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ABSTRACT 
Major societal and environmental challenges involve complex systems that have diverse multi-scale 
interacting processes.  Consider for example how droughts and water reserves affect crop production, and 
how agriculture and industrial needs affect water quality and availability. Preventive measures such as 
delaying planting dates and adopting new agricultural practices in response to changing weather patterns can 
reduce the damage caused by natural processes.  Understanding how these natural and human processes affect 
one another allows forecasting the effects of undesirable situations and study interventions to take preventive 
measures.  For many of these processes, there are expert models that incorporate state-of-the-art theories and 
knowledge to quantify a system’s response to a diversity of conditions. A major challenge for efficient 
modeling is the diversity of modeling approaches across disciplines, and the wide variety of data sources 
available only in formats that require complex conversions.  Using expert models for particular problems 
requires integration of models with third-party data, as well as integration of models across disciplines.  
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Modelers face significant heterogeneity that requires resolving semantic, spatio-temporal, and execution 
mismatches, which are largely done by hand today and may take more than two years of effort.   

We are developing a modeling framework that uses artificial intelligence (AI) techniques to reduce modeling 
effort while ensuring utility for decision making. Our work to date makes several innovative contributions: 
1) An intelligent user interface that guides analysts to frame their modeling problem and assists them by 
suggesting relevant choices and automating steps along the way; 2) Semantic metadata for models, including 
their modeling variables and constraints, that ensures model relevance and proper use for a given decision 
making problem; and 3) Semantic representations of datasets in terms of modeling variables that enable 
automated data selection and data transformations.  This framework is implemented in the MINT (Model 
INTegration) framework, and currently includes data and models to analyze the interactions between natural 
and human systems involving climate, water availability, agricultural production, and markets. Our work to 
date demonstrates the utility of artificial intelligence techniques to accelerate modeling to support decision 
making and uncovers several challenging directions for future work. 
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1 Introduction 
Understanding complex systems requires developing models that can capture the underlying interacting 
multi-scale processes governing behaviors, and analyzing possible actions that can change those behaviors 
to achieve desirable outcomes.  Quantifying how human activities affect natural resources and how natural 
processes affect human life requires complex model simulations that cut across disciplinary boundaries.  
Population growth brings urban growth and industrial growth, with increased needs for water and energy. 
Food production through agriculture also increases the use of water, and production is greatly affected by 
climate, particularly droughts and flooding. Agricultural production needs to be addressed sustainability, as 
land use change and agrochemical inputs (e.g., fertilizers) can pollute the environment. Understanding how 
weather predictions and agricultural practices affect water availability and irrigation allocation, or how 
flooding affects planting strategies and population migration, requires integrating physics-based climate and 
hydrology models, biologically informed agriculture models, and socio-economic models. The latter provides 
a mechanism for understanding how commodity prices and production costs, as well financial positions, 
affect farmers' choices and market distribution.  A major challenge in integrating these models is that they 
can be complex, have limited software support, and can be designed for spatial and temporal operation scales 
that are not matched across models.  As a result, it typically takes months to produce accurate results that can 
reveal useful insights for decision makers.   

Ideally, decision makers seek integrated models that enable them to gain a causal understanding of the effects 
of interventions and non-action. In addition to understanding the magnitude of intended effects, they reveal 
how an intervention may interact with other interventions so the expected effect may be reduced or amplified, 
and they expose unintended side effects.  In practice, simpler models are used that only allow the halting 
exploration of limited questions and do not result in effective decision making.   

There are many areas in the world where understanding complex systems that involve human activities and 
natural resources is crucial for decision making. We introduce a few here.  Consider Texas and the South-
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Central region of the US, where the population is expected to double in the next thirty years, with concomitant 
urban, agricultural, and industrial growth posing increasing demands on water and energy resources.  Major 
aquifers in the region are being depleted by hundreds of wells, reducing water reserves and causing sinking 
of land areas.  In addition, extreme events such as extended droughts and destructive floods require accurate 
modeling of the potential overflow of rivers particularly in urban areas.  What levels of pumping in wells are 
sufficient to conserve water for expected drought periods?  What areas will be safe from flooding so that 
infrastructure and critical services can be properly positioned?  Another example is Ethiopia and other 
countries in Sub-Saharan Africa, where droughts and flooding affect agricultural production and food 
availability in a large country with limited capacity to compensate local shortages with domestic or 
international trade, which results in migrations and in extreme cases famines.  When flooding is expected, 
planting could be delayed in order to save seed, labor, and ultimately the crop harvest.  But in what areas will 
flooding likely occur?  What crops and under what conditions can harvest be accomplished before the floods 
to avoid food shortages and migration?  While long-term planning for such situations is desirable, decision 
makers pose questions that often require rapid response in order to prepare for natural disasters or to decide 
on near-term policies.  Creating models is effort intensive and hard to do in a timely manner.  Furthermore, 
once the model has been created, delivering modeling systems and model outputs in a form that allows 
decision makers to explore scenarios and policies remains a challenge. 

This paper presents a modeling framework that uses artificial intelligence (AI) to make modeling more 
efficient and useful for decision making.  The contributions of this work include: 

1. A semantic representation of models that captures different versions and settings, supports their 
execution, and identifies key model variables for decision making that enable the use of modeling 
goals to constrain modeling choices  

2. A semantic representation for datasets in terms of modeling variables that enable the use of AI 
planning for automated data selection and data transformations 

3. An intelligent user interface that guides users through interactive scenario exploration, which allows 
users to state modeling goals, guides them through modeling steps, assists them by constraining 
choices, and automates time-consuming aspects of data preparation 

4. An implemented framework that demonstrates the use of these AI techniques to analyze complex 
systems, designed to support a range of potential scenarios and interventions to support decision 
making 

Our current implementation in the MINT (Model INTegration) framework includes a range of models for 
weather, hydrology, agriculture, and econometrics as well as a wealth of regional-level data needed to run 
those models.  Geospatial and temporal aspects of the data and models are central considerations for these 
problems.  The framework can be used to analyze interactions between natural and human systems 
concerning water availability and food production.   

The paper begins describing general modeling scenarios and requirements that motivate this work.  The next 
section discusses related work, as there is extensive literature in supporting specific aspects of modeling and 
decision making.  The following section introduces our approach and contributions to frame modeling 
problems, represent models and data, and support users in modeling tasks. The paper also includes a 
description of the implementation of this approach in MINT, and a walkthrough of the MINT user interface 
as a user is guided through modeling steps and receives assistance along the way.  The paper then summarizes 
the benefits of the approach, and discusses, in a broader context, its merits for modeling and decision making.  
The final section concludes with a summary of the novel contributions and prospects for future work. 

2 Motivating Scenarios and Requirements 
Creating a model in a specific domain or area of expertise is very challenging because there are many models 
that can be adapted for specific areas or situations.  Our focus has been on geoscience processes and their 
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interaction with human processes. In this context, a model is an idealized representation of a physical system 
that can be used to characterize, understand, predict, and manage the system. The modeling approach can 
vary widely, from empirical (e.g., the likely return period of a weather event for a particular area based on 
prior events) to theoretical (e.g., biogeophysical laws), from having 2D to 3D spatial extent, varying spatial 
and temporal granularities, and different simplifications and assumptions. Although many basic modeling 
needs are shared in other domains, other domains may have specific requirements that are not addressed in 
our work.  For example, synthetic biology requires the ability to compose hierarchical models of cells and 
their constituents, molecular dynamics simulations require atomic-level models that scale to billions of 
atoms, and network models require support for non-deterministic scenarios.  Our focus is on supporting 
modeling of geoscience processes and the human processes that affect them, specifically how floods and 
droughts affect crop production and food availability.  

Let us consider a hypothetical scenario where a decision maker wants to better understand how flooding in a 
specific area will affect roads in order to plan hunger relief shipments in case of crop failure. This complex 
scenario first requires to understand flooding in the area. Simple statistical models of flooding can be used to 
predict whether a 100-year flood could occur given a range of precipitation forecasts. While easy to use, such 
simple models give a binary answer: whether there could be a 100-year flood that season or not. But these 
simple models do not support many questions that may be of interest for decision makers, such as the water 
height in the area or drainage rate after the flood. This would require setting up more elaborate physics-based 
models that simulates how water would percolate through the ground and whether a river would break its 
banks. There are many hydrology models available off-the-shelf, and it would take some time to find one 
that produces useful flood maps and to understand how to use it.  Often times the questions relevant to 
decision making do not map very closely to the scientific questions that models were designed to answer.  So 
additional work needs to be done to understand how interventions to avoid undesirable outcomes can be 
represented in an off-the-shelf model (e.g. putting sand bags to protect a road).  

Once an appropriate hydrology model is found, using it is also challenging. It takes significant effort to locate 
appropriate data about the area (e.g., about terrain elevation, soil types, weather, etc.) with the right quality 
and granularity required by the model.  It then takes time to understand and transform the data to the formats 
used in the target model.  Although there are tools available to do data transformations, they are not well 
integrated and require deep expertise.  Once that is done, some model parameters need to be customized to 
the particular area by tuning its parameters using historical data about that area.  Ideally, this needs to be a 
systematic process independent of the user’s skills.  Tuning may also take many iterations and adjustments.  
As a result, many months of effort are typically required for this process. 

Oftentimes, these off-the-shelf models are often themselves combinations of model components that handle 
specific processes. For instance, the hydrology model above could combine a soil component, to describe 
how water infiltrates into the ground, and a meteorological component, to describe how rain falls on the land 
(weather models only handle the atmospheric processes leading to the precipitation). When creating a 
composite model of these multiple components, it is generally still the case that each component has its own 
input data requirements.  The model takes as input a configuration file (or multiple files for each of its 
components), which is generally a set of key-value pairs. Values in these pairs may have any data type (e.g. 
integer, float, string), and some values of string type may simply be the names of other input files from which 
the model expects to read additional values (often as arrays of arbitrary dimensions and rank).  These other 
input files may contain initial values for some of the model variables, or forcing variables (e.g. rainfall rates) 
that vary in both space and time. A sophisticated spatial model may have a large number of input files, in 
addition to its configuration file. 

Each model (and associated components) is responsible for reading its own input files and therefore requires 
these files to adhere to supported file formats and data conventions. Models often fail if input data are not 
prepared correctly to meet these requirements. A model may or may not check whether all input values fall 
within a valid range, or whether every formatting rule is followed. Instructions for data preparation are 
generally provided in some type of user's guide or online help system. Model developers generally assume 
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that users have a basic understanding of numerical stability issues, such as the fact that most models become 
numerically unstable when their time step is set too large in relation to parameters like grid cell size. For 
some models, stable time step size cannot be predicted by theory, and a trial-and-error approach is required. 
On the other hand, some models offer an automated approach to computing the time step, which can be 
adapted at each step. 

Data preparation steps for a sophisticated model can be quite involved, and spatially-distributed hydrologic 
models provide a good illustration of this. These models carefully track all of the water in a watershed, which 
includes water coming in via space-time rainfall, water leaving by evaporation, water leaving by infiltration 
into the soil (which may be multi-layered), water flowing in river channels, water flowing over hillslopes, 
water produced by melting snow, or water flowing into rivers from below ground (baseflow). All of this 
water tracking is based on physical laws, combined with empirical observations when necessary. 

To set up the hydrology model, one would first obtain data sets that describe properties of the topography, 
the river channels, the soils, the land use, and weather/climate variables (e.g. rainfall rate, temperature, 
relative humidity, wind speed) for the region of interest.  These types of data sets can be downloaded from a 
variety of sources, typically as 2D arrays of numbers (i.e. grids), in a variety of file formats.  Mosaicking 
may be required to patch together grids for smaller regions to span the region of interest, given as a geographic 
bounding box. Clipping may also be required to match the region's bounding box.  Resampling may be 
required to change the spatial resolution to match that of the model's computational grid.  Unit conversion 
may be needed to obtain the measurement units expected by the model.  Cleaning may be needed to deal with 
missing values.  File format conversion may be needed.  Reprojection (to a different map projection) may be 
needed.  In addition to these types of transformations, it is often necessary to compute other required inputs 
from these raw inputs.  For example, given a grid of elevations (a digital elevation model or DEM) for a 
region, many other required grids can be computed as "derived products", such as: the flow directions, river 
channel network, topographic slope, total contributing area and river basin boundaries.  Similarly, given basic 
properties of the soil as grids for different soil layers, other properties can be computed from these that are 
needed to model the process of infiltration. Users may also need to identify points (as a longitude-latitude 
pair), polylines, or polygons of special interest.  These are typically provided using "vector" vs. "raster" file 
formats.  Many models provide utilities with their source code to help with data preparation, but others 
assume that these tasks will be performed with geographic information systems (GIS) software or some other 
set of scripts or tools. Computational notebook interfaces provide a good mechanism for explaining and 
sometimes automating data preparation steps required to setup a model. 

But decision making may not only involve flooding. In our example, a decision maker may want to know 
how the crop yield is affected if planting dates are moved forward to avoid the predicted floods in the 
farmland.  This could require finding and tuning both a hydrology model and an agriculture model, requiring 
twice the effort that was just described. In addition, when different models are used, their data and their 
assumptions must be compatible.  For example, the agriculture model will be better if it uses the results of 
the hydrology model, such as the soil moisture over time (more moisture means more growth of the crops) 
and the flooding areas across the cropland over time (since flooding destroys crops), but this requires that 
they use the same weather data and the same granularity in the simulation steps.  This kind of coordinated 
modeling introduces further complexity in the modeling tasks in each of the domains involved.  This severely 
limits the quality and timeliness of the models to the detriment of decision making, and discourages the 
creation of complex models in many cases because of the effort involved.  The models themselves are not 
easy for a non-expert to run.  As a result, decision makers might be unable to explore possible situations, 
underutilize the power of the models, and have to rely on modelers to do specific model runs and present 
specific model results.  The poor accessibility of the models severely limits their use by non-experts and tilts 
the balance towards simpler models and perhaps more uncertain and less robust assessments. 
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Table 1: Overview of key problems and challenges in modeling. 

Problems Challenges 

Delays in 
decision making 

• Locating data is difficult 
• When data is not available, workarounds must be designed 
• Transforming data to the desired formats is mostly done manually 
• Customizing a model to a region is mostly a manual process 

Limited scenario 
exploration 

• Models that consider no interventions or limited ones 
• It takes significant effort to explore the side-effects of interventions 

Restricted domain 
modeling 

• Models are designed to have dozens or hundreds of parameters, but 
those parameters may not need to be visible to decision makers 

• Modelers lack the expertise to use models from other disciplines and 
ensure consistency with their own models  

Static analysis 
reports 

• Modeling tools do not support aggregation of modeling products 
• Visualizations of modeling products are generated manually 

 

The process we just described illustrates four major problems, which are summarized in Table 1: 

1. Delays in decision making: Several months are typically needed to generate modeling products.  
This is because data must be located, and transformed as needed by models. Workarounds have to 
be found when data is not available, and models have to be set up and refined to make accurate 
predictions. 

2. Limited scenario exploration: Decision makers are interested in exploring interventions that solve 
potential problems.  In contrast, many models typically focus on prediction from static inputs and 
have limited representations of interventions, if any. 

3. Restricted domain modeling: While the decision maker has holistic questions about the system, in 
practice models tend to have many parameters that can improve the quality of the model but are 
viewed as too detailed to matter for decisions.  Furthermore, model parameters are often not 
independent, and it requires substantial expertise to realize that altering one parameter means 
considering other parameters. When using several models, coordinating the settings of each 
increases the modeling complexity.  It takes significant effort for a modeler to learn to use correctly 
new models outside their area of expertise.   

4. Static analysis reports: Reports that summarize previously run executions and predefined 
visualizations do not adequately support exploration and understanding of nuanced patterns about 
the behavior of the system that are key to decision making. 

3 Related Work 
There is significant work on modeling frameworks, model repositories, and other infrastructure to support 
modelers that is reviewed in this section.  

3.1 Modeling Frameworks 
The Community Surface Dynamics Modeling System (CSDMS) [Peckham et al. 2013] provides an open-
source, community repository of earth surface process models and an integrated execution environment.  The 
Community Earth System Model (CESM) contains atmospheric, oceanic, and land surface models.  The 
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Computational Infrastructure for Geodynamics (CIG) includes deep earth process models.  The Earth System 
Modeling Framework (ESMF) [Hill et al. 2004] contains models of climate, weather, and other geosciences 
applications.  OMS (Object Modeling System) includes mostly agricultural models [David et al 2013].   

Usually, the purpose of computational modeling is to predict how the values of one or more variables of 
interest in some system will change over time.  The general approach is to start with a mathematical model 
of the system of interest, which is a set of equations that must be satisfied by a set of variables.  These 
equations may be algebraic or differential, and they may be laws of physics or empirical (regression) formulas 
determined from data analysis.  Some of them must also exhibit time dependence, in order for future values 
to be computed from values at previous times.  Time is discretized, and these predictive models are often 
called "time-stepping models".  Whenever the values of any given variable can be obtained from somewhere 
else --- such as observational data values stored in a file, or as output from another model --- the number of 
equations the model must solve by numerical methods is reduced by one.  Coupling a model to other models 
and data sets (stored in files) means making it possible for the model to retrieve the values of desired variables 
in the form that the model requires.  Keep in mind that the values for a single variable that varies spatially 
may be stored as a large 2D or 3D array of values associated with a computational grid.  The reason this 
coupling is often difficult is there are many ways in which the form these values are provided in can differ 
from the form in which they are needed by the model.  For example, values may be provided on a different 
computational grid, with a different spatial or temporal resolution, with different measurement units, with a 
different variable name, with a different map projection, and so on.  These differences --- which result in 
what is often called "data friction" or "an impedance mismatch" --- can be reconciled by applying 
transformations such as regridding, resampling, unit conversion or reprojection.  In the absence of an 
integrated model coupling framework, these transformations must be applied by a knowledgeable user, often 
as pre-processing or data preparation steps.  However, sophisticated modeling frameworks like those above 
use a combination of a standardized model API and standardized metadata for variables and how they are 
stored in order to automatically apply these transformations with no user intervention.  The modules in the 
framework that do these transformations are called mediators.  Notice that this approach combines the well-
known adapter pattern (via standardized data and model APIs, perhaps offered as services) and the mediator 
pattern.  Mediators made available as web services are often referred to as brokers. 

The modeling frameworks mentioned earlier, such as CSDMS, CESM, and CIG, support model coupling 
frameworks such as these generally employ some variant of the adapter-mediator pattern and include a 
repository of models. 

A key, distinguishing feature among model coupling frameworks is whether or not they support exchanging 
the (time-dependent) values of variables while the coupled models are running or whether each coupled 
model completes its execution before passing its values to another, subsequent model. For the first type of 
framework, computational efficiency is critical, so the time-dependent values are typically stored in RAM 
and passed by reference.  Passing values via file I/O is typically avoided since it is so much slower.  Examples 
of this type of framework include CSDMS, ESMF and OMS.  For the second type of framework, each model 
saves the values of the variables it computed in a file on exit, and the next model in the chain reads these 
values from that file as input before it executes.  Examples of this type of framework, typically called a 
workflow system (e.g., [Gil et al 2011]).  Both types of framework may utilize mediators to reconcile 
differences between coupled models before exchanging the values of variables, such as regridding to match 
the model scales and message passing across models to synchronize the processes they each model. 

Some computational models make extensive use of parallel processing and are meant to run on 
supercomputers.  Exchanging values between coupled, parallel models while they run is complicated by the 
fact that the values of a given variable are now spread across several processors.  A common situation is two 
models that each use "domain decomposition", but each uses a different number of processors.  ESMF and 
the (Model Coupling Toolkit (MCT) [MCT 2020] both handle this problem efficiently.  
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The Basic Model Interface (BMI) [BMI 2016] provides standardized, noninvasive, and framework-
independent API for models [Peckham et al 2013]. BMI is easy to implement and yet provides all information 
needed to deploy a model in multiple model coupling frameworks.  This is an important form of model 
integration, but it is not addressed in our work.  While it greatly simplifies the coupling of models that must 
exchange data while they run, it does not address the many "upstream" issues associated with data 
preparation, nor the many "downstream" issues associated with visualization and analysis of model results. 

3.2 Model Repositories 
General software repositories (e.g., [GitHub 2020]) help modelers store versions, test, integrate and 
disseminate their code. However, these repositories represent only basic metadata such as license, creator 
and installation instructions. Software container repositories (e.g., DockerHub [DockerHub 2020] address 
the execution of software with complex dependencies, but also lack metadata necessary for effectively 
understanding the functionality of the software.  None of those repositories has explicit knowledge or 
metadata to support reasoning and automation.  

nanoHUB [Zentner et al 2014] is a repository of nanotechnology models and software. HUBzero [McLennan 
and Kennell 2010] is the framework underlying nanoHUB, which has been used to develop repositories in 
many other domains.  A key added value of the repository is the measures of quality of the software, and 
tracks usage statistics and citations. The focus of these repositories is to allow users to run individual models 
and software interactively, but users still have to figure out how to use the models and how to find and prepare 
the necessary data.  

Some model repositories describe models using metadata organized in schemas or ontologies.  The modeling 
frameworks mentioned in the previous section contains source code for hundreds of models. Metadata is 
collected for each model, with information such as authors, programming languages, pointers to code, 
licenses, and test datasets. A feature of CSDMS is enabling users to describe models using standard names 
for model variables [Stoica and Peckham 2018], so that the variables can be shared consistently across 
models. These standard names are essentially ontologies of domain-specific terms in geosciences. 

Model metadata registries focus on metadata descriptions of executable models, complementing code 
repositories which focus on storing model code. Model metadata registries may not store the code itself, but 
will likely have a pointer to a code repository to find it. There are multiple existing model metadata registries 
in different domains. [Shamir et al 2013] describe the practical experiences with a software repository for 
astronomy that includes hundreds of entries, where users did not want to include metadata that was hard to 
track and instead found beneficial that the repository identifies the code accurately and without ambiguity.  
OntoSoft [Gil et al 2016, Gil et al 2015] was developed to capture extensive information that is needed by 
scientists to understand how models work.  Most of that information is available, but scattered in publications, 
manuals, code documentation, and web sites [Essawy et al 2017]. Having this information organized in a 
registry can save researchers a lot of time in understanding and comparing models.  

Prior work on annotating executable software components with semantics has shown that it facilitates their 
findability and composition. In bioinformatics, initiatives like the BioCatalog [Rodriguez-Tomé 1998] led to 
the proliferation of dozens of semantically described services with tools for bioinformaticians. Efforts like 
the SADI framework [Wilkinson et al 2011] leverage Semantic Web technologies to describe the inputs and 
outputs of components that users could combine in scientific workflow systems such as Galaxy [Afgan et al 
2018], making them available to a wide range of researchers [Perkel 2017]. In the proteomics domain, new 
frameworks have been developed for automating workflow composition analysis [Palmblad et al 2019]. The 
community has also started to apply some of these techniques to simulation models, aligning them to 
community-curated biomedical ontologies [Hoehndorf et al 2011] and establishing best practices for 
requirements, design, and construction of biomedical simulations [Hellerstein et al 2019].  Our early work 
on the WINGS intelligent workflow system demonstrated the value of semantic metadata to automate 
workflow composition, interactive data and parameter selection, and validation of user-created workflows 
[Gil et al 2011]. We build on all this prior work, however the software components are consuming or 
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generating entity identifiers (e.g., a gene name or protein name), which are easier to describe than the spatio-
temporal datasets containing many physical variables that are used in geoscience models.  

In summary, existing model catalogs contain useful metadata about models, and often facilitate model 
execution.  However, they lack important information such as model variables or model processes, which are 
used by modelers to discern whether the model is appropriate for their analyses or not. Furthermore, once a 
model is selected, it takes significant effort to understand how to set it up and how to interpret its results.  

3.3 Data Repositories 
Data repositories are ubiquitous in science. Some notable examples are Dataverse [King, 2007] and 
Humanitarian Data Exchange [HDX 2020]. While both provide mechanisms to describe and search datasets 
by the associated metadata, there are very few required types of metadata besides the high-level description 
(such as dataset’s name and description). On one hand, it makes it straightforward for data providers to share 
their datasets. However, on the other hand, this leads to large variability in metadata quality and vocabulary, 
making standardization and reconciliation of datasets difficult to automate. This is addressed to some extent 
by the recently introduced Google Dataset Search [Brickley et al., 2019] by using Schema.org [Guha at al., 
2016] and W3C Data Catalog Vocabulary (DCAT) [DCAT 2020], which essentially offer general ontologies 
of core metadata for datasets. Domain-specific metadata requires effort to specify, and many data repositories 
only capture general metadata.  Unfortunately, data catalogs generally do not require machine-readable 
descriptions of data, deferring that effort to data consumers.  

In order to provide interoperable data, data catalogs must support many formats (e.g., XML, netCDF, 
Spreadsheets) and layouts (e.g., relational or matrix tables). Mapping a dataset from its original format and 
layout into a common representation (e.g., RDF [RