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Abstract—Efficient data management is a key component 
in achieving good performance for scientific workflows in 
distributed environments. Workflow applications typically 
communicate data between tasks using files. When tasks 
are distributed, these files are either transferred from one 
computational node to another, or accessed through a 
shared storage system. In grids and clusters, workflow 
data is often stored on network and parallel file systems. In 
this paper we investigate some of the ways in which data 
can be managed for workflows in the cloud. We ran 
experiments using three typical workflow applications on 
Amazon’s EC2. We discuss the various storage and file 
systems we used, describe the issues and problems we 
encountered deploying them on EC2, and analyze the 
resulting performance and cost of the workflows. 
 
Index Terms—Cloud computing, scientific workflows, cost 
evaluation, performance evaluation. 

I. INTRODUCTION 
Scientists are using workflow applications in many different 
scientific domains to orchestrate complex simulations, and 
data analyses. Traditionally, large-scale workflows have been 
run on academic HPC systems such as clusters and grids. With 
the recent development and interest in cloud computing 
platforms many scientists would like to evaluate the use of 
clouds for their workflow applications. Clouds give workflow 
developers several advantages over traditional HPC systems, 
such as root access to the operating system and control over 
the entire software environment, reproducibility of results 
through the use of VM images to store computational 
environments, and on-demand provisioning capabilities. 

One important question when evaluating the effectiveness 
of cloud platforms for workflows is: How can workflows 
share data in the cloud? Workflows are loosely-coupled 
parallel applications that consist of a set of computational 
tasks linked via data- and control-flow dependencies. Unlike 
tightly-coupled applications, such as MPI jobs, in which tasks 
communicate directly via the network, workflow tasks 
typically communicate through the use of files. Each task in a 

workflow produces one or more output files that become input 
files to other tasks. When tasks are run on different 
computational nodes, these files are either stored in a shared 
file system, or transferred from one node to the next by the 
workflow management system. 

Running a workflow in the cloud involves creating an 
environment in which tasks have access to the input files they 
require. There are many existing storage systems that can be 
deployed in the cloud. These include various network and 
parallel file systems, object-based storage systems, and 
databases. One of the advantages of cloud computing and 
virtualization is that the user has control over what software is 
deployed, and how it is configured. However, this flexibility 
also imposes a burden on the user to determine what system 
software is appropriate for their application. The goal of this 
paper is to explore the various options for sharing data in the 
cloud for workflow applications, and to evaluate the 
effectiveness of various solutions. 

The contributions of this paper are: 
• A description of an approach that sets up a 

computational environment in the cloud to support 
the execution of scientific workflow applications. 

• An overview of the issues related to workflow 
storage in the cloud and a discussion of the current 
storage options for workflows in the cloud. 

• A comparison of the performance (runtime) of three 
real workflow applications using five different 
storage systems on Amazon EC2. 

• An analysis of the cost of running workflows with 
different storage systems on Amazon EC2. 

Our results show that the cloud offers a convenient and 
flexible platform for deploying workflows with various 
storage systems. We find that there are many options available 
for workflow storage in the cloud, and that the performance of 
storage systems such as GlusterFS [11] is quite good. We also 
find that the cost of running workflows on EC2 is not 
prohibitive for the applications we tested, however the cost 
increases significantly when multiple virtual instances are 
used. At the same time we did not observe a corresponding 
increase in performance. 
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The rest of the paper is organized as follows: Section II 
describes the set of workflow applications we chose for our 
experiments. Section III gives an overview of the execution 
environment we set up for the experiments on Amazon EC2. 
Section IV provides a discussion and overview of storage 
systems (including various file systems) that are used to 
communicate data between workflow tasks. Sections V and VI 
provide results of our experiments in terms of both runtime 
and cost. Sections VII and VIII describe related work and 
conclude the paper. 

