
Data Sharing Options for Scientific Workflows on
Amazon EC2

Gideon Juve, Ewa Deelman, Karan Vahi, Gaurang Mehta

USC Information Sciences Institute
{gideon,deelman,vahi,gmehta}@isi.edu

Bruce Berriman

NASA Exoplanet Science Institute, Infrared
Processing and Analysis Center, Caltech

gbb@ipac.caltech.edu

Benjamin P. Berman

USC Epigenome Center
bberman@usc.edu

Phil Maechling

Southern California Earthquake Center
maechlin@usc.edu

Abstract—Efficient data management is a key component
in achieving good performance for scientific workflows in
distributed environments. Workflow applications typically
communicate data between tasks using files. When tasks
are distributed, these files are either transferred from one
computational node to another, or accessed through a
shared storage system. In grids and clusters, workflow
data is often stored on network and parallel file systems. In
this paper we investigate some of the ways in which data
can be managed for workflows in the cloud. We ran
experiments using three typical workflow applications on
Amazon’s EC2. We discuss the various storage and file
systems we used, describe the issues and problems we
encountered deploying them on EC2, and analyze the
resulting performance and cost of the workflows.

Index Terms—Cloud computing, scientific workflows, cost
evaluation, performance evaluation.

I. INTRODUCTION
Scientists are using workflow applications in many different
scientific domains to orchestrate complex simulations, and
data analyses. Traditionally, large-scale workflows have been
run on academic HPC systems such as clusters and grids. With
the recent development and interest in cloud computing
platforms many scientists would like to evaluate the use of
clouds for their workflow applications. Clouds give workflow
developers several advantages over traditional HPC systems,
such as root access to the operating system and control over
the entire software environment, reproducibility of results
through the use of VM images to store computational
environments, and on-demand provisioning capabilities.

One important question when evaluating the effectiveness
of cloud platforms for workflows is: How can workflows
share data in the cloud? Workflows are loosely-coupled
parallel applications that consist of a set of computational
tasks linked via data- and control-flow dependencies. Unlike
tightly-coupled applications, such as MPI jobs, in which tasks
communicate directly via the network, workflow tasks
typically communicate through the use of files. Each task in a

workflow produces one or more output files that become input
files to other tasks. When tasks are run on different
computational nodes, these files are either stored in a shared
file system, or transferred from one node to the next by the
workflow management system.

Running a workflow in the cloud involves creating an
environment in which tasks have access to the input files they
require. There are many existing storage systems that can be
deployed in the cloud. These include various network and
parallel file systems, object-based storage systems, and
databases. One of the advantages of cloud computing and
virtualization is that the user has control over what software is
deployed, and how it is configured. However, this flexibility
also imposes a burden on the user to determine what system
software is appropriate for their application. The goal of this
paper is to explore the various options for sharing data in the
cloud for workflow applications, and to evaluate the
effectiveness of various solutions.

The contributions of this paper are:
• A description of an approach that sets up a

computational environment in the cloud to support
the execution of scientific workflow applications.

• An overview of the issues related to workflow
storage in the cloud and a discussion of the current
storage options for workflows in the cloud.

• A comparison of the performance (runtime) of three
real workflow applications using five different
storage systems on Amazon EC2.

• An analysis of the cost of running workflows with
different storage systems on Amazon EC2.

Our results show that the cloud offers a convenient and
flexible platform for deploying workflows with various
storage systems. We find that there are many options available
for workflow storage in the cloud, and that the performance of
storage systems such as GlusterFS [11] is quite good. We also
find that the cost of running workflows on EC2 is not
prohibitive for the applications we tested, however the cost
increases significantly when multiple virtual instances are
used. At the same time we did not observe a corresponding
increase in performance.

© 2010 IEEE Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.
SC10 November 2010, New Orleans, Louisiana, USA 978-1-4244-7558-2/10/$26.00

The rest of the paper is organized as follows: Section II
describes the set of workflow applications we chose for our
experiments. Section III gives an overview of the execution
environment we set up for the experiments on Amazon EC2.
Section IV provides a discussion and overview of storage
systems (including various file systems) that are used to
communicate data between workflow tasks. Sections V and VI
provide results of our experiments in terms of both runtime
and cost. Sections VII and VIII describe related work and
conclude the paper.

II. WORKFLOW APPLICATIONS
In order to evaluate the cost and performance of data

sharing options for scientific workflows in the cloud we
considered three different workflow applications: an
astronomy application (Montage), a seismology application
(Broadband), and a bioinformatics application (Epigenome).
These three applications were chosen because they cover a
wide range of application domains and a wide range of
resource requirements. Table I shows the relative resource
usage of these applications in three different categories: I/O,
memory, and CPU. The resource usage of these applications
was determined using a workflow profiler1, which measures
the I/O, CPU usage, and peak memory by tracing all the tasks
in the workflow using ptrace [27].

