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Abstract. Many scientific workflows have computational demands that
require the use of compute platforms managed by batch schedulers, which
are unfortunately poorly suited to these applications. This work proposes
GLUME, a strategy for partitioning a workflow into batch jobs. The
novelty is that these jobs are explicitly constructed to minimize overall
workflow execution time. Experimental evaluation via simulation of pro-
duction batch workloads and workflows shows that our heuristic is more
effective than previously proposed strategies when executing workflows
with moderate to high computational demand.
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1 Introduction

Workflow applications are mainstream in the sciences and often require High Per-
formance Computing platforms. Most such platforms run Resource and Job Man-
agement Software (RJMS) that implements batch scheduling. Batch scheduling
was designed for workloads in which users submit moderate numbers of large,
long-running, and loosely dependent parallel jobs. It is thus poorly suited to
workflows. Workflow scheduling on batch-scheduled platforms can be attacked
at the RJMS level [1,6,15] or at the application level [20,21,24,25]. Both kinds of
solutions have drawbacks: RJMS-level solutions face adoption challenges while
application-level solutions are impeded by constraints imposed on batch jobs.

We proposes an application-level strategy for minimizing workflow execution
time, or makespan. This requires answering two questions. First, how should a
workflow be partitioned into batch jobs? At one extreme is a one-job-per-task
approach. This approach is problematic for workflows with long tasks (due to
cascading wait times) and/or with many tasks (due to per-user caps on the num-
ber of running jobs). The other extreme, a workflow-as-a-single-job approach, is
also problematic as large jobs suffer from long wait times. Second, when should
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workflow batch jobs be submitted? Submitting a job only once the previous job
has completed is inefficient, but aggressively overlapping wait times and run
times can lead to job expirations. To the best of our knowledge, the only previ-
ous work that provides non-trivial answers to these questions is that in [25]. The
strategy therein uses wait time estimates to submit sets of consecutive workflow
levels as batch jobs. We make the following contributions:
– The authors in [25] did not compare their proposed strategy to a baseline

workflow-as-a-single-job approach that uses wait time estimates. We find
that this simple approach can outperform that in [25] significantly.

– We propose a new strategy, GLUME, which, unlike that in [25], explicitly
aims at minimizing makespan.

– We compare GLUME to the strategy in [25] and to baseline strategies in
simulation, and find that GLUME is more effective than its competitors for
workflows with moderate to high computational demands.

2 Related Work

Some authors have proposed RJMS that are well-suited to workloads that include
workflows. The RJMS in [1] uses a hierarchical design to ensure that scheduling
decisions can be made quickly even when the workload includes workflows with
thousands or even millions of possible short-running tasks. In [15], the authors
propose to augment the Slurm RJMS [23] to make it workflow-aware, ensuring
that a workflow’s jobs are positioned in adjacent positions in the batch queue.
The approach in [6] inserts a RJMS between the application and the platform’s
native RJMS so as to allocate resources to workflow applications elastically.

In this work, we propose an application-level approach that can be used with
non-workflow-aware, standard RJMS. Also, it can benefit RJMS-level solutions
that execute workflows one level at a time [6, 15], making it possible to decide
how to aggregate consecutive levels judiciously. The workflow scheduling liter-
ature is enormous but in this work we target batch-scheduled platforms, for
which only a few approaches have been proposed. Some authors have proposed
submitting each workflow task as a single job [20, 21, 24] Given high wait times
incurred by the one-task-per-job approach in practice with current RJMS imple-
mentations [15], a few authors have proposed to group workflow tasks together
into batch jobs. A commonly used baseline approach is to execute each workflow
level as a single batch job [6, 15]. To the best of our knowledge, the only work
that goes further is [25], which we detail and evaluate in Section 5.

Our approach, like those in [24,25], relies on wait time estimates. Wait times
are notoriously difficult to predict. In this work, instead of predictions, we rely on
wait time estimates as provided by production batch schedulers (see Section 3).

3 Problem Statement

We consider a cluster of homogeneous compute nodes, or nodes, managed by a
RJMS that implements batch scheduling, i.e., a batch scheduler. The batch sched-
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uler provides job wait time estimates based on currently running and pending
jobs, assuming that all job run times are exactly as requested upon submis-
sion. Virtually all production batch schedulers provide “start time estimates”
for pending jobs (e.g., --start option of Slurm’s squeue command), and can
thus in principle provide wait time estimates speculatively (e.g., the showstart

command in MOAB/Torque. One source of inaccuracy of these estimates is
that jobs terminate earlier than expected since users specify conservative time
bounds [8]. Early job completions create backfilling opportunities, causing some
jobs to start earlier than expected, and wait time estimates for these jobs were
then pessimistic. Another source of inaccuracy is that backfilling may increase
the wait times of other pending jobs, making wait time estimates for these jobs
optimistic. This is the case with aggressive backfilling [10], but not with conser-
vative backfilling [12], which leads to fairer schedules, possibly at the expense
of lowered resource utilization, and makes wait time estimates more accurate.
Several popular production batch schedulers implement conservative backfill-
ing [13,23]. In this work we only consider conservative backfilling.