II. WORKFLOW APPLICATIONS 
In order to evaluate the cost and performance of data 

sharing options for scientific workflows in the cloud we 
considered three different workflow applications: an 
astronomy application (Montage), a seismology application 
(Broadband), and a bioinformatics application (Epigenome). 
These three applications were chosen because they cover a 
wide range of application domains and a wide range of 
resource requirements. Table I shows the relative resource 
usage of these applications in three different categories: I/O, 
memory, and CPU. The resource usage of these applications 
was determined using a workflow profiler1, which measures 
the I/O, CPU usage, and peak memory by tracing all the tasks 
in the workflow using ptrace [27]. 

 
TABLE I 

APPLICATION RESOURCE USAGE COMPARISON 
Application I/O Memory CPU 
Montage High Low Low 
Broadband Medium High Medium 
Epigenome Low Medium High 

 
The first application, Montage [17], creates science-grade 

astronomical image mosaics using data collected from 
telescopes. The size of a Montage workflow depends upon the 
area of the sky (in square degrees) covered by the output 
mosaic. In our experiments we configured Montage 
workflows to generate an 8-degree square mosaic. The 
resulting workflow contains 10,429 tasks, reads 4.2 GB of 
input data, and produces 7.9 GB of output data (excluding 
temporary data). We consider Montage to be I/O-bound 
because it spends more than 95% of its time waiting on I/O 
operations. 

The second application, Broadband [29], generates and 
compares seismograms from several high- and low-frequency 
earthquake simulation codes. Each Broadband workflow 
generates seismograms for several sources (scenario 
earthquakes) and sites (geographic locations). For each 
(source, site) combination the workflow runs several high- and 
low-frequency earthquake simulations and computes intensity 
measures of the resulting seismograms. In our experiments we 
used 6 sources and 8 sites to generate a workflow containing 
768 tasks that reads 6 GB of input data and writes 303 MB of 
output data. We consider Broadband to be memory-limited 
because more than 75% of its runtime is consumed by tasks 
requiring more than 1 GB of physical memory. 

                                                             
1 http://pegasus.isi.edu/wfprof 

The third and final application, Epigenome [30], maps 
short DNA segments collected using high-throughput gene 
sequencing machines to a previously constructed reference 
genome using the MAQ software [19]. The workflow splits 
several input segment files into small chunks, reformats and 
converts the chunks, maps the chunks to the reference 
genome, merges the mapped sequences into a single output 
map, and computes the sequence density for each location of 
interest in the reference genome. The workflow used in our 
experiments maps human DNA sequences from chromosome 
21. The workflow contains 529 tasks, reads 1.9 GB of input 
data, and produces 300 MB of output data. We consider 
Epigenome to be CPU-bound because it spends 99% of its 
runtime in the CPU and only 1% on I/O and other activities. 

III. EXECUTION ENVIRONMENT 
In this section we describe the experimental setup that 

was used in our experiments. We ran experiments on 
Amazon’s EC2 infrastructure as a service (IaaS) cloud [1]. 
EC2 was chosen because it is currently the most popular, 
feature-rich, and stable commercial cloud available. 

 
Fig. 1. Execution environment 

There are many ways to configure an execution 
environment for workflow applications in the cloud. The 
environment can be deployed entirely in the cloud, or parts of 
it can reside outside the cloud. For this paper we have chosen 
the latter approach, mirroring the configuration used for 
workflows on the grid. In our configuration, shown in  Fig. 1, 
we have a submit host that runs outside the cloud to manage 
the workflows and set up the cloud environment, several 
worker nodes that run inside the cloud to execute tasks, and a 
storage system that also runs inside the cloud to store 
workflow inputs and outputs. 
A. Software 

The execution environment is based on the idea of a 
virtual cluster [4,10]. A virtual cluster is a collection of virtual 
machines that have been configured to act like a traditional 
HPC cluster. Typically this involves installing and configuring 
job management software, such as a batch scheduler, and a 
shared storage system, such as a network file system. The 
challenge in provisioning a virtual cluster in the cloud is 
collecting the information required to configure the cluster 
software, and then generating configuration files and starting 
services. Instead of performing these tasks manually, which 
can be tedious and error-prone, we have used the Nimbus 
Context Broker [18] to provision and configure virtual clusters 
for this paper. 



All workflows were planned and executed using the 
Pegasus Workflow Management System [7], which includes 
the Pegasus mapper, DAGMan [5] and the Condor schedd 
[21]. Pegasus is used to transform a resource-independent, 
abstract workflow description into a concrete plan, which is 
then executed using DAGMan. The latter manages 
dependencies between executable tasks, and Condor schedd 
manages individual task execution. The Pegasus mapper, 
DAGMan, the Condor manager, and the Nimbus Context 
Broker service were all installed on the submit host. 

To deploy software on the virtual cluster we developed a 
virtual machine image based on the stock Fedora 8 image 
provided by Amazon. To the stock image we added the 
Pegasus worker node tools, Globus clients, Condor worker 
daemons, and all other packages required to compile and run 
the tasks of the selected workflows, including the application 
binaries. We also installed the Nimbus Context Broker agent 
to manage the configuration of the virtual machines, and wrote 
shell scripts to generate configuration files and start the 
required services. Finally, we installed and configured the 
software necessary to run the storage systems that will be 
described in Section IV. The resulting image was used to 
deploy worker nodes on EC2. With the exception of Pegasus, 
which needed to be enhanced to support Amazon S3 (see 
section IV.A) the workflow management system did not 
require modifications to run on EC2. 
B. Resources 

Amazon EC2 offers several different resource 
configurations for virtual machine instances. Each instance 
type is configured with a specific amount of memory, CPUs, 
and local storage. Rather than experimenting with all the 
various instance types, for this paper only the c1.xlarge 
instance type is used. This type is equipped with two quad 
core 2.33-2.66 GHz Xeon processors (8 cores total), 7 GB 
RAM, and 1690 GB local disk storage. In our previous work 
we found that the c1.xlarge type delivers the best overall 
performance for the applications considered here [16]. A 
different choice for worker nodes would result in different 
performance and cost metrics. An exhaustive survey of all the 
possible combinations is beyond the scope of this paper. 
C. Storage 

To run workflows we need to allocate storage for 1) 
application executables, 2) input data, and 3) intermediate and 
output data. In a typical workflow application executables are 
pre-installed on the execution site, input data is copied from an 
archive to the execution site, and output data is copied from 
the execution site to an archive. Since the focus of this paper is 
on the storage systems we did not perform or measure data 
transfers to/from the cloud. Instead, executables were included 
in the virtual machine images, input data was pre-staged to the 
virtual cluster, and output data was not transferred back to the 
submit host. For a more detailed examination of the 
performance and cost of workflow transfers to/from the cloud 
see our previous work [16]. 

Each of the c1.xlarge instances used for our experiments 
has 4 “ephemeral” disks. These disks are virtual block-based 
storage devices that provide access to physical storage on local 
disk drives. Ephemeral disks appear as devices to the virtual 

machine and can be formatted and accessed as if they were 
physical devices. They can be used to store data for the 
lifetime of the virtual machine, but are wiped clean when the 
virtual machine is terminated. As such they cannot be used for 
long-term storage. 

Ephemeral disks have a severe first write penalty that 
should be considered when deploying an application on EC2. 
One would expect that ephemeral disks should deliver 
performance close to that of the underlying physical disks, 
most likely around 100 MB/s, however, the observed 
performance is only about 20 MB/s for the first write. 
Subsequent writes to the same location deliver the expected 
performance. This appears to be the result of the virtualization 
technology used to expose the drives to the virtual machine. 
This problem has not been observed with standard Xen virtual 
block devices outside of EC2, which suggests that Amazon is 
using a custom disk virtualization solution, perhaps for 
security reasons. Amazon’s suggestion for mitigating the first-
write penalty is for users to initialize ephemeral disks by 
filling them with zeros before using them for application data. 
However, initialization is not feasible for many applications 
because it takes too much time. Initializing enough storage for 
a Montage workflow (50 GB), for example, would take almost 
as long (42 minutes) as running the workflow using an 
uninitialized disk. If the instance using the disk is going to be 
provisioned for only one workflow, then initialization does not 
make economic sense. 