TABLE I

APPLICATION RESOURCE USAGE COMPARISON
Application I/O Memory CPU
Montage High Low Low
Broadband Medium High Medium
Epigenome Low Medium High

The first application, Montage [17], creates science-grade

astronomical image mosaics using data collected from
telescopes. The size of a Montage workflow depends upon the
area of the sky (in square degrees) covered by the output
mosaic. In our experiments we configured Montage
workflows to generate an 8-degree square mosaic. The
resulting workflow contains 10,429 tasks, reads 4.2 GB of
input data, and produces 7.9 GB of output data (excluding
temporary data). We consider Montage to be I/O-bound
because it spends more than 95% of its time waiting on I/O
operations.

The second application, Broadband [29], generates and
compares seismograms from several high- and low-frequency
earthquake simulation codes. Each Broadband workflow
generates seismograms for several sources (scenario
earthquakes) and sites (geographic locations). For each
(source, site) combination the workflow runs several high- and
low-frequency earthquake simulations and computes intensity
measures of the resulting seismograms. In our experiments we
used 6 sources and 8 sites to generate a workflow containing
768 tasks that reads 6 GB of input data and writes 303 MB of
output data. We consider Broadband to be memory-limited
because more than 75% of its runtime is consumed by tasks
requiring more than 1 GB of physical memory.

1 http://pegasus.isi.edu/wfprof

The third and final application, Epigenome [30], maps
short DNA segments collected using high-throughput gene
sequencing machines to a previously constructed reference
genome using the MAQ software [19]. The workflow splits
several input segment files into small chunks, reformats and
converts the chunks, maps the chunks to the reference
genome, merges the mapped sequences into a single output
map, and computes the sequence density for each location of
interest in the reference genome. The workflow used in our
experiments maps human DNA sequences from chromosome
21. The workflow contains 529 tasks, reads 1.9 GB of input
data, and produces 300 MB of output data. We consider
Epigenome to be CPU-bound because it spends 99% of its
runtime in the CPU and only 1% on I/O and other activities.

III. EXECUTION ENVIRONMENT
In this section we describe the experimental setup that

was used in our experiments. We ran experiments on
Amazon’s EC2 infrastructure as a service (IaaS) cloud [1].
EC2 was chosen because it is currently the most popular,
feature-rich, and stable commercial cloud available.

Fig. 1. Execution environment

There are many ways to configure an execution
environment for workflow applications in the cloud. The
environment can be deployed entirely in the cloud, or parts of
it can reside outside the cloud. For this paper we have chosen
the latter approach, mirroring the configuration used for
workflows on the grid. In our configuration, shown in Fig. 1,
we have a submit host that runs outside the cloud to manage
the workflows and set up the cloud environment, several
worker nodes that run inside the cloud to execute tasks, and a
storage system that also runs inside the cloud to store
workflow inputs and outputs.
A. Software

The execution environment is based on the idea of a
virtual cluster [4,10]. A virtual cluster is a collection of virtual
machines that have been configured to act like a traditional
HPC cluster. Typically this involves installing and configuring
job management software, such as a batch scheduler, and a
shared storage system, such as a network file system. The
challenge in provisioning a virtual cluster in the cloud is
collecting the information required to configure the cluster
software, and then generating configuration files and starting
services. Instead of performing these tasks manually, which
can be tedious and error-prone, we have used the Nimbus
Context Broker [18] to provision and configure virtual clusters
for this paper.

All workflows were planned and executed using the
Pegasus Workflow Management System [7], which includes
the Pegasus mapper, DAGMan [5] and the Condor schedd
[21]. Pegasus is used to transform a resource-independent,
abstract workflow description into a concrete plan, which is
then executed using DAGMan. The latter manages
dependencies between executable tasks, and Condor schedd
manages individual task execution. The Pegasus mapper,
DAGMan, the Condor manager, and the Nimbus Context
Broker service were all installed on the submit host.

To deploy software on the virtual cluster we developed a
virtual machine image based on the stock Fedora 8 image
provided by Amazon. To the stock image we added the
Pegasus worker node tools, Globus clients, Condor worker
daemons, and all other packages required to compile and run
the tasks of the selected workflows, including the application
binaries. We also installed the Nimbus Context Broker agent
to manage the configuration of the virtual machines, and wrote
shell scripts to generate configuration files and start the
required services. Finally, we installed and configured the
software necessary to run the storage systems that will be
described in Section IV. The resulting image was used to
deploy worker nodes on EC2. With the exception of Pegasus,
which needed to be enhanced to support Amazon S3 (see
section IV.A) the workflow management system did not
require modifications to run on EC2.
B. Resources