On the cluster we wish to execute a static workflow, i.e., a directed acyclic
graph of compute tasks, where each task executes on a single compute nodes
and where edges denote task dependencies. Such static workflows of non-parallel
tasks are commonplace in today’s production scientific applications [9, 11, 17].
We assume that for each task we have an accurate estimate of its run time,
including computation and I/O. This is a common assumption in the literature,
justified in production settings in which the same workflow applications are
executed repeatedly, and previous executions can serve as benchmarks for future
executions. The objective is to minimize makespan, i.e., the wall clock time
between the first job submission and the last job completion.

4 Experimental Methodology

In this work we compare different strategies for executing workflows on a batch-
scheduled cluster. These comparisons must be for a given workflow instance sub-
mitted at a given time to a batch-scheduled cluster subject to some background
workload (i.e., other users submitting competing batch). It is impossible to per-
form these comparisons fairly on real-world systems, as back-to-back workflow
executions would face different competing workload conditions. For this reason,
like most previous works, we use simulation. We have implemented a simulator
in C++ using the WRENCH [4] simulation framework and Batsched [3], a batch
scheduler simulator. WRENCH provides the necessary high-level simulation ab-
stractions for implementing the workflow scheduling algorithms we consider in
this work. Batsched, which is a component of the Batsim simulator [5], imple-
ments the necessary batch scheduling algorithms.

Our simulator takes as input (i) a number of nodes; (ii) a workload trace file
with competing job submissions; (iii) a workflow description file that specifies
task run times and dependencies; (iv) the date at which the workflow execution
begins (i.e., when the first task can be submitted for execution); and (v) a work-
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flow scheduling strategy to use. The simulator outputs an execution log and the
workflow makespan. The source code for our simulator is publicly available [18].

4.1 Workflow Configurations

Using a popular generator [16], we instantiate workflow configurations from these
four applications: EPIGENOMICS (bioinformatics; many independent multi-
level-fork join patterns with a single final a 3-task chain), SIPHT (bioinformat-
ics; many independent 31-task structures whose first level consists of 23 inde-
pendent tasks), CYBERSHAKE (earthquake engineering; sets of independent
and massively parallel 2-level fork-join patterns), and MONTAGE (astronomy;
a moderately parallel phase followed by a massively parallel phases, followed
by a 6-level chain of sequential or moderately parallel phases). We refer the
reader to [22] for more details about these workflows. For each application we
generate workflows with 50, 250, 500 ± 5 tasks. The ±5 is because the genera-
tor cannot produce a (realistic) configuration for any arbitrary workflow size.
We generate workflows with sequential run times (i.e., sum of task run times)
of 100, 500, 1000 ± 3 hours. The ±3 is because the generator draws task execu-
tion times from random distributions. The 36 generated workflow configurations
have overall and per-task computational demands that vary by orders of magni-
tude. We name each workflow x-y-z, where x denotes the application (E, S, C,
or M); y denotes the number of tasks; and z denotes the sequential execution
time (short, medium, or long). For instance C-250-short denotes a ∼ 250-task
CYBERSHAKE workflow with sequential run time of ∼100 hours.

4.2 Batch scheduling and workloads

Table 1: Batch logs used to drive simulations

Workload #nodes #jobs duration utilization

KTH 100 ∼28,000 11 months ∼70%
SDSC 128 ∼60,000 24 months ∼83%
HPC2N 100 ∼203,000 42 months ∼60%
CTC 338 ∼77,000 11 months ∼85%

We configure our simulator to use conservative backfilling, using arrival times
as job priorities. We simulate background workload by replaying job submission
logs from production systems, as available in the Parallel Workloads Archive [14]
(see Table 1). All simulations include a one day “warm-up” period, after which
we simulate workflow execution when submitted on the half-hour for 6 days, for a
total of (48×6)+1 = 289 different submission times. We simulate the execution
of jobs in the background workloads with either accurate or real job requested
run times. For the former, we replace each job’s requested run time by its actual
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run time. For the latter, we instead use the job’s actual requested time from the
log, which is known to be conservative [8]. Although unrealistic, we include the
former method as a way to compare the merit of scheduling algorithms in ideal
conditions w.r.t. wait time estimates. When discussing results we specify which
method is used (either “accurate” or “real” estimates).

It is typical to cap the number of jobs a user can run simultaneously (e.g., set-
ting the MaxSubmitJobsPerAccount for Slurm [19]). Taking the Argonne Lead-
ership Computing Facility as an example: the recently decommissioned Mira
system allowed users to have at most 5 running jobs per batch queue; The Coo-
ley and the Theta systems allow both for up to 10 running jobs. Surveys of
the Oak Ridge Leadership Computing Facility, the National Energy Research
Scientific Computing Center, and the Texas Advanced Computing Center yield
similar observations, with most batch queues imposing low caps (i.e., below 20
and often below 10). As the caps can have a large impact of workflow executions
we present results for different cap values.