For the experiments described in this paper we have not 
initialized the ephemeral disks. In order to get the best 
performance without initialization we used software RAID 
[20]. We combined the 4 ephemeral drives on each c1.xlarge 
instance into a single RAID 0 partition. This configuration 
results in first writes of 80-100 MB/s, and subsequent writes 
around 350-400 MB/s. Reads peak at around 110 MB/s from a 
single ephemeral disk and around 310 MB/s from a 4-disk 
RAID array. The RAID 0 disks were used as local storage for 
the systems described in the next section. 

IV. STORAGE OPTIONS 
In this section we describe the storage services we used 

for our experiments and any special configuration or handling 
that was required to get them to work with our workflow 
management system. We tried to select a number of different 
systems that span a wide range of storage options. Given the 
large number of network storage systems available it is not 
possible for us to examine them all. In addition, it is not 
possible to run some file systems on EC2 because Amazon 
does not allow kernel modifications (Amazon does allow 
modules, but many file systems require source code patches as 
well). This is the case for Lustre [24] and Ceph [33], for 
example. Also, in order to work with our workflow tasks (as 
they are provided by the domain scientists), the file system 
either needs to be POSIX-compliant (i.e. we must be able to 
mount it and it must support standard semantics), or additional 
tools need to be used to copy files to/from the local file 
system, which can result in reduced performance. 

It is important to note that our goal with this work is not 
to evaluate the raw performance of these storage systems in 
the cloud, but rather to examine application performance in 
the context of scientific workflows. We are interested in 



exploring various options for sharing data in the cloud for 
workflow applications and in determining, in general, how the 
performance and cost of a workflow is affected by the choice 
of storage system. Where possible we have attempted to tune 
each storage system to deliver the best performance, but we 
have no way of knowing what combination of parameter 
values will give the best results for all applications without an 
exhaustive search. Instead, for each storage system we ran 
some simple benchmarks to verify that the storage system 
functions correctly and to determine if there are any obvious 
parameters that should be changed. We do not claim that the 
configurations we have used are the best of all possible 
configurations for our applications, but rather represent a 
typical setup. 

In addition to the systems described below we ran a few 
experiments using XtreemFS [14], a file system designed for 
wide-area networks. However, the workflows performed far 
worse on XtreemFS than the other systems tested, taking more 
than twice as long as they did on the storage systems reported 
here before they were terminated without completing. As a 
result, we did not perform the full range of experiments with 
XtreemFS. 
A. Amazon S3 

Amazon S3 [2] is a distributed, object-based storage 
system. It stores un-typed binary objects (e.g. files) up to 5 GB 
in size. It is accessed through a web service that supports both 
SOAP and a REST-like protocol. Objects in S3 are stored in 
directory-like structures called buckets. Each bucket is owned 
by a single user and must have a globally unique name. 
Objects within a bucket are named by keys. The key 
namespace is flat, but path-like keys are allowed (e.g. “a/b/c” 
is a valid key). 

Because S3 does not have a POSIX interface, in order to 
use it, we needed to make some modifications to the workflow 
management system. The primary change was adding support 
for an S3 client, which copies input files from S3 to the local 
file system before a job starts, and copies output files from the 
local file system back to S3 after the job completes. The 
workflow management system was modified to wrap each job 
with the necessary GET and PUT operations. 

Transferring data for each job individually increases the 
amount of data that must be moved and, as a result, has the 
potential to reduce the performance of the workflow. Using S3 
each file must be written twice when it is generated (program 
to disk, disk to S3) and read twice each time it is used (S3 to 
disk, disk to program). In comparison, network file systems 
enable the file to be written once, and read once each time it is 
used. In addition, network file systems support partial reads of 
input files and fine-grained overlapping of computation and 
communication. In order to reduce the number of transfers 
required when using S3 we implemented a simple whole-file 
caching mechanism. Caching is possible because all the 
workflow applications used in our experiments obey a strict 
write-once file access pattern where no files are ever opened 
for updates. Our simple caching scheme ensures that each file 
is transferred from S3 to a given node only once, and saves 
output files generated on a node so that they can be reused as 
input for future jobs that may run on the node. 