Amazon EC2 offers several different resource
configurations for virtual machine instances. Each instance
type is configured with a specific amount of memory, CPUs,
and local storage. Rather than experimenting with all the
various instance types, for this paper only the c1.xlarge
instance type is used. This type is equipped with two quad
core 2.33-2.66 GHz Xeon processors (8 cores total), 7 GB
RAM, and 1690 GB local disk storage. In our previous work
we found that the c1.xlarge type delivers the best overall
performance for the applications considered here [16]. A
different choice for worker nodes would result in different
performance and cost metrics. An exhaustive survey of all the
possible combinations is beyond the scope of this paper.
C. Storage

To run workflows we need to allocate storage for 1)
application executables, 2) input data, and 3) intermediate and
output data. In a typical workflow application executables are
pre-installed on the execution site, input data is copied from an
archive to the execution site, and output data is copied from
the execution site to an archive. Since the focus of this paper is
on the storage systems we did not perform or measure data
transfers to/from the cloud. Instead, executables were included
in the virtual machine images, input data was pre-staged to the
virtual cluster, and output data was not transferred back to the
submit host. For a more detailed examination of the
performance and cost of workflow transfers to/from the cloud
see our previous work [16].

Each of the c1.xlarge instances used for our experiments
has 4 “ephemeral” disks. These disks are virtual block-based
storage devices that provide access to physical storage on local
disk drives. Ephemeral disks appear as devices to the virtual

machine and can be formatted and accessed as if they were
physical devices. They can be used to store data for the
lifetime of the virtual machine, but are wiped clean when the
virtual machine is terminated. As such they cannot be used for
long-term storage.

Ephemeral disks have a severe first write penalty that
should be considered when deploying an application on EC2.
One would expect that ephemeral disks should deliver
performance close to that of the underlying physical disks,
most likely around 100 MB/s, however, the observed
performance is only about 20 MB/s for the first write.
Subsequent writes to the same location deliver the expected
performance. This appears to be the result of the virtualization
technology used to expose the drives to the virtual machine.
This problem has not been observed with standard Xen virtual
block devices outside of EC2, which suggests that Amazon is
using a custom disk virtualization solution, perhaps for
security reasons. Amazon’s suggestion for mitigating the first-
write penalty is for users to initialize ephemeral disks by
filling them with zeros before using them for application data.
However, initialization is not feasible for many applications
because it takes too much time. Initializing enough storage for
a Montage workflow (50 GB), for example, would take almost
as long (42 minutes) as running the workflow using an
uninitialized disk. If the instance using the disk is going to be
provisioned for only one workflow, then initialization does not
make economic sense.

For the experiments described in this paper we have not
initialized the ephemeral disks. In order to get the best
performance without initialization we used software RAID
[20]. We combined the 4 ephemeral drives on each c1.xlarge
instance into a single RAID 0 partition. This configuration
results in first writes of 80-100 MB/s, and subsequent writes
around 350-400 MB/s. Reads peak at around 110 MB/s from a
single ephemeral disk and around 310 MB/s from a 4-disk
RAID array. The RAID 0 disks were used as local storage for
the systems described in the next section.

IV. STORAGE OPTIONS
In this section we describe the storage services we used

for our experiments and any special configuration or handling
that was required to get them to work with our workflow
management system. We tried to select a number of different
systems that span a wide range of storage options. Given the
large number of network storage systems available it is not
possible for us to examine them all. In addition, it is not
possible to run some file systems on EC2 because Amazon
does not allow kernel modifications (Amazon does allow
modules, but many file systems require source code patches as
well). This is the case for Lustre [24] and Ceph [33], for
example. Also, in order to work with our workflow tasks (as
they are provided by the domain scientists), the file system
either needs to be POSIX-compliant (i.e. we must be able to
mount it and it must support standard semantics), or additional
tools need to be used to copy files to/from the local file
system, which can result in reduced performance.

It is important to note that our goal with this work is not
to evaluate the raw performance of these storage systems in
the cloud, but rather to examine application performance in
the context of scientific workflows. We are interested in

exploring various options for sharing data in the cloud for
workflow applications and in determining, in general, how the
performance and cost of a workflow is affected by the choice
of storage system. Where possible we have attempted to tune
each storage system to deliver the best performance, but we
have no way of knowing what combination of parameter
values will give the best results for all applications without an
exhaustive search. Instead, for each storage system we ran
some simple benchmarks to verify that the storage system
functions correctly and to determine if there are any obvious
parameters that should be changed. We do not claim that the
configurations we have used are the best of all possible
configurations for our applications, but rather represent a
typical setup.