5 The Algorithm by Zhang et al.

5.1 Overview

The algorithm proposed by Zhang et al. [25], which we call Zhang, is invoked
repeatedly to decide which workflow tasks should be submitted as batch job next.
It considers the workflow as a sequence of levels, where each level comprises the
tasks that have the same top-level (i.e., the same maximum distance from entry
tasks). When all tasks in a level have been executed, all tasks in the next level
can begin execution as it is guaranteed that all their parents have been executed.
When invoked, Zhang always submits a sequence of consecutive workflow levels
as a single job to the batch scheduler, starting with the next level to be executed.
A heuristic decides how many levels should be included in each job as follows.

Let lstart be the first yet-to-be-executed level of the workflow and lend be the
workflow’s last level. The heuristic iteratively considers the option of scheduling
all levels from level lstart to level li, for i = end, start, start + 1, . . . , end − 1.
Submitting all remaining tasks as a single job (i = end) is considered first as
a “safe” baseline option. The iteration stops prematurely whenever a current
option is deemed worse than the previously considered option. More precisely,
at each iteration i Zhang considers executing all tasks in levels lstart to li as a
single job, requesting a number of nodes equal to the maximum width of these
levels (in number of tasks) and a sufficiently long run time to execute all tasks in
these levels. A wait time estimate is obtained from the batch scheduler and the
ratio of the wait time to the run time is computed. If the ratio computed at the
previous iteration, if any, was lower, then the iteration stops, the option evaluated
at the previous iteration is selected, and the corresponding job is submitted to
the batch scheduler. However, if i = end is selected and the estimated wait time
is more than twice the run time, then each task is submitted as an individual
job. The rationale is that if wait time is much larger than run time, the one-job-
per-task strategy is preferable as many small jobs may benefit from backfilling.
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To overlap run times and wait times, whenever a submitted job begins exe-
cution Zhang is re-invoked for the yet-to-be-executed workflow levels. Thus it is
possible that the next job would start “too soon.” This leads to unsatisfied task
dependencies, causing the job to idle before being able to execute its tasks. These
tasks may then fail to complete within the job’s requested run time. Whenever a
job expires with uncompleted tasks, any subsequent job that had been submitted
is canceled, and Zhang is re-invoked. To reduce the number of job expirations
and re-executions, Zhang uses a leeway, i.e., an extra requested amount of time
to ensure that all tasks in the job can complete even if the job starts too early.
Consider a job that starts execution at time 0 and will complete at time t. At
time 0 Zhang is invoked to submit a new job for execution. Say that this new
job has run time r and (estimated) wait time w < t. A naive leeway would be
t − w, i.e., requesting t − w + r time for this new job, making sure that all its
tasks will complete successfully in spite of the job starting too early. This leeway
is naive because requesting the extra time will change the wait time. Since the
leeway both depends on and changes the wait time, Zhang computes the leeway
using a simple iterative approach. However, given non-determinism in the batch
queue behavior, a job could still expire before completing all its tasks.

Figure 1 shows an example execution in which Zhang splits a workflow
execution into four jobs. It is first invoked at time t1 and submits job #1, which
executes all the tasks in a first set of consecutive workflow levels. At time t2, this
job begins execution, and Zhang is invoked again and submits job #2 (which
comprises the tasks in the next set of consecutive levels). In this example, the
run time of job #1 overlaps perfectly with the wait time of job #2; thus, job
#2 can begin executing tasks as soon as it starts. At time t3, Zhang is invoked
again and submits job #3. As shown in the figure, the wait time of job #3 is
insufficient to completely overlap with the run time of job #2, so Zhang adds
a leeway to job #3’s run time to ensure that job #3 can complete all its tasks
successfully. Job #3 begins its execution at time t4 but must wait for job #2 to
complete. This lost time is made up with the leeway, and tasks in job #3 begin
executing at time t5. Although job #3 is idle until t5, Zhang is still invoked at
time t4 and submits job #4. But the wait time of job #4 is longer than the run
time of job #3, so between times t6 and t7 no workflow task is being executed.

We found two issues with the algorithm as described in [25]. First, it aborts
if the workflow’s width is greater than the number of available compute nodes.
Since workflows can be very wide in practice, we have modified the algorithm
so that jobs can execute on arbitrary numbers of nodes. This is done via a
standard list-scheduling approach (which greedily schedules the ready task that
can complete the earliest). Second, the pseudocode in Figure 5 in [25] contains a
potentially infinite loop for the leeway computation. We have modified this loop
to ensure that it terminates (and computes the leeway as intended). From here
on, by Zhang we mean the algorithm in [25] with these two modifications.
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t1 t2 t3 t4 t5 t6 t7 time

makespan

Wait
Run
Leeway

Job #1

Job #2

Job #3

Job #4

1

Fig. 1: Example workflow execution with 4 batch jobs using Zhang.

