about 

20 MB/s for the first write. Subsequent writes to the 

same location deliver the expected performance. This 

appears to be the result of the virtualization technology 

used to expose the drives to the virtual machine. This 

problem has not been observed with standard Xen 

virtual block devices outside of EC2, which suggests 

that Amazon is using a custom disk virtualization 

solution, perhaps for security reasons. Amazon’s 

suggestion for mitigating the first-write penalty is for 

users to initialize ephemeral disks by filling them with 

zeros before using them for application data. However, 

initialization is not feasible for many applications 

because it takes too much time. Initializing enough 

storage for a Montage workflow (50 GB), for example, 

would take almost as long (42 minutes) as running the 

workflow using an uninitialized disk. If the node using 

the disk is going to be provisioned for only one 

workflow, then initialization does not make economic 

sense. 

For the experiments described in this paper we have 

not initialized the ephemeral disks. In order to get the 

best performance without initialization we used 

software RAID. We combined the 4 ephemeral drives 

on each c1.xlarge node into a single RAID 0 partition. 

This configuration results in first writes of 80-100 

MB/s, and subsequent writes around 350-400 MB/s. 

Reads peak at around 110 MB/s from a single 

ephemeral disk and around 310 MB/s from a 4-disk 

RAID array. The RAID 0 disks were used as local 

storage for the systems described in the next section. 

4. Storage Options 
In this section we describe the storage services we 

used for our experiments and any special configuration 

or handling that was required to get them to work with 

our workflow management system. We tried to select a 

number of different systems that span a wide range of 

storage options. Given the large number of network 

storage systems available it is not possible for us to 

examine them all. In addition, it is not possible to run 



some file systems on EC2 because Amazon does not 

allow kernel modifications (Amazon does allow 

modules, but many file systems require source code 

patches as well). This is the case for Lustre [21] and 

Ceph [30], for example. Also, in order to work with our 

workflow tasks (as they are provided by the domain 

scientists), the file system either needs to be POSIX-

compliant (i.e. we must be able to mount it and it must 

support standard semantics), or additional tools need to 

be used to copy files to/from the local file system, 

which can result in reduced performance. 

It is important to note that our goal with this work 

is not to evaluate the raw performance of these storage 

systems in the cloud, but rather to examine application 

performance in the context of scientific workflows. We 

are interested in exploring various options for sharing 

data in the cloud for workflow applications and in 

determining, in general, how the performance and cost 

of a workflow is affected by the choice of storage 

system. Where possible we have attempted to tune each 

storage system to deliver the best performance, but we 

have no way of knowing what combination of parameter 

values will give the best results for all applications 

without an exhaustive search. Instead, for each storage 

system we ran some simple benchmarks to verify that 

the storage system functions correctly and to determine 

if there are any obvious parameters that should be 

changed. We do not claim that the configurations we 

have used are the best of all possible configurations for 

our applications, but rather represent a typical setup. 

In addition to the systems described below we ran a 

few experiments using XtreemFS [12], a file system 

designed for wide-area networks. However, the 

workflows performed far worse on XtreemFS than the 

other systems tested, taking more than twice as long as 

they did on the storage systems reported here before 

they were terminated without completing. It is possible 

that these issues with XtreemFS were a result of 

incompatibilities between XtreemFS and the kernel 

supplied by Amazon. We were unable to resolve these 

issues and, as a result, we did not perform a full range of 

experiments with XtreemFS. 

4.1. Amazon S3 

Amazon S3 [2] is a distributed, object-based 

storage system. It stores un-typed binary objects (e.g. 

files) up to 5 GB in size. It is accessed through a web 

service that supports both SOAP and REST. Objects in 

S3 are stored in directory-like structures called buckets. 

Each bucket is owned by a single user and must have a 

globally unique name. Objects within a bucket are 

named by keys. The key namespace is flat, but path-like 

keys are allowed (e.g. “a/b/c” is a valid key). 