The scheduler that was used to execute workflow jobs 
does not consider data locality or parent-child affinity when 
scheduling jobs, and does not have access to information 
about the contents of each node’s cache. Because of this, if a 
file is cached on one node, a job that accesses the file could 
end up being scheduled on a different node. A more data-
aware scheduler could potentially improve workflow 
performance by increasing cache hits and further reducing 
transfers. 
B. NFS 
 NFS [28] is perhaps the most commonly used network 
file system. Unlike the other storage systems used, NFS is a 
centralized system with one node that acts as the file server for 
a group of machines. This puts it at a distinct disadvantage in 
terms of scalability compared with the other storage systems. 
For the workflow experiments we provisioned a dedicated 
node in EC2 to host the NFS file system. Based on our 
benchmarks the m1.xlarge instance type provides the best NFS 
performance of all the resource types available on EC2. We 
attribute this to the fact that m1.xlarge has a comparatively 
large amount of memory (16GB), which facilitates good cache 
performance. We configured NFS clients to use the async 
option, which allows calls to NFS to return before the data has 
been flushed to disk, and we disabled atime updates. 
C. GlusterFS 

GlusterFS [11] is a distributed file system that supports 
many different configurations. It has a modular architecture 
based on components called translators that can be composed 
to create novel file system configurations. All translators 
support a common API and can be stacked on top of each 
other in layers. The translator at each layer can decide to 
service the call, or pass it to a lower-level translator. This 
modular design enables translators to be composed into many 
unique configurations. The available translators include: a 
server translator, a client translator, a storage translator, and 
several performance translators for caching, threading, pre-
fetching, etc. As a result of these translators there are many 
ways to deploy a GlusterFS file system. We used two 
configurations: NUFA (non-uniform file access) and 
distribute. In both configurations nodes act as both clients and 
servers. Each node exports a local volume and merges it with 
the local volumes of all other nodes. In the NUFA 
configuration all writes to new files are performed on the local 
disk, while reads and writes to existing files are either 
performed across the network or locally depending on where 
the file was created. Because files in the workflows we tested 
are never updated, the NUFA configuration results in all 
writes being directed to the local disk. In the distribute 
configuration GlusterFS uses hashing to distribute files among 
nodes. This configuration results in a more uniform 
distribution of reads and writes across the virtual cluster 
compared to the NUFA configuration. 
D. PVFS 

PVFS [3] is a parallel file system for Linux clusters. It 
distributes file data via striping across a number of I/O nodes. 
In our configuration we used the same set of nodes for both 
I/O and computation. In other words, each node was 
configured as both a client and a server. In addition, we 



configured PVFS to distribute metadata across all nodes 
instead of having a central metadata server. 

Although the latest version of PVFS was 2.8.2 at the time 
our experiments were conducted, we were not able to run any 
of the 2.8 series releases on EC2 reliably without crashes or 
loss of data. Instead, we used an older version, 2.6.3, and 
applied a patch for the Linux kernel used on EC2 (2.6.21). 
This version ran without crashing, but does not include some 
of the changes made in later releases to improve support and 
performance for small files. 

V. PERFORMANCE COMPARISON 
 In this section we compare the performance of the 
selected storage options for workflows on Amazon EC2. The 
critical performance metric we are concerned with is the total 
runtime of the workflow (also known as the makespan). The 
runtime of a workflow is defined as the total amount of wall 
clock time from the moment the first workflow task is 
submitted until the last task completes. The runtimes reported 
in the following sections do not include the time required to 
boot and configure the VM, which typically averages between 
70 and 90 seconds [15], nor do they include the time required 
to transfer input and output data. Because the sizes of input 
files are constant, and the resources are all provisioned at the 
same time, the file transfer and provisioning overheads are 
assumed to be independent of the storage system chosen. 

In discussing the results for various storage systems it is 
useful to consider the I/O workload generated by the 
applications tested. Each application generates a large number 
(thousands) of relatively small files (on the order of 1 MB to 
10 MB). The write pattern is sequential and strictly write-once 
(no file is updated after it has been created). The read pattern 
is primarily sequential, with a few tasks performing random 
accesses. Because many workflow jobs run concurrently, 
many files will be accessed at the same time. Some files are 
read concurrently, but no file is ever read and written at the 
same time. These characteristics will help to explain the 
observed performance differences between the storage 
systems in the following sections. 