5.2 Evaluation Results

We compare Zhang to three baseline competitors: OneJobPerTask, One-
Job, and LevelByLevel. OneJobPerTask submits each task as a single job.
OneJob submits the entire workflow as a single job. To determine the number
of nodes to request, OneJob exhaustively considers all possibilities (from 1 to
the maximum parallelism of the workflow or the maximum number of nodes in
the platform, whichever is smaller). For each, it estimates the workflow run time
(using list-scheduling for scheduling tasks on nodes) and obtains an estimate
of the wait time. It then submits the workflow as a single job, requesting the
number of nodes that leads to the shortest (estimated) makespan. This strat-
egy is not considered as a competitor in [25]. Instead, the authors consider a
version that always requests the maximum number of nodes. It is thus a much
weaker competitor than OneJob since requesting fewer nodes typically achieves
a better trade-off between wait time and run time. Finally, LevelByLevel is a
standard approach that submits each workflow level as a single job [6, 15]. This
strategy was not considered as a competitor in [25]. Like OneJob, it determines
the best number of nodes for each job based on wait time estimates. The job for
a level is submitted only after the job for the previous level has completed. Fi-
nally, the results in [25] are only for wait times, while we instead consider overall
makespan (which includes wait time) since this is the main metric of interest to
users. Given all the above, it is not straightforward to make a direct comparison
between the results hereafter and those in [25].

We simulate the execution of the ∗-250-∗ workflow configurations for the
KTH batch workload for our 289 different submission times, assuming accurate
requested job run times (see Section 4.2). We set the cap on the number of run-
ning workflow jobs to 128, which, for these workflow configurations, means that
OneJobPerTask is never limited. For each workflow submission we compute
the percentage improvement in workflow makespan achieved by OneJobPer-
Task, OneJob, and LevelByLevel relative to Zhang. Positive values thus
correspond to cases in which Zhang is outperformed by a baseline competitor.
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Fig. 2: Average percentage improvement relative to Zhang for ∗-250-∗ workflows on
the KTH workload (number of simultaneously running workflow jobs capped at 128).

Figure 2 shows average relative improvements for the 12 workflow configura-
tions. When comparing Zhang to OneJobPerTask, we find that Zhang leads
to better results for only 3 workflow configurations (by 5.1%, 1.39%, and 15.29%).
For the other 9 workflow configurations, OneJobPerTask leads to relative im-
provements of 11.16% on average and up to 21.06%. Zhang, which can default
to OneJobPerTask, does so in these results in 23.79% of the cases. When it
does not default to OneJobPerTask, it outperforms it in less than 30% of the
cases. Overall, we find that although Zhang can outperform OneJobPerTask,
OneJobPerTask is very often preferable to Zhang (and it is trivial to imple-
ment). The second baseline competitor, OneJob, is similar to or outperforms
Zhang on average for 6 of the 12 workflow configurations. As expected, it fares
better for workflows with higher total run times (but there are exceptions, e.g.,
the C-250-long configuration). This is because for workflows with long tasks,
OneJobPerTask and Zhang, when it defaults to OneJobPerTask, suffer
from cascading task wait times: while a set of (long) one-task workflow jobs are
executing, many other (background workload) jobs arrive, causing longer queue
wait times for the next set of one-task workflow jobs. By contrast, because con-
servative backfilling is used, OneJob “locks in” a slot in the batch queue at
submission time. The third baseline competitor, LevelByLevel, does not per-
form well. It can outperform Zhang, but is always outperformed by OneJob.
This is because, unlike OneJob, it does not “lock in” a slot in the batch queue.

The results in Figure 2 correspond to a best case for OneJobPerTask (and
thus for Zhang when it defaults to OneJobPerTask) as the number of ongoing
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Fig. 3: Average percentage improvement relative to Zhang for ∗-250-∗ workflows on
the KTH workload (number of simultaneously running workflow jobs capped at 16).

workflow jobs is not capped. As discussed in Section 4.2, many platforms impose
low caps on per-user numbers of running jobs. Figure 3 shows results when
this cap is set to 16. In these results, OneJob outperforms Zhang on average
for 9 of the 12 workflow configurations (losing by 22.45%, 1.21%, and 12.29%
in the other 3 workflow configurations). Expectedly, OneJobPerTask leads
to the worst results, losing to Zhang for 9 of the 12 workflow configurations.
Zhang can default to OneJob, and in these results it does so in 48.32% of the
cases. When it does not default to OneJob, Zhang outperforms OneJob in
52.53% of the cases. Here again, LevelByLevel does not perform well. When it
outperforms Zhang significantly, it is itself outperformed by OneJob. Results
for other workloads show similar trends (see [7] for full results).