Because S3 does not have a POSIX interface, in 

order to use it, we needed to make some modifications 

to the workflow management system. The primary 

change was adding support for an S3 client, which 

copies input files from S3 to the local file system before 

a job starts, and copies output files from the local file 

system back to S3 after the job completes. The 

workflow management system was modified to wrap 

each job with the necessary GET and PUT operations. 

Transferring data for each job individually 

increases the amount of data that must be moved and, as 

a result, has the potential to reduce the performance of 

the workflow. Using S3 each file must be written twice 

when it is generated (program to disk, disk to S3) and 

read twice each time it is used (S3 to disk, disk to 

program). In comparison, network file systems enable 

the file to be written once, and read once each time it is 

used. In addition, network file systems support partial 

reads of input files and fine-grained overlapping of 

computation and communication. In order to reduce the 

number of transfers required when using S3 we 



implemented a simple whole-file caching mechanism. 

Caching is possible because all the workflow 

applications used in our experiments obey a strict write-

once file access pattern where no files are ever opened 

for updates. Our simple caching scheme ensures that 

each file is transferred from S3 to a given node only 

once, and saves output files generated on a node so that 

they can be reused as input for future jobs that may run 

on the node. 

The scheduler that was used to execute workflow 

jobs does not consider data locality or parent-child 

affinity when scheduling jobs, and does not have access 

to information about the contents of each node’s cache. 

Because of this, if a file is cached on one node, a job 

that accesses the file could end up being scheduled on a 

different node. A more data-aware scheduler could 

potentially improve workflow performance by 

increasing cache hits and further reducing transfers. 

4.2. NFS 

 NFS [25] is perhaps the most commonly used 

network file system. Unlike the other storage systems 

used, NFS is a centralized system with one node that 

acts as the file server for a group of machines. This puts 

it at a distinct disadvantage in terms of scalability 

compared with the other storage systems.  

We deployed NFS on EC2 in two different 

configurations. The first configuration used a dedicated 

m1.xlarge node to host the NFS file system. We used 

m1.xlarge instead of c1.xlarge because it has a 

comparatively large amount of memory (16GB vs 

8GB), which improves cache performance. Using a 

dedicated node improves performance, but increases 

cost. In order to evaluate the impact of this on 

performance and cost, we deployed a second 

configuration that used one of the c1.xlarge nodes to 

both host the file system and run compute jobs. In both 

cases we configured the NFS clients to use the async 

option, which allows calls to NFS to return before the 

data has been flushed to disk, and we disabled atime 

updates. 

4.3. GlusterFS 

GlusterFS [10] is a distributed file system that 

supports many different configurations. It has a modular 

architecture based on components called translators that 

can be composed to create novel file system 

configurations. All translators support a common API 

and can be stacked on top of each other in layers. As a 

result of these translators, there are many ways to 

deploy a GlusterFS file system. We used two 

configurations: NUFA (non-uniform file access) and 

distribute. In both configurations nodes act as both 

clients and servers. Each node exports a local volume 

and merges it with the local volumes of all other nodes. 

In the NUFA configuration, all writes to new files are 

performed on the local disk, while reads and writes to 

existing files are either performed across the network or 

locally depending on where the file was created. 

Because files in the workflows we tested are never 

updated, the NUFA configuration results in all write 

operations being directed to the local disk. In the 

distribute configuration, GlusterFS uses hashing to 

distribute files among nodes. This configuration results 

in a more uniform distribution of reads and writes 

across the virtual cluster compared to the NUFA 

configuration, but may result in more network I/O. 

4.4. PVFS 

PVFS [3] is a parallel file system for Linux 

clusters. It distributes file data via striping across a 

number of I/O nodes. In our configuration we used the 

same set of nodes for both I/O and computation. In 

other words, each node was configured as both a client 



and a server. In addition, we configured PVFS to 

distribute metadata across all nodes instead of having a 

central metadata server. 

Although the latest version of PVFS was 2.8.2 at 

the time our experiments were conducted, we were not 

able to run any of the 2.8 series releases on EC2 reliably 

without crashes or loss of data. Instead, we used an 

older version, 2.6.3, and applied a patch for the Linux 

kernel used on EC2 (2.6.21). This version ran without 

crashing, but does not include some of the changes 

made in later releases to improve support and 

performance for small files. 