Note that the GlusterFS and PVFS configurations used 
require at least two nodes to construct a valid file system, so 
results with one worker are reported only for S3 and NFS. In 
addition to the storage systems described in section 4, we have 
also included performance results for experiments run on a 
single node with 8 cores using the local disk. Performance 
using the local disk is shown as a single point in the graphs. 
A. Montage 

The performance results for Montage are shown in Fig. 2. 
The characteristic of Montage that seems to have the most 
significant impact on its performance is the large number 
(~29,000) of relatively small (a few MB) files it accesses. 
GlusterFS seems to handle this workload well, with both the 
NUFA and distribute modes producing significantly better 
performance than the other storage systems. NFS does 
relatively well for Montage, beating even the local disk in the 
single node case. This may be because we used the async 
option with NFS, which results in better NFS write 
performance than a local disk when the remote host has a large 
amount of memory in which to buffer writes, or because using 

NFS results in less disk contention. The relatively poor 
performance of S3 and PVFS may be a result of Montage 
accessing a large number of small files. As we indicated in 
Section IV, the version of PVFS we have used does not 
contain the small file optimizations added in later releases. S3 
performs worse than the other systems on small files because 
of the relatively large overhead of fetching and storing files in 
S3. In addition, the Montage workflow does not contain much 
file reuse, which makes the S3 client cache less effective. 

 

 
Fig. 2. Performance of Montage using different storage 

systems. 

 
B. Epigenome 

The performance results for Epigenome are shown in Fig. 
3. Epigenome is mostly CPU-bound, and performs relatively 
little I/O compared to Montage and Broadband. As a result, 
the choice of storage system has less of an impact on the 
performance of Epigenome compared to the other 
applications. In general, the performance was almost the same 
for all storage systems, with S3 and PVFS performing slightly 
worse than NFS and GlusterFS. Unlike Montage, for which 
NFS performed better than the local disk in the single node 
case, for Epigenome the local disk was significantly faster. 

 

 
Fig. 3. Performance of Epigenome using different 

storage systems. 

C. Broadband 
The performance results for Broadband are shown in Fig. 

4. In contrast to the other applications, the best overall 
performance for Broadband was achieved using Amazon S3 
and not GlusterFS. This is likely due to the fact that 
Broadband reuses many input files, which improves the 



effectiveness of the S3 client cache. Many of the 
transformations in Broadband consist of several executables 
that are run in sequence like a mini workflow. This would 
explain why GlusterFS (NUFA) results in better performance 
than GlusterFS (distribute). In the NUFA case all the outputs 
of a transformation are stored on the local disk, which results 
in much better locality for Broadband’s workflow-like 
transformations. An additional Broadband experiment was run 
using a different NFS server (m2.4xlarge, 64 GB memory, 8 
cores) to see if a more powerful server would significantly 
improve NFS performance. The result was better than the 
smaller server for the 4-node case (4368 seconds vs. 5363 
seconds), but was still significantly worse than GlusterFS and 
S3 (<3000 seconds in all cases). The decrease in performance 
using NFS between 2 and 4 nodes was consistent across 
repeated experiments and was not affected by any of the NFS 
parameter changes we tried. Similar to Montage, Broadband 
appears to have relatively poor performance on PVFS, 
possibly because of the large number of small files it generates 
(>5,000). 

 

 
Fig. 4. Performance of Broadband using different 

storage systems. 

VI. COST COMPARISON 
 In this section we analyze the cost of running workflow 
applications using the selected storage systems. There are 
three different cost categories when running an application on 
EC2. These include: resource cost, storage cost, and transfer 
cost. Resource cost includes charges for the use of VM 
instances in EC2; storage cost includes charges for keeping 
VM images and input data in S3 or EBS; and transfer cost 
includes charges for moving input data, output data and log 
files between the submit host and EC2. In our previous work 
in [16] we analyzed the storage and transfer costs for 
Montage, Broadband and Epigenome, as well as the resource 
cost on single nodes. In this paper we extend that analysis to 
multiple nodes based on our experiments with shared storage 
systems. 