5.3 Discussion

The takeaway from our evaluation of Zhang is: (i) when the cap on the number
of running workflow jobs is not a limiting factor, OneJobPerTask typically
outperforms Zhang; (ii) when this cap is a limiting factor, OneJob typically
outperforms Zhang; and (iii) although used in practice, LevelByLevel does
not compare well to its competitors. Importantly, Zhang does not consistently
outperform all the baseline competitors. This is unlike the results presented
in [25], and is due to our considering more sound competitors and using the
overall makespan as our performance metric. We experimented with three pos-
sible improvements to Zhang, namely: (i) exhaustively examine all options for
grouping levels together; (ii) pick the best number of nodes for each job based
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on wait and run time estimates; and (iii) compute better leeways via a true
binary search. We have found that these improvements only lead to marginal
improvements (see [7] for all details).

We hypothesize that Zhang’s disappointing results are because it does not
explicitly seek to minimize the makespan. Instead, it strikes a compromise be-
tween wait time and run time for the next set of workflow levels to be executed,
with the hope that these local decisions will reduce the makespan.

6 Proposed Algorithm

In this section, we describe GLUME (Group Levels Using Makespan Estimates),
a strategy that explicitly aims at reducing workflow makespan. The pseudocode
in this section is written for best readability rather than for best complexity.

6.1 Intuition and Overview

Like Zhang, GLUME is invoked repeatedly throughout workflow execution to
decide on the next set of consecutive, yet-to-be-executed workflow levels to sub-
mit as a single job. But while Zhang greedily optimizes the wait time to run
time ratio of the next job to be submitted, instead GLUME attempts to mini-
mize the makespan directly. Given a workflow with n levels, GLUME considers
all possible ways to partition the levels into two jobs: a first job to execute lev-
els 0 to i and a second, subsequent, job to execute levels i + 1 to n − 1, for
i = 0, 1, . . . , n − 1 (the second job could be empty). From here on, we refer to
the first job (levels 0 to i) as Ji and to the second job (levels i+1 to n−1) as J ′

i .
Figure 4 shows an example workflow execution, where J ′

i is submitted as soon
as Ji begins executing, and where J ′

i ’s wait time overlaps with Ji’s execution.
Like Zhang, the overlap is achieved using a leeway mechanism. In case of a pre-
mature job expiration, we use the same approach of canceling any subsequent
job that has already been submitted and invoking GLUME again.

estimated makespan

time

Wait
Run

Ji

J ′
i

1

Fig. 4: Example execution of the Ji and J ′
i jobs by GLUME.

For each i = 0, . . . , n−1, GLUME computes the configuration (i.e., numbers
of nodes and requested run times) for Ji and J ′

i that minimize the estimated
makespan. The i that leads to the lowest estimated makespan is chosen. Ji is
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then submitted to the batch scheduler, but J ′
i is not. When Ji begins execution,

GLUME is invoked again on the remaining yet-to-be-executed workflow levels,
possibly leading to partitioning these levels into yet another two groups. In
other words, every invocation of GLUME assumes a two-job execution but only
submits the first job; thus, the execution of a workflow with n levels can entail
up to n jobs. Unlike Zhang, GLUME never defaults to the one-job-per-task
approach. It is thus never impacted by per-user caps on numbers of running jobs
(since at most two workflow jobs are in the system at a time).

GLUME estimates the wait times and run times of Ji and J ′
i for every

possible number of nodes so as to pick the configuration that minimizes the
(estimated) makespan. Run time is estimated based on task schedules computed
using list-scheduling (since workflow levels can have more tasks than the number
of requested compute nodes), and wait time estimates are obtained from the
batch scheduler. This is similar to the approach used by the OneJob algorithm
(see Section 5.2). The one difficulty here is obtaining wait time estimates for J ′

i .
GLUME obtains this estimate “now”, but J ′

i would be submitted in the future.
By then, the state of the batch queue will have changed, further decreasing the
accuracy of the wait time estimate. Nevertheless, given no knowledge of the
future, GLUME uses this estimate as a best effort.

6.2 Detailed Description

The pseudocode for GLUME is shown in Algorithm 1. GLUME is invoked
at the beginning of and repeatedly throughout workflow execution whenever a
previously submitted job begins execution. GLUME takes as input a workflow
(G) and a duration in seconds (delay). G only contains un-executed tasks (al-
ready executed tasks are ignored). delay is an amount of time before the next
job to be submitted should begin executing. It is used to overlap the execution
of a job with the wait time of the next job. Specifically, the first time GLUME
is invoked, delay is zero, as the first job should be submitted immediately. For
each subsequent invocation, i.e., each time a previously submitted job begins
executing, delay is this job’s requested run time. Each invocation of GLUME
returns a level (l), a number of nodes (n), and a duration in seconds (t). Based
on this output, a job is submitted to the batch scheduler that requests n nodes
for t seconds to execute all tasks in levels 0 to l (inclusive) of G.