5. Performance Comparison 
In this section we compare the performance of the 

selected storage options for workflows on Amazon EC2. 

The critical performance metric we are concerned with 

is the total runtime of the workflow (also known as the 

makespan). The runtime of a workflow is defined as the 

total amount of wall clock time from the moment the 

first workflow task is submitted until the last task 

completes. The runtimes reported in the following 

sections do not include the time required to provision 

and configure the VMs, which typically averages 

between 50 and 110 seconds to boot the operating 

system, and 90 to 120 seconds to boot the OS and 

configure the storage systems [14]. The runtimes also 

do not include the time required to transfer input and 

output data. Because the sizes of input files are constant, 

and the resources are all provisioned at the same time, 

the file transfer and provisioning overheads are assumed 

to be independent of the storage system chosen. 

In discussing the results for various storage systems 

it is useful to consider the I/O workload generated by 

the applications tested. All of the applications generate a 

large number (thousands) of relatively small files (on 

the order of 1 MB to 10 MB). The write pattern is 

sequential and strictly write-once (no file is updated 

after it has been created). The read pattern is primarily 

sequential, with a few tasks performing random 

accesses. Because many workflow jobs run 

concurrently, many files will be accessed at the same 

time. Some files are read concurrently, but no file is 

ever read and written at the same time. These 

characteristics will help to explain the observed 

performance differences between the storage systems in 

the following sections. 

When comparing the results for different storage 

systems, note that the GlusterFS and PVFS 

configurations that were used require at least two nodes 

to construct a valid file system, so results with one 

worker are reported only for S3 and NFS. Also, in 

addition to the storage systems described in Section 4, 

we have included performance results for experiments 

run on a single c1.xlarge node with 8 cores using the 

local disk from our previous work [13]. These results 

are shown as a single point in the graphs and are labeled 

“Local”. 

5.1. Montage 

The performance results for Montage are shown in 

3. The characteristic of Montage that seems to have the 

most significant impact on its performance is the large 

number (~29,000) of relatively small (a few MB) files it 

accesses. GlusterFS seems to handle this workload well, 

with both the NUFA and distribute modes producing 

significantly better performance than the other storage 

systems. NFS does relatively well for Montage, beating 

even the local disk in the single node case. This may be 

because we used the async option with NFS, which 

results in better NFS write performance than a local disk 

when the remote host has a large amount of memory in 

which to buffer writes, or because using NFS results in 

less disk contention. Surprisingly, the shared NFS 



configuration performed better than the NFS 

configuration using a dedicated node. This is likely a 

result of the fact that in the shared configuration 1/N of 

the file accesses are local (where N is the number of 

nodes), while in the dedicated configuration all accesses 

are performed over the network, which has larger 

latencies and lower bandwidth than the local disk. The 

relatively poor performance of S3 and PVFS may be a 

result of Montage accessing a large number of small 

files. As we indicated in Section 4, the version of PVFS 

we have used does not contain the small file 

optimizations added in later releases. S3 performs worse 

than the other systems on small files because of the 

relatively large overhead of fetching and storing files in 

S3. In addition, the Montage workflow does not contain 

much file reuse, which makes the S3 client cache less 

effective. 

5.2. Broadband 

The performance results for Broadband are shown 

in Figure 4. In contrast to the other applications, the best 

overall performance for Broadband was achieved using 

Amazon S3 and not GlusterFS. This is likely due to the 

fact that Broadband reuses many input files, which 

improves the effectiveness of the S3 client cache. Many 

of the transformations in Broadband consist of several 

executables that are run in sequence like a mini 

workflow. This would explain why GlusterFS (NUFA) 