In addition to the systems described below we ran a few
experiments using XtreemFS [14], a file system designed for
wide-area networks. However, the workflows performed far
worse on XtreemFS than the other systems tested, taking more
than twice as long as they did on the storage systems reported
here before they were terminated without completing. As a
result, we did not perform the full range of experiments with
XtreemFS.
A. Amazon S3

Amazon S3 [2] is a distributed, object-based storage
system. It stores un-typed binary objects (e.g. files) up to 5 GB
in size. It is accessed through a web service that supports both
SOAP and a REST-like protocol. Objects in S3 are stored in
directory-like structures called buckets. Each bucket is owned
by a single user and must have a globally unique name.
Objects within a bucket are named by keys. The key
namespace is flat, but path-like keys are allowed (e.g. “a/b/c”
is a valid key).

Because S3 does not have a POSIX interface, in order to
use it, we needed to make some modifications to the workflow
management system. The primary change was adding support
for an S3 client, which copies input files from S3 to the local
file system before a job starts, and copies output files from the
local file system back to S3 after the job completes. The
workflow management system was modified to wrap each job
with the necessary GET and PUT operations.

Transferring data for each job individually increases the
amount of data that must be moved and, as a result, has the
potential to reduce the performance of the workflow. Using S3
each file must be written twice when it is generated (program
to disk, disk to S3) and read twice each time it is used (S3 to
disk, disk to program). In comparison, network file systems
enable the file to be written once, and read once each time it is
used. In addition, network file systems support partial reads of
input files and fine-grained overlapping of computation and
communication. In order to reduce the number of transfers
required when using S3 we implemented a simple whole-file
caching mechanism. Caching is possible because all the
workflow applications used in our experiments obey a strict
write-once file access pattern where no files are ever opened
for updates. Our simple caching scheme ensures that each file
is transferred from S3 to a given node only once, and saves
output files generated on a node so that they can be reused as
input for future jobs that may run on the node.

The scheduler that was used to execute workflow jobs
does not consider data locality or parent-child affinity when
scheduling jobs, and does not have access to information
about the contents of each node’s cache. Because of this, if a
file is cached on one node, a job that accesses the file could
end up being scheduled on a different node. A more data-
aware scheduler could potentially improve workflow
performance by increasing cache hits and further reducing
transfers.
B. NFS
 NFS [28] is perhaps the most commonly used network
file system. Unlike the other storage systems used, NFS is a
centralized system with one node that acts as the file server for
a group of machines. This puts it at a distinct disadvantage in
terms of scalability compared with the other storage systems.
For the workflow experiments we provisioned a dedicated
node in EC2 to host the NFS file system. Based on our
benchmarks the m1.xlarge instance type provides the best NFS
performance of all the resource types available on EC2. We
attribute this to the fact that m1.xlarge has a comparatively
large amount of memory (16GB), which facilitates good cache
performance. We configured NFS clients to use the async
option, which allows calls to NFS to return before the data has
been flushed to disk, and we disabled atime updates.
C. GlusterFS

GlusterFS [11] is a distributed file system that supports
many different configurations. It has a modular architecture
based on components called translators that can be composed
to create novel file system configurations. All translators
support a common API and can be stacked on top of each
other in layers. The translator at each layer can decide to
service the call, or pass it to a lower-level translator. This
modular design enables translators to be composed into many
unique configurations. The available translators include: a
server translator, a client translator, a storage translator, and
several performance translators for caching, threading, pre-
fetching, etc. As a result of these translators there are many
ways to deploy a GlusterFS file system. We used two
configurations: NUFA (non-uniform file access) and
distribute. In both configurations nodes act as both clients and
servers. Each node exports a local volume and merges it with
the local volumes of all other nodes. In the NUFA
configuration all writes to new files are performed on the local
disk, while reads and writes to existing files are either
performed across the network or locally depending on where
the file was created. Because files in the workflows we tested
are never updated, the NUFA configuration results in all
writes being directed to the local disk. In the distribute
configuration GlusterFS uses hashing to distribute files among
nodes. This configuration results in a more uniform
distribution of reads and writes across the virtual cluster
compared to the NUFA configuration.
D. PVFS

PVFS [3] is a parallel file system for Linux clusters. It
distributes file data via striping across a number of I/O nodes.
In our configuration we used the same set of nodes for both
I/O and computation. In other words, each node was
configured as both a client and a server. In addition, we

configured PVFS to distribute metadata across all nodes
instead of having a central metadata server.

Although the latest version of PVFS was 2.8.2 at the time
our experiments were conducted, we were not able to run any
of the 2.8 series releases on EC2 reliably without crashes or
loss of data. Instead, we used an older version, 2.6.3, and
applied a patch for the Linux kernel used on EC2 (2.6.21).
This version ran without crashing, but does not include some
of the changes made in later releases to improve support and
performance for small files.