Line 1 in Algorithm 1 sets variable last to the index of the last level of the
workflow. Line 2 declares an array A, where A[i] holds the best computed al-
location for Ji. This allocation stores the job’s wait time (A[i].wait), run time
(A[i].run), leeway to be added to the run time (A[i].leeway), and number of
nodes (A[i].nodes). Line 3 declares an array M , where M [i] holds the estimated
workflow makespan for Ji. As mentioned in Section 5.1, submitting the entire
workflow as a single job is a safe option: once this job is submitted its wait time
is bounded (provided the batch scheduler uses conservative backfilling), and thus
also the workflow makespan. Therefore, we use the single-job option is used as a
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Algorithm 1 GLUME(G, delay)

1: last← (number of levels in G)− 1
2: let A[0..last] be a new array . Allocations
3: let M [0..last] be a new array . Makespans
4: A[last]← PickBestAllocation(G, delay, 0, last)
5: M [last]← A[last].wait + A[last].leeway + A[last].run
6: for l← 0 to last− 1 do
7: M [l]←∞
8: A[l]← PickBestAllocation(G, delay, 0, l)
9: if A[l].leeway > 0.1×A[l].run then

10: continue
11: end if
12: delay′ ← A[l].leeway + A[l].run
13: a′ ← PickBestAllocation(G, delay′, l + 1, last)
14: if a′.leeway > 0.1× a′.run then
15: continue
16: end if
17: t← A[l].wait + a′.wait + a′.leeway + a′.run
18: if t < M [last] then
19: M [l]← t
20: end if
21: end for
22: l← argmin(M)
23: return (l, A[l].nodes,A[l].leeway + A[l].run)

baseline, which is done at lines 4 and 5. Line 4 computes the best allocation (pro-
cedure PickBestAllocation is described later in this section) for executing
the entire workflow, and Line 5 computes the corresponding makespan (which
is just the sum of the wait time, the leeway, and the run time).

The for loop at lines 6-21 iterates over all i, 0 ≤ i < last, to search for the
best way to partition the workflow levels, i.e., for the best Ji and J ′

i pair. Line 7
sets the makespan for Ji, M [i], to infinity. Line 8 calculates the best allocation
for Ji, A[i]. This allocation has a certain leeway, and lines 9-11 are used to
remove the current partition from consideration (i.e., leave M [i] as infinity) if
the leeway is more than 10% of the run time. This is a heuristic for avoiding
resource waste (since all nodes are idle during the leeway period). Assuming
that Ji is submitted to the batch scheduler, then, as soon it begins executing,
J ′
i will be submitted to the batch scheduler. The algorithm then calculates the

allocation for J ′
i . The delay for J ′

i , delay
′, is computed at Line 12 as Ji’s total

run time (the sum of its leeway and its run time). The best allocation for J ′
i

is computed at Line 13. As explained in the previous section, this allocation is
computed using a wait time estimate obtained “now”, even though the job would
be submitted in the future. Lines 14-16 apply again the heuristic to ensure that
the leeway for J ′

i is not more than 10% of the run time. The overall workflow
makespan is then estimated at Line 17, accounting for the overlap of Ji’s run
time with J ′

i ’s wait time. Lines 18-21 simply updates the workflow makespan
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for this considered partition, but only if it is shorter than the baseline OneJob
option. At Line 22 the algorithm computes the index of the partition, l, that
leads to the shortest makespan (the argmin notation denotes the index of the
minimum element in an array). The algorithm finally returns its decision that
workflow levels 0 to l should be submitted to the batch scheduler as one job that
requests A[l].nodes nodes and A[l].leeway + A[l].run seconds of run time.

Algorithm 2 PickBestAllocation (G, delay, lstart, lend)

1: n← PickBestNumNodes(G, delay, lstart, lend)
2: run← EstimateRuntime(G,n, lstart, lend)
3: leeway,wait←

PickBestLeeway(G, delay, n, lstart, lend, run)
4: return (n, run, leeway,wait)

The pseudocode for PickBestAllocation is shown in Algorithm 2. It takes
as input a workflow (G), a duration in seconds (delay), a start level (lstart), and
an end level (lend). It returns a number of nodes (n), a run time (run), a leeway
(leeway), and a wait time (wait). These are computed so that executing levels
lstart to lend as one job that requests n nodes for run+leeway seconds would lead
to the earliest completion time, incurring a wait time of wait seconds. n is com-
puted at Line 1 by function PickBestNumNodes (described hereafter). run is
computed at Line 2 by invoking function EstimateRuntime (pseudocode not
shown), which estimates the run time of executing all tasks in levels lstart to lend
on n nodes. This is done using list-scheduling as for OneJob (see Section 5.2).
At Line 3, another helper function, PickBestLeeway (pseudocode not shown),
is called that returns leeway and wait. PickBestLeeway computes the leeway
(and the resulting wait time) in the interval [0, delay] using binary search.