results in better performance than GlusterFS 

(distribute). In the NUFA case all the outputs of a 

transformation are stored on the local disk, which 

results in much better locality for Broadband’s 

workflow-like transformations. An additional 

Broadband experiment was run using a different NFS 

server (m2.4xlarge, 64 GB memory, 8 cores) to see if a 

more powerful server would significantly improve NFS 

performance. The result was better than the smaller 

server for the 4-node case (4368 seconds vs. 5363 

seconds), but was still significantly worse than 

GlusterFS and S3 (<3000 seconds in all cases). The 

decrease in performance using NFS between 2 and 4 

nodes was consistent across repeated experiments and 

was not affected by any of the NFS parameter changes 

we tried. Similar to Montage, the shared NFS 

configuration performed better than the dedicated 

configuration, most likely due to the larger proportion 

of local file accesses. Also similar to Montage, 

Broadband appears to have relatively poor performance 

on PVFS, possibly because of the large number of small 

files it generates (>5,000). 

5.3. Epigenome 

The performance results for Epigenome are shown 

in Figure 5. Epigenome is mostly CPU-bound, and 

performs relatively little I/O compared to Montage and 

Broadband. As a result, the choice of storage system has 

less of an impact on the performance of Epigenome 

compared to the other applications. In general, the 

performance was almost the same for all storage 

systems, with S3 and PVFS performing slightly worse 

than NFS and GlusterFS. Unlike Montage, for which 

NFS performed better than the local disk in the single 

 
Figure 3: Performance of Montage using 

different storage systems. 



node case, for Epigenome the local disk was 

significantly faster. 

6. Cost Comparison 
In this section we analyze the cost of running 

workflow applications using the selected storage 

systems. There are three different cost categories when 

running an application on EC2. These include: resource 

cost, storage cost, and transfer cost. Resource cost 

includes charges for the use of VM nodes in EC2; 

storage cost includes charges for keeping VM images 

and input data in S3 or EBS; and transfer cost includes 

charges for moving input data, output data and log files 

between the submit host and EC2. 

One important issue to consider when evaluating 

the cost of a workflow is the granularity at which the 

provider charges for resources. In the case of EC2, 

Amazon charges for resources by the hour, and any 

partial hours are rounded up. One important result of 

this is that there is no cost benefit to adding resources 

for workflows that run for less than an hour, even 

though doing so may improve runtime. Another result 

of this is that it is difficult to compare the costs of 

different solutions. In order to better illustrate the costs 

of the various storage systems we use two different 

ways to calculate the total cost of a workflow: per hour 

charges, and per second charges. Per hour charges are 

what Amazon actually charges for the usage, including 

rounding up to the nearest hour, and per second charges 

are what the experiments would cost if Amazon charged 

per second. We compute per second rates by dividing 

the hourly rate by 3,600 seconds. 

It should be noted that the storage systems do not 

have the same cost profiles. NFS with a dedicated file 

server is at a disadvantage in terms of cost because of 

the extra node that was used to host the file system. This 

results in an extra cost of $0.68 per workflow for all 

applications. S3 is also at a disadvantage compared to 

the other systems because Amazon charges a fee to 

store data in S3. This fee is $0.01 per 1,000 PUT 

operations, $0.01 per 10,000 GET operations, and $0.15 

per GB-month of storage (transfers are free within 

EC2). For Montage this results in an extra cost of $0.28, 

for Epigenome the extra cost is $0.01, and for 

Broadband the extra cost is $0.02. Note that the S3 cost 

is somewhat reduced by caching in the S3 client, and 

that the storage cost is insignificant for the applications 

tested (<< $0.01). 

The resource cost for Montage, Epigenome and 

Broadband using actual cost, and including extra 

charges for NFS and S3, is shown in Figure 6. In 

 
Figure 5: Performance of Epigenome using 

different storage systems. 

 
Figure 4: Performance of Broadband using 

different storage systems. 



addition to the cost of running on the storage systems 

described in Section 4, we also include the cost of 

running on a single node using the local disk from our 

previous work [13] (Local in the figures). For Montage 

the lowest cost solution was GlusterFS on two nodes. 

This is consistent with GlusterFS producing the best 

performance for Montage. For Epigenome the lowest 

cost solution was a single node using the local disk. 

Also notice that, because Epigenome is not I/O 

intensive, the difference in cost between the various 

storage solutions is relatively small. For Broadband the 

local disk, GlusterFS and S3 all tied for the lowest cost. 

One final point to make about the cost of these 

experiments is the effect of adding resources. Assuming 

that resources have uniform cost and performance, in 

order for the cost of a workflow to decrease when 

resources are added the speedup of the application must 

be super-linear. Since this is rarely the case in any 

parallel application it is unlikely that there will ever be a 

cost benefit for adding resources, even though there 

may still be a performance benefit. In our experiments 

adding resources reduced the cost of a workflow for a 

given storage system in only 2 cases: 1 node to 2 nodes 

using NFS for both Epigenome and Broadband. In both 

of those cases the improvement was a result of the non-

uniform cost of resources due to the extra node that was 

used for NFS. In all other cases the cost of the 

workflows only increased when resources were added. 

Assuming that cost is the only consideration and that 

resources are uniform, the best strategy is to either 

provision only one node for a workflow, or to use the 

fewest number of resources possible to achieve the 

required performance.  

7. Cluster Compute Instance Type 
Recently Amazon introduced two new instance 

types that are designed specifically for high-

performance computing. The new “cluster compute” 

(cc1.4xlarge) and “cluster GPU” (cg1.4xlarge) nodes 

use 10Gbps Ethernet in comparison with the 1Gbps 

Ethernet used by the other instance types, and it is 

possible to ensure that cluster nodes are provisioned 

“close” to each other (in terms of network locality) in 

order to minimize network latency. These features 

 

 

 
Figure 6: Actual cost of Montage (top), 

Broadband (middle), and Epigenome (bottom) 

using different storage systems. 



provide significantly better network performance for 

parallel applications using the new instance types. The 

new types are also fully virtualized using Xen HVM 

[15] instead of using paravirtualization. HVM improves 

application performance by reducing virtualization 

overhead, and enables the nodes to deploy custom 

kernels, which is not possible with the older instance 

types. Both new cluster types have higher-performance, 

dual, quad-core 2.93 Ghz Intel Xeon “Nehalem” 

processors. In comparison, most of the c1.xlarge 

instance types have older, dual, quad-core 2.13 or 2.33 

Ghz Intel Xeon processors. The cluster GPU types also 

include two NVIDIA Tesla “Fermi” GPUs. 

The new instance types come at a significantly 

higher cost than the older instance types. Cluster 

compute nodes cost $1.60 per hour, while cluster GPU 

nodes cost $2.10 per hour. In comparison, the c1.xlarge 

instance type used in the previous storage comparison 

   

   

   
Figure 7: Performance and cost comparison between c1.xlarge and cc1.4xlarge for Montage (top), 

Broadband (middle), and Epigenome (bottom). 

 



cost $0.68 per hour—58-68% less than the new instance 

types. In order to offset the increased cost, the cluster 

compute nodes would have to deliver twice the 

performance of the c1.xlarge type. 

To compare the new, high-performance instance 

types to the older instance types we ran a set of 

experiments using the three example workflow 

applications. Since these applications cannot take 

advantage of the GPUs provided by the cluster GPU 

nodes without being modified (which would require 

significant changes to the application code), we 

restricted our comparison to the cluster compute 

(cc1.4xlarge) nodes. We compared the performance of 

these new nodes to the c1.xlarge results obtained in the 

previous experiments. Since GlusterFS in the NUFA 

configuration performed well for all three applications 

in the previous experiments, we restrict the comparison 

to that storage system. 

The performance and cost comparison are shown in 

Figure 7. In all cases, the use of cc1.4xlarge nodes 

resulted in significantly better performance, but 

significantly increased cost, compared with the 

c1.xlarge nodes. 

The performance improvement decreases as the 

number of nodes increases due to the limited scalability 

of the application. Also, the cost curves diverge as a 

result of weaker performance improvements as the 

number of nodes increases, so that the cost increases 

with cc1.4xlarge at a faster rate than with c1.xlarge. 