V. PERFORMANCE COMPARISON
 In this section we compare the performance of the
selected storage options for workflows on Amazon EC2. The
critical performance metric we are concerned with is the total
runtime of the workflow (also known as the makespan). The
runtime of a workflow is defined as the total amount of wall
clock time from the moment the first workflow task is
submitted until the last task completes. The runtimes reported
in the following sections do not include the time required to
boot and configure the VM, which typically averages between
70 and 90 seconds [15], nor do they include the time required
to transfer input and output data. Because the sizes of input
files are constant, and the resources are all provisioned at the
same time, the file transfer and provisioning overheads are
assumed to be independent of the storage system chosen.

In discussing the results for various storage systems it is
useful to consider the I/O workload generated by the
applications tested. Each application generates a large number
(thousands) of relatively small files (on the order of 1 MB to
10 MB). The write pattern is sequential and strictly write-once
(no file is updated after it has been created). The read pattern
is primarily sequential, with a few tasks performing random
accesses. Because many workflow jobs run concurrently,
many files will be accessed at the same time. Some files are
read concurrently, but no file is ever read and written at the
same time. These characteristics will help to explain the
observed performance differences between the storage
systems in the following sections.

Note that the GlusterFS and PVFS configurations used
require at least two nodes to construct a valid file system, so
results with one worker are reported only for S3 and NFS. In
addition to the storage systems described in section 4, we have
also included performance results for experiments run on a
single node with 8 cores using the local disk. Performance
using the local disk is shown as a single point in the graphs.
A. Montage

The performance results for Montage are shown in Fig. 2.
The characteristic of Montage that seems to have the most
significant impact on its performance is the large number
(~29,000) of relatively small (a few MB) files it accesses.
GlusterFS seems to handle this workload well, with both the
NUFA and distribute modes producing significantly better
performance than the other storage systems. NFS does
relatively well for Montage, beating even the local disk in the
single node case. This may be because we used the async
option with NFS, which results in better NFS write
performance than a local disk when the remote host has a large
amount of memory in which to buffer writes, or because using

NFS results in less disk contention. The relatively poor
performance of S3 and PVFS may be a result of Montage
accessing a large number of small files. As we indicated in
Section IV, the version of PVFS we have used does not
contain the small file optimizations added in later releases. S3
performs worse than the other systems on small files because
of the relatively large overhead of fetching and storing files in
S3. In addition, the Montage workflow does not contain much
file reuse, which makes the S3 client cache less effective.

Fig. 2. Performance of Montage using different storage

systems.

B. Epigenome

The performance results for Epigenome are shown in Fig.
3. Epigenome is mostly CPU-bound, and performs relatively
little I/O compared to Montage and Broadband. As a result,
the choice of storage system has less of an impact on the
performance of Epigenome compared to the other
applications. In general, the performance was almost the same
for all storage systems, with S3 and PVFS performing slightly
worse than NFS and GlusterFS. Unlike Montage, for which
NFS performed better than the local disk in the single node
case, for Epigenome the local disk was significantly faster.

Fig. 3. Performance of Epigenome using different

storage systems.

C. Broadband
The performance results for Broadband are shown in Fig.

4. In contrast to the other applications, the best overall
performance for Broadband was achieved using Amazon S3
and not GlusterFS. This is likely due to the fact that
Broadband reuses many input files, which improves the

effectiveness of the S3 client cache. Many of the
transformations in Broadband consist of several executables
that are run in sequence like a mini workflow. This would
explain why GlusterFS (NUFA) results in better performance
than GlusterFS (distribute). In the NUFA case all the outputs
of a transformation are stored on the local disk, which results
in much better locality for Broadband’s workflow-like
transformations. An additional Broadband experiment was run
using a different NFS server (m2.4xlarge, 64 GB memory, 8
cores) to see if a more powerful server would significantly
improve NFS performance. The result was better than the
smaller server for the 4-node case (4368 seconds vs. 5363
seconds), but was still significantly worse than GlusterFS and
S3 (<3000 seconds in all cases). The decrease in performance
using NFS between 2 and 4 nodes was consistent across
repeated experiments and was not affected by any of the NFS
parameter changes we tried. Similar to Montage, Broadband
appears to have relatively poor performance on PVFS,
possibly because of the large number of small files it generates
(>5,000).

Fig. 4. Performance of Broadband using different

storage systems.

VI. COST COMPARISON
 In this section we analyze the cost of running workflow
applications using the selected storage systems. There are
three different cost categories when running an application on
EC2. These include: resource cost, storage cost, and transfer
cost. Resource cost includes charges for the use of VM
instances in EC2; storage cost includes charges for keeping
VM images and input data in S3 or EBS; and transfer cost
includes charges for moving input data, output data and log
files between the submit host and EC2. In our previous work
in [16] we analyzed the storage and transfer costs for
Montage, Broadband and Epigenome, as well as the resource
cost on single nodes. In this paper we extend that analysis to
multiple nodes based on our experiments with shared storage
systems.

One important issue to consider when evaluating the cost
of a workflow is the granularity at which the provider charges
for resources. In the case of EC2, Amazon charges for
resources by the hour, and any partial hours are rounded up.
One important result of this is that there is no cost benefit to
adding resources for workflows that run for less than an hour,
even though doing so may improve runtime. Another result of
this is that it is difficult to compare the costs of different
solutions. In order to better illustrate the costs of the various

storage systems we use two different ways to calculate the
total cost of a workflow: per hour charges, and per second
charges. Per hour charges are what Amazon actually charges
for the usage, including rounding up to the nearest hour, and
per second charges are what the experiments would cost if
Amazon charged per second. We compute per second rates by
dividing the hourly rate by 3,600 seconds.

It should be noted that the storage systems do not have the
same cost profiles. NFS is at a disadvantage in terms of cost
because of the extra node that was used to host the file system.
This results in an extra cost of $0.68 per workflow for all
applications. An alternative NFS configuration would be to
overload one of the compute nodes to host the file system.
However, in such a configuration the performance is likely to
decrease, which may offset any cost savings. In addition,
reducing the dedicated-node NFS cost by $0.68 still does not
make it cheaper to use than the other systems. S3 is also at a
disadvantage compared to the other systems because Amazon
charges a fee to store data in S3. This fee is $0.01 per 1,000
PUT operations, $0.01 per 10,000 GET operations, and $0.15
per GB-month of storage (transfers are free within EC2). For
Montage this results in an extra cost of $0.28, for Epigenome
the extra cost is $0.01, and for Broadband the extra cost is
$0.02. Note that the S3 cost is somewhat reduced by caching
in the S3 client, and that the storage cost is insignificant for
the applications tested (<< $0.01).

The total cost for Montage, Epigenome and Broadband,
using both per-hour and per-second charges, and including
extra charges for NFS and S3, is shown in Figs. 5-7. In
addition to the cost of running on the storage systems
described in Section IV, we also include the cost of running on
a single node using the local disk (Local in the figures). For
Montage the lowest cost solution was GlusterFS on two nodes.
This is consistent with GlusterFS producing the best
performance for Montage. For Epigenome the lowest cost
solution was a single node using the local disk. Also notice
that, because Epigenome is not I/O intensive, the difference in
cost between the various storage solutions is relatively small.
For Broadband the local disk, GlusterFS and S3 all tied for the
lowest cost. For all of the applications the per-second cost was
less than the per-hour cost—sometimes significantly less. This
suggests that a cost-effective strategy would be to provision a
virtual cluster and use it to run many workflows, rather than
provisioning a virtual cluster for each workflow.

One final point to make about the cost of these
experiments is the effect of adding resources. Assuming that
resources have uniform cost and performance, in order for the
cost of a workflow to decrease when resources are added the
speedup of the application must be super-linear. Since this is
rarely the case in any parallel application it is unlikely that
there will ever be a cost benefit for adding resources, even
though there may still be a performance benefit. In our
experiments adding resources reduced the cost of a workflow
for a given storage system in only 2 cases: 1 node to 2 nodes
using NFS for both Epigenome and Broadband. In both of
those cases the improvement was a result of the non-uniform
cost of resources due to the extra node that was used for NFS.
In all other cases the cost of the workflows only increased
when resources were added. Assuming that cost is the only
consideration and that resources are uniform, the best strategy

is to either provision only one node for a workflow, or to use
the fewest number of resources possible to achieve the
required performance.

Fig. 5. Montage cost assuming per-hour charges (top)

and per-second charges (bottom)

Fig. 6. Epigenome cost assuming per-hour charges (top)

and per-second charges (bottom)

Fig. 7. Broadband cost assuming per-hour charges (top)

and per-second charges (bottom)

VII. RELATED WORK
Much previous research has investigated the performance

of parallel scientific applications on virtualized and cloud
platforms [8][9][13][22][25][26][32][34][35]. Our work
differs from these in two ways. First, most of the previous
efforts have focused on tightly-coupled applications such as
MPI applications. In comparison, we have focused on
scientific workflows, which are loosely-coupled parallel
applications with very different requirements (although it is
possible for individual workflow tasks to use MPI, we did not
consider workflows with MPI tasks here). Second, previous
efforts have focused mainly on micro benchmarks and
benchmark suites such as the NAS parallel benchmarks [23].
Our work, on the other hand, has focused on the performance
and cost of real-world applications.

Vecchiola, et al. have conducted research similar to our
work [31]. They ran an fMRI workflow on Amazon EC2 using
S3 for storage, compared the performance to Grid’5000, and
analyzed the cost on different numbers of nodes. In
comparison, our work is broader in scope. We use several
applications from different domains with different resource
requirements, and we experiment with five different storage
systems.

In our own previous work on the use of cloud computing
for workflows we have studied the cost and performance of
clouds via simulation [6], using an experimental cloud [12],
and using single EC2 nodes [16]. In this paper we have
extended that work to consider larger numbers of resources
and a variety of storage systems.

VIII. CONCLUSION
 In this paper we examined the performance and cost of
several different storage systems that can be used to
communicate data within a scientific workflow running on the
cloud. We evaluated the performance and cost of three
workflow applications representing diverse application
domains and resource requirements on Amazon’s EC2
platform using different numbers of resources (1-8 nodes
corresponding to 8-64 cores) and five different storage
systems. Overall we found that cloud platforms like EC2 do
provide a good platform for deploying workflow applications.

One of the major factors inhibiting storage performance
on EC2 is the first write penalty on ephemeral disks. We
found that this significantly reduces the performance of
storage systems deployed in EC2. This penalty seems to be
unique to this execution platform. Repeating these
experiments on another cloud platform may produce better
results.

We found that the choice of storage system has a
significant impact on workflow runtime. In general, GlusterFS
delivered good performance for all the applications tested and
seemed to perform well with both a large number of small
files, and a large number of clients. S3 produced good
performance for one application, possibly due to the use of
caching in our implementation of the S3 client. NFS
performed surprisingly well in cases where there were either
few clients, or when the I/O requirements of the application
were low. Both PVFS and S3 performed poorly on workflows
with a large number of small files, although the version of
PVFS we used did not contain optimizations for small files
that were included in subsequent releases.

As expected, we found that cost closely follows
performance. In general the storage systems that produced the
best workflow runtimes resulted in the lowest cost. NFS was
at a disadvantage compared to the other systems when it used
an extra, dedicated node to host the file system, however,
overloading a compute node would not have significantly
reduced the cost. Similarly, S3 is at a disadvantage, especially
for workflows with many files, because Amazon charges a fee
per S3 transaction. For two of the applications (Montage, I/O-
intensive; Epigenome CPU-intensive) the lowest cost was
achieved with GlusterFS, and for the other application
(Broadband—Memory-intensive) the lowest cost was
achieved with S3.

Although the runtime of the applications tested improved
when resources were added, the cost did not. This is a result of
the fact that adding resources only improves cost if speedup is
superlinear. Since that is rarely ever the case, it is better from
a cost perspective to either provision one node to execute an
application, or to provision the minimum number of nodes that
will provide the desired performance. Also, since Amazon
bills by the hour, it is more cost-effective to run for long-
periods in order to amortize the cost of unused capacity. One
way to achieve this is to provision a single virtual cluster and
use it to run multiple workflows in succession.

In this work we only considered workflow environments
in which a shared storage system was used to communicate
data between workflow tasks. In the future we plan to

investigate configurations in which files can be transferred
directly from one computational node to another.

ACKNOWLEDGEMENTS
 This work was supported by the National Science
Foundation under the SciFlow (CCF-0725332) and Pegasus
(OCI-0722019) grants. This research made use of Montage,
funded by the National Aeronautics and Space
Administration's Earth Science Technology Office,
Computation Technologies Project, under Cooperative
Agreement Number NCC5-626 between NASA and the
California Institute of Technology.

REFERENCES
[1] Amazon.com, “Elastic Compute Cloud (EC2),”

http://aws.amazon.com/ec2.
[2] Amazon.com, “Simple Storage Service (S3),”

http://aws.amazon.com/s3.
[3] P. Carns, W. Ligon, R. Ross, and R. Thakur, “PVFS: A Parallel

File System for Linux Clusters,” 4th Annual Linux Showcase
and Conference, 2000, pp. 317-327.

[4] J.S. Chase, D.E. Irwin, L.E. Grit, J.D. Moore, and S.E.
Sprenkle, “Dynamic virtual clusters in a grid site manager,”
2003, pp. 90-100.

[5] “DAGMan: Directed acyclic graph manager,”
http://cs.wisc.edu/condor/dagman.

[6] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good,
“The Cost of Doing Science on the Cloud: The Montage
Example,” 2008.

[7] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G.B. Berriman, J. Good, A. Laity, J.C.
Jacob, and D.S. Katz, “Pegasus: A framework for mapping
complex scientific workflows onto distributed systems,”
Scientific Programming, vol. 13, 2005, pp. 219-237.

[8] C. Evangelinos and C.N. Hill, “Cloud Computing for Parallel
Scientific HPC Applications: Feasibility of Running Coupled
Atmosphere-Ocean Climate Models on Amazon's EC2,” 2008.

[9] R.J. Figueiredo, P.A. Dinda, and J.A. Fortes, “A case for grid
computing on virtual machines,” 2003, pp. 550-559.

[10] I. Foster, T. Freeman, K. Keahey, D. Scheftner, B. Sotomayer,
and X. Zhang, “Virtual Clusters for Grid Communities,” 2006,
pp. 513-520.

[11] Gluster, Inc., “GlusterFS,” http://www.gluster.org.
[12] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B.

Berriman, and J. Good, “On the Use of Cloud Computing for
Scientific Workflows,” 3rd International Workshop on
Scientific Workflows and Business Workflow Standards in e-
Science (SWBES '08), 2008.

[13] W. Huang, J. Liu, B. Abali, and D.K. Panda, “A Case for High
Performance Computing with Virtual Machines,” 2006.

[14] F. Hupfeld, T. Cortes, B. Kolbeck, J. Stender, E. Focht, M.
Hess, J. Malo, J. Marti, and E. Cesario, “The XtreemFS
architecture - a case for object-based file systems in Grids,”
Concurrency and Computation: Practice & Experience, vol.
20, 2008, pp. 2049-2060.

[15] Hyperic, Inc., “CloudStatus,” http://www.cloudstatus.com.
[16] G. Juve, E. Deelman, K. Vahi, and G. Mehta, “Scientific

Workflow Applications on Amazon EC2,” Workshop on
Cloud-based Services and Applications in conjunction with 5th
IEEE International Conference on e-Science (e-Science 2009),
Oxford, UK: 2009.

[17] D.S. Katz, J.C. Jacob, E. Deelman, C. Kesselman, S. Gurmeet,
S. Mei-Hui, G.B. Berriman, J. Good, A.C. Laity, and T.A.
Prince, “A comparison of two methods for building
astronomical image mosaics on a grid,” Proceedings of the

2005 International Conference on Parallel Processing
Workshops (ICPPW 05), 2005, pp. 85-94.

[18] K. Keahey and T. Freeman, “Contextualization: Providing
One-Click Virtual Clusters,” 4th International Conference on
eScience (eScience '08), 2008.

[19] H. Li, J. Ruan, and R. Durbin, “Mapping short DNA
sequencing reads and calling variants using mapping quality
scores,” Genome Research, vol. 18, 2008, pp. 1851-1858.

[20] “Linux Software RAID,”
https://raid.wiki.kernel.org/index.php/Linux_Raid.

[21] M.J. Litzkow, M. Livny, and M.W. Mutka, “Condor: A Hunter
of Idle Workstations,” 1988, pp. 104-111.

[22] J. Napper and P. Bientinesi, “Can Cloud Computing Reach the
Top500?,” 2009.

[23] NASA Advanced Supercomputing Division, “NAS Parallel
Benchmarks,”
http://www.nas.nasa.gov/Resources/Software/npb.html.

[24] Oracle Corporation, “Lustre parallel filesystem,”
http://www.lustre.org.

[25] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer,
and D. Epema, “A Performance Analysis of EC2 Cloud
Computing Services for Scientific Computing,” Proceedings of
Cloudcomp 2009, Munich, Germany: 2009.

[26] M.R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel,
“Amazon S3 for science grids: a viable solution?,” 2008.

[27] “ptrace - process trace,” Linux Programmer's Manual.
[28] R. Sandberg, D. Golgberg, S. Kleiman, D. Walsh, and B. Lyon,

“Design and Implementation of the Sun Network Filesystem,”
USENIX Conference Proceedings, Berkeley, CA: 1985.

[29] Southern California Earthquake Center, “Community Modeling
Environment (CME),” http://www.scec.org/cme.

[30] “USC Epigenome Center,” http://epigenome.usc.edu.
[31] C. Vecchiola, S. Pandey, and R. Buyya, “High-Performance

Cloud Computing: A View of Scientific Applications,”
International Symposium on Parallel Architectures,
Algorithms, and Networks, 2009.

[32] E. Walker, “Benchmarking Amazon EC2 for High-
Performance Scientific Computing,” Login, vol. 33, pp. 18-23.

[33] S.A. Weil, S.A. Brandt, E.L. Miller, D.D.E. Long, and C.
Maltzahn, “Ceph: A scalable, high-performance distributed file
system,” 7th Symposium on Operating Systems Design and
Implementation (OSDI 06), 2006, pp. 307-320.

[34] L. Youseff, R. Wolski, B. Gorda, and C. Krintz,
“Paravirtualization for HPC Systems,” Workshop on Xen in
High-Performance Cluster and Grid Computing, 2006.

[35] W. Yu and J. Vetter, “Xen-Based HPC: A Parallel I/O
Perspective,” 8th IEEE International Symposium on Cluster
Computing and the Grid (CCGrid '08), 2008.