One important issue to consider when evaluating the cost 
of a workflow is the granularity at which the provider charges 
for resources. In the case of EC2, Amazon charges for 
resources by the hour, and any partial hours are rounded up. 
One important result of this is that there is no cost benefit to 
adding resources for workflows that run for less than an hour, 
even though doing so may improve runtime. Another result of 
this is that it is difficult to compare the costs of different 
solutions. In order to better illustrate the costs of the various 

storage systems we use two different ways to calculate the 
total cost of a workflow: per hour charges, and per second 
charges. Per hour charges are what Amazon actually charges 
for the usage, including rounding up to the nearest hour, and 
per second charges are what the experiments would cost if 
Amazon charged per second. We compute per second rates by 
dividing the hourly rate by 3,600 seconds. 

It should be noted that the storage systems do not have the 
same cost profiles. NFS is at a disadvantage in terms of cost 
because of the extra node that was used to host the file system. 
This results in an extra cost of $0.68 per workflow for all 
applications. An alternative NFS configuration would be to 
overload one of the compute nodes to host the file system. 
However, in such a configuration the performance is likely to 
decrease, which may offset any cost savings. In addition, 
reducing the dedicated-node NFS cost by $0.68 still does not 
make it cheaper to use than the other systems. S3 is also at a 
disadvantage compared to the other systems because Amazon 
charges a fee to store data in S3. This fee is $0.01 per 1,000 
PUT operations, $0.01 per 10,000 GET operations, and $0.15 
per GB-month of storage (transfers are free within EC2). For 
Montage this results in an extra cost of $0.28, for Epigenome 
the extra cost is $0.01, and for Broadband the extra cost is 
$0.02. Note that the S3 cost is somewhat reduced by caching 
in the S3 client, and that the storage cost is insignificant for 
the applications tested (<< $0.01). 

The total cost for Montage, Epigenome and Broadband, 
using both per-hour and per-second charges, and including 
extra charges for NFS and S3, is shown in Figs. 5-7. In 
addition to the cost of running on the storage systems 
described in Section IV, we also include the cost of running on 
a single node using the local disk (Local in the figures). For 
Montage the lowest cost solution was GlusterFS on two nodes. 
This is consistent with GlusterFS producing the best 
performance for Montage. For Epigenome the lowest cost 
solution was a single node using the local disk. Also notice 
that, because Epigenome is not I/O intensive, the difference in 
cost between the various storage solutions is relatively small. 
For Broadband the local disk, GlusterFS and S3 all tied for the 
lowest cost. For all of the applications the per-second cost was 
less than the per-hour cost—sometimes significantly less. This 
suggests that a cost-effective strategy would be to provision a 
virtual cluster and use it to run many workflows, rather than 
provisioning a virtual cluster for each workflow. 

One final point to make about the cost of these 
experiments is the effect of adding resources. Assuming that 
resources have uniform cost and performance, in order for the 
cost of a workflow to decrease when resources are added the 
speedup of the application must be super-linear. Since this is 
rarely the case in any parallel application it is unlikely that 
there will ever be a cost benefit for adding resources, even 
though there may still be a performance benefit. In our 
experiments adding resources reduced the cost of a workflow 
for a given storage system in only 2 cases: 1 node to 2 nodes 
using NFS for both Epigenome and Broadband. In both of 
those cases the improvement was a result of the non-uniform 
cost of resources due to the extra node that was used for NFS. 
In all other cases the cost of the workflows only increased 
when resources were added. Assuming that cost is the only 
consideration and that resources are uniform, the best strategy 



is to either provision only one node for a workflow, or to use 
the fewest number of resources possible to achieve the 
required performance. 