In a few cases, the performance benefit of 

switching from c1.xlarge to cc1.4xlarge might be worth 

the increased cost. Table 2 compares the percent change 

in runtime versus the percent change in cost. In most 

cases, the improvement in runtime is less than the 

increase in cost, suggesting that the benefit is not worth 

the cost. For Montage with 2 or 4 nodes, however, the 

improvement in performance is greater than the 

increased cost. 

8. Submit Host in the Cloud 
In the previous experiments we provisioned worker 

nodes in the cloud, but used a submit host outside the 

cloud to manage the workflows. This configuration was 

used for a number of reasons: it is the way we assumed 

most people would want to deploy their workflows, it 

made experiment management and setup easier, and it 

provided a stable and permanent base from which we 

could run identical experiments over time. It also 

required us to provision one less node, which reduced 

cost. The drawback of this approach is that, although the 

amount of data transferred between the submit host and 

the workers is small, the overhead of communication 

over the WAN could impact the performance of the 

application. 

In order to quantify the impact of submit node 

placement on performance and cost, we ran a set of 

experiments where the submit node was provisioned in 

the cloud and outside. Once again we used the c1.xlarge 

instance types for worker nodes, and GlusterFS in the 

NUFA configuration for shared storage. For the 

experiments were the submit host was provisioned 

inside the cloud we used the m1.xlarge instance type for 

the submit host, which costs $0.68 per hour. For the 

experiments where the submit host was outside the 

Table 2: Performance and cost comparison when switching from c1.xlarge to cc1.4xlarge. 

 



cloud, the total cost of the data transfer required was 

computed in previous work and found to be much less 

than $0.01 per workflow instance [13]. 

The results of these experiments are shown in 

Figure 8. Overall, the location of the submit host does 

have an impact on the performance of the workflow, 

with the submit host inside the cloud resulting in 

somewhat better performance in almost every case. Of 

all the applications, Epigenome has the least benefit, 

most likely because there are fewer jobs in the 

Epigenome workflow and therefore less traffic between 

the submit host and the worker nodes. Montage has the 

greatest benefit, which is a result of having the most 

jobs and the most traffic between the submit host and 

the workers. 

Interestingly, the cost of running with the submit 

host in the cloud is in many cases less than the cost of 

running with the submit host outside, despite the fact 

   

   

   
Figure 8: Performance and cost comparison when running the submit host inside the cloud, or outside 

the cloud for Montage (top), Broadband (middle), and Epigenome (bottom). 



that using a submit host inside requires an extra node. 

This is a result of the decrease in total runtime across all 

nodes, which offset the cost of the additional node. 

Table 3 shows the performance and cost 

comparison when switching from a submit host outside, 

to a submit host inside the cloud. In 5 out of 9 cases the 

change is beneficial, and in 3 of 9 cases the cost actually 

decreases. 

Aside from performance and cost, however, 

developers of workflow applications should consider 

application requirements and convenience when 

deciding upon the location of the submit host. Having a 

submit host outside the cloud provides a permanent base 

for storing workflow descriptions, execution logs, data, 

and metadata that will not be lost when the workflow 

completes. If a submit host is provisioned in the cloud, 

then additional measures must be taken to ensure that 

this information is transferred to a permanent storage 

location before the submit host is deprovisioned. Other 

issues, such as the availability of an existing local 

submit host, the use of multiple clouds, and the 

combination of local resources with cloud resources 

would also affect the decision. On the other hand, 

provisioning submit hosts in the cloud has the advantage 

of being able to support multiple, large-scale workflows 

at the same time by enabling the developer to provision 

a separate submit host for each workflow instance. 

9. Related Work 
Much previous research has investigated the 

performance of parallel scientific applications on 

virtualized and cloud platforms 

[7,8,11,19,22,23,29,31,32]. Our work differs from these 

in two ways. First, most of the previous efforts have 

focused on tightly-coupled applications such as MPI 

applications. In comparison, we have focused on 

scientific workflows, which are loosely-coupled parallel 

applications with very different requirements (although 

it is possible for individual workflow tasks to use MPI, 

we did not consider workflows with MPI tasks here). 

Second, previous efforts have focused mainly on micro 

benchmarks and benchmark suites such as the NAS 

parallel benchmarks [20]. Our work, on the other hand, 

has focused on the performance and cost of real-world 

applications. 

Vecchiola, et al. have conducted research similar to 

our work [28]. They ran an fMRI workflow on Amazon 

EC2 using S3 for storage, compared the performance to 

Grid’5000, and analyzed the cost on different numbers 

of nodes. In comparison, our work is broader in scope. 

We use several applications from different domains 

with different resource requirements, and we 

experiment with six different storage configurations. 

10. Conclusion 
In this paper we examined the performance and 

cost of several different storage systems that can be 

used to communicate data within a scientific workflow 

running on the cloud. We evaluated the performance 

and cost of three workflow applications representing 

diverse application domains and resource requirements 

on Amazon’s EC2 platform using different numbers of 

Table 3: Performance and cost comparison when switching from a submit host outside the cloud to a submit 

host inside the cloud 

 



resources (1-8 nodes corresponding to 8-64 cores) and 

six different storage configurations. Overall we found 

that cloud platforms like EC2 can be a practical solution 

for deploying workflow applications. The performance 

of EC2 was good enough for many applications, and the 

cost was within reason for the applications and 

scenarios studied. 

One of the major factors inhibiting storage 

performance on EC2 is the first write penalty on 

ephemeral disks. We found that this significantly 

reduced the performance of storage systems deployed in 

EC2. This penalty appears to be unique to EC2, so 

repeating these experiments on another cloud platform 

may produce better storage system performance given a 

similar setup. 

We found that the choice of storage system has a 

significant impact on workflow runtime. This is 

consistent with what we expect for non-cloud 

environments, so the use of clouds does not appear to be 

the most significant factor in storage system 

performance. GlusterFS delivered good performance for 

all the applications tested and seemed to perform well 

with both a large number of small files, and a large 

number of clients. S3 produced good performance for 

one application, possibly due to the use of caching in 

our implementation of the S3 client, but it’s 

performance suffered from long latencies to access data 

on applications with many small files. NFS performed 

surprisingly well in cases where there were either few 

clients, or when the I/O requirements of the application 

were low. Like S3, PVFS performed poorly on 

workflows with many small files, although the version 

of PVFS we used did not contain optimizations for 

small files that were included in subsequent releases. 

As expected, we found that cost closely follows 

performance. In general, the storage systems that 

produced the best workflow runtimes resulted in the 

lowest cost. NFS was at a disadvantage compared to the 

other systems when it used an extra, dedicated node to 

host the file system, however, overloading a compute 

node would not have significantly reduced the cost. 

Similarly, S3 is at a disadvantage, especially for 

workflows with many files, because Amazon charges a 

fee per S3 transaction. For two of the applications 

(Montage, I/O-intensive; Epigenome CPU-intensive) 

the lowest cost was achieved with GlusterFS, and for 

the other application  (Broadband—memory-intensive) 

the lowest cost was achieved with S3. 

Although the runtime of the applications tested 

improved when resources were added, the cost did not. 

This is a result of the fact that adding resources only 

improves cost if speedup is superlinear. Since that is 

rarely ever the case, it is better from a cost perspective 

to either provision one node to execute an application, 

or to provision the minimum number of nodes that will 

provide the desired performance. Also, since Amazon 

bills by the hour, it is more cost-effective to run for 

long-periods in order to amortize the cost of unused 

capacity. One way to achieve this is to provision a 

single virtual cluster and use it to run multiple 

workflows in succession. 

The new cluster compute instance types offered by 

Amazon EC2 do result in significant performance gains 

over the older instance types, but in most cases the 

improvements were not significant enough to offset the 

increased cost. 

We saw that performance gains could be achieved 

without increasing cost, or with only a small increase in 

cost, by provisioning a submit host inside the cloud to 

manage the workflow. However, we have found that 

using a submit host outside the cloud is more 

convenient because it provides a permanent base for 

storing workflow descriptions, execution logs, data, and 

metadata that would otherwise be lost when the 



workflow completes and the submit host is 

deprovisioned. 
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