The pseudocode for PickBestNumNodes is shown in Algorithm 3. PickBest-
NumNodes takes four inputs: a workflow (G), a duration in seconds (delay),
a start level (lstart), and an end level (lend). PickBestNumNodes returns the
best number of nodes to request for a job that executes levels lstart to lend of
G. At Line 1, it computes the maximum number of nodes that can be used,
maxnodes. It is simply the minimum of the number of nodes in the platform
and of the maximum width of levels lstart to lend in G. At Line 2, we de-
clare an array M , where M [n] will be the estimated makespan when using n
(n = 0, . . . ,maxnodes) nodes. These makespans are computed in the loop at
Lines 3-7. The run time (run) is computed at Line 4 using the previously de-
scribed EstimateRuntime helper function. The wait time (wait) is estimated
at Line 5 based on a wait time estimate obtained from the batch scheduler for
a job that requests n nodes for run seconds. M [n] is then computed at Line 6.
The first term accounts for the overlap of the execution of the currently running
job (which will last delay seconds) with the wait time of the job that is to be
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submitted (which will last wait seconds). Finally, at Line 8, the index of the
shortest makespan, i.e., the best number of nodes to use, is returned.

Algorithm 3 PickBestNumNodes (G, delay, lstart, lend)

1: maxnodes← maximum usable number of nodes
2: let M [1..maxnodes] be a new array . Makespans
3: for n← 1 to maxnodes do
4: run← EstimateRuntime(G,n, lstart, lend)
5: wait← queue wait time estimate for a (n, run) job
6: M [n]← max(delay, wait) + run
7: end for
8: return argmin(M)

GLUME has complexity O(N · T ·M2), where N is the number of workflow
levels, T is the maximum number of tasks per level, and M is the number of
compute nodes. Each invocation of GLUME requests O(M · T + logD) queue
wait time estimates from the batch scheduler, where D is the maximum work-
flow job duration. The logarithmic term accounts for the leeway computation.
Different batch schedulers may implement different algorithms for computing
queue wait time estimates. This said, a batch scheduler that implements con-
servative backfilling must maintain a data structure that describes the current
schedule and that allows scheduling decisions to be made with low complexity.
This same data structure is used for obtaining queue wait time estimates (simply
find the first “hole” in the schedule where a job could fit, but do not actually
insert that job in the schedule). In the next section, we employ a simulator that
uses an implementation of a batch scheduler that provides queue wait time es-
timates. Computing all necessary queue wait time estimates for each invocation
of GLUME requires at most a few seconds on a single 2.5GHz core.

7 Results

In all experiments hereafter we fix the cap on the number of running workflow
jobs to 16, which is a relatively high value as many production systems set the
cap to 5 or 10 (see Section 4.2). With such lower cap values results for GLUME
are further improved when compared to results presented hereafter.

7.1 Results for ∗-∗-medium Workflows

We discuss results for the ∗-∗-medium workflow configurations and the KTH
and SDSC workloads. We picked these results because results for the HPC2N
and CTC workloads are similar to that for the KTH workload, unlike results for
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the SDSC workload. Also, results for the short and long workflow configurations
are more clear-cut and thus easily summarized (see the next section).

Figure 5 shows results obtained assuming accurate requested job run times
(see Section 4.2). Positive values correspond to cases in which a particular strat-
egy outperforms Zhang. For the KTH workload, Zhang beats GLUME for 2
of the 12 configurations (by at most 1.5%), while GLUME beats Zhang for 8 of
these configurations (by up to 36.6% and by 10.6% on average). For the SDSC
workload, results are similar, with Zhang beating GLUME for 3 configurations
(by at most 0.5%), and GLUME beating Zhang for 9 configurations (by up to
55.1% and by 26.6% on average). OneJobPerTask and LevelByLevel fare
poorly, while OneJob fares better, especially for the SDSC workload, but not
as well as GLUME. The performance of GLUME and OneJob relative to that
of Zhang tends to improve as workflows comprise more tasks. This is because
Zhang often defaults to OneJobPerTask and is thus limited by the cap on
the number of running workflow jobs.

Figure 6 shows results for when requested job run times are taken directly
from the batch logs, and are thus inaccurate in practical situations. For the
KTH workload, results are actually improved : GLUME beats Zhang for 9 of
the 12 workflow configurations (by up to 47.6% and by 16.2% on average) but
is never beaten by it. However, results are drastically different for the SDSC
workload: Zhang beats GLUME for 11 of the 12 workflow configurations (by
up to 55.3% and by 22.42% on average). A reason for the poor performance of
GLUME on the SDSC workload is that jobs in the SDSC workload request on
average 3h20m more than needed. In the KTH workload, jobs request on average
only 1h01m more than needed. As a result, wait time estimates provided by the
batch scheduler are less accurate for the SDSC workload than for the KTH
workload, which can negatively impact GLUME. This said, in the HPC2N and
CTC workloads jobs request on average 4h27m and 3h56m more than needed,
respectively. And yet, results with those workloads are consistent with those
obtained with the KTH workload. There is thus some feature of the SDSC
workload, which we were not able to pinpoint, that makes wait time estimates
less accurate, which in turns penalizes GLUME. Although Zhang also uses
wait time estimates, in these results it often defaults to OneJobPerTask, and
is thus less impacted by inaccurate wait time estimates.

7.2 Overall Results

Table 2 summarizes results across all four workloads and 36 workflow configu-
rations, assuming accurate (left hand-side) and real (right-hand side) requested
job run times in the workloads. Each cell in the table shows the number of wins
and losses of GLUME vs. one of its competitors for a given workflow compu-
tational demand (short, medium, and long). Each cell aggregates results over
48 experimental scenarios (4 workloads, 4 workflow types, 3 workflow sizes in
number of tasks). Boldface is used for cells in which GLUME records more wins
than losses. We define a “win”, resp. “loss”, as an average makespan decrease,
resp. increase, by more than 5% when compared to a competitor. Otherwise, we
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Table 2: Wins/losses of GLUME against competitors, aggregated for each work-
low computational demand, assuming accurate (left) and real (right) requested
job run times.

Accurate requested run times Real requested run times
Worklows Workflows

short medium long short medium long

OneJobPerTask 14/18 40/0 37/0 18/19 27/8 37/0

LevelByLevel 22/6 36/1 35/0 21/10 33/1 34/0

OneJob 9/4 10/1 5/0 17/6 17/1 9/0

Zhang 5/18 17/1 9/0 13/20 10/11 14/0

declare a draw. Without this threshold, the table would include many wins and
losses for cases in which two competitors achieve results that would make little
difference to end users. We pick 5% arbitrarily, but note that different values
(say between 1% and 10%) lead to similar conclusions from the results.

Let us first consider the left-hand side of the table, i.e., assume that requested
job run times in the workloads are accurate. GLUME outperforms Level-
ByLevel across the board, which was already noted in the previous section.
GLUME clearly outperforms OneJobPerTask for medium and long work-
flows, but as expected does not fare as well for short workflows. GLUME out-
performs OneJob as well, although not as drastically as it does LevelByLevel
and OneJobPerTask. Finally, GLUME outperforms Zhang for medium and
long workflows, only recording one loss for one medium workflow configuration.
For short workflows, GLUME is outperformed by Zhang. This is because for
these configurations Zhang often defaults to OneJobPerTask after executing
only a few levels of the workflow, which turns out to be a winning strategy.

The results in the right-hand side of the table are for actual requested run
times. While one might expect GLUME to perform worse since it should be more
sensitive to wait time estimate inaccuracies, trends are similar. The one glaring
difference is for medium workflow configurations, where GLUME experiences
11 losses to Zhang. 10 of these losses are seen in Figure 6 (right-hand side) and
are for the SDSC workload, as discussed in Section 7.1).

Our main conclusion is that GLUME beats its competitors provided work-
flow computational demands are high enough, even with inaccurate queue wait
time estimates. GLUME partitions workflow levels into jobs more effectively
than Zhang, allowing it to outperform the baseline OneJob approach. Note
that our “medium” workflow configurations only correspond to 500 hours of com-
putation, which is at best modest given current workflow and platform trends [1].
It is thus only for very short workflows that GLUME loses to the approach that
consists in running at most a few workflow levels as a single job before devolving
to OneJobPerTask. For these workflows it is difficult to beat this approach as
it benefits from backfilling opportunities without suffering from cascading wait
times. But current trends make it clear that longer workflows are more broadly
relevant to current practice in most scientific application domains [2].
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8 Conclusion

We have proposed GLUME, a strategy for reducing the makespan of workflow
executions on batch-scheduled platforms. GLUME partitions workflow levels
into batch jobs and explicitly attempts to minimize the makespan. Simulation
results show that GLUME outperforms the strategy in [25] as well as base-
line strategies, provided workflow computational demands are moderate to high.
GLUME relies on queue wait time estimates provided by batch schedulers and
achieves good results in spite of the inaccuracy of these estimates.

There are three broad future directions for this work. The first is to allow
GLUME to default to OneJobPerTask so that it can be effective even for
very short workflows. This will require the development of a heuristic for de-
ciding when to default to OneJobPerTask, which should take into account
the platform’s per-user cap on the number of running jobs. The second is to
account for other metrics besides the makespan, such as resource utilization. A
straightforward enhancement to GLUME would be to enforce that each work-
flow job achieves a minimum, user-provided resource utilization (by bounding
the number of nodes allocated to each job). Much more challenging would be
to consider a bi-objective makespan/utilization scheduling problem. The third
is to augment GLUME so that it can partition workflows vertically as well as
horizontally, e.g., splitting a single level into multiple jobs. This would be useful
for cases in which a single workflow level would already be a large job relative to
the target platform and would thus experience long wait time. Ultimately, our
goal is to implement GLUME as part of a software tool for executing workflows
on platforms managed by standard batch schedulers.
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Fig. 5: Average percentage improvement relative to Zhang for ∗-∗-medium work-
flows on the KTH (top) and SDSC (bottom) workloads, with the number of
simultaneously running workflow jobs capped at 16 and assuming accurate job
requested run times.
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Fig. 6: Average percentage improvement relative to Zhang for ∗-∗-medium work-
flows on the KTH (top) and SDSC (bottom) workloads, with the number of
simultaneously running workflow jobs capped at 16 and realistic job requested
run times.
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