 

  

 
Fig. 5. Montage cost assuming per-hour charges (top) 

and per-second charges (bottom) 

  

 
Fig. 6. Epigenome cost assuming per-hour charges (top) 

and per-second charges (bottom) 

  

 
Fig. 7. Broadband cost assuming per-hour charges (top) 

and per-second charges (bottom) 
 

VII. RELATED WORK 
Much previous research has investigated the performance 

of parallel scientific applications on virtualized and cloud 
platforms [8][9][13][22][25][26][32][34][35]. Our work 
differs from these in two ways. First, most of the previous 
efforts have focused on tightly-coupled applications such as 
MPI applications. In comparison, we have focused on 
scientific workflows, which are loosely-coupled parallel 
applications with very different requirements (although it is 
possible for individual workflow tasks to use MPI, we did not 
consider workflows with MPI tasks here). Second, previous 
efforts have focused mainly on micro benchmarks and 
benchmark suites such as the NAS parallel benchmarks [23]. 
Our work, on the other hand, has focused on the performance 
and cost of real-world applications. 

Vecchiola, et al. have conducted research similar to our 
work [31]. They ran an fMRI workflow on Amazon EC2 using 
S3 for storage, compared the performance to Grid’5000, and 
analyzed the cost on different numbers of nodes. In 
comparison, our work is broader in scope. We use several 
applications from different domains with different resource 
requirements, and we experiment with five different storage 
systems. 

In our own previous work on the use of cloud computing 
for workflows we have studied the cost and performance of 
clouds via simulation [6], using an experimental cloud [12], 
and using single EC2 nodes [16]. In this paper we have 
extended that work to consider larger numbers of resources 
and a variety of storage systems.  



VIII. CONCLUSION 
 In this paper we examined the performance and cost of 
several different storage systems that can be used to 
communicate data within a scientific workflow running on the 
cloud. We evaluated the performance and cost of three 
workflow applications representing diverse application 
domains and resource requirements on Amazon’s EC2 
platform using different numbers of resources (1-8 nodes 
corresponding to 8-64 cores) and five different storage 
systems. Overall we found that cloud platforms like EC2 do 
provide a good platform for deploying workflow applications. 

One of the major factors inhibiting storage performance 
on EC2 is the first write penalty on ephemeral disks. We 
found that this significantly reduces the performance of 
storage systems deployed in EC2. This penalty seems to be 
unique to this execution platform. Repeating these 
experiments on another cloud platform may produce better 
results. 

We found that the choice of storage system has a 
significant impact on workflow runtime. In general, GlusterFS 
delivered good performance for all the applications tested and 
seemed to perform well with both a large number of small 
files, and a large number of clients. S3 produced good 
performance for one application, possibly due to the use of 
caching in our implementation of the S3 client. NFS 
performed surprisingly well in cases where there were either 
few clients, or when the I/O requirements of the application 
were low. Both PVFS and S3 performed poorly on workflows 
with a large number of small files, although the version of 
PVFS we used did not contain optimizations for small files 
that were included in subsequent releases. 

As expected, we found that cost closely follows 
performance. In general the storage systems that produced the 
best workflow runtimes resulted in the lowest cost. NFS was 
at a disadvantage compared to the other systems when it used 
an extra, dedicated node to host the file system, however, 
overloading a compute node would not have significantly 
reduced the cost. Similarly, S3 is at a disadvantage, especially 
for workflows with many files, because Amazon charges a fee 
per S3 transaction. For two of the applications (Montage, I/O-
intensive; Epigenome CPU-intensive) the lowest cost was 
achieved with GlusterFS, and for the other application  
(Broadband—Memory-intensive) the lowest cost was 
achieved with S3. 

Although the runtime of the applications tested improved 
when resources were added, the cost did not. This is a result of 
the fact that adding resources only improves cost if speedup is 
superlinear. Since that is rarely ever the case, it is better from 
a cost perspective to either provision one node to execute an 
application, or to provision the minimum number of nodes that 
will provide the desired performance. Also, since Amazon 
bills by the hour, it is more cost-effective to run for long-
periods in order to amortize the cost of unused capacity. One 
way to achieve this is to provision a single virtual cluster and 
use it to run multiple workflows in succession. 

In this work we only considered workflow environments 
in which a shared storage system was used to communicate 
data between workflow tasks. In the future we plan to 

investigate configurations in which files can be transferred 
directly from one computational node to another. 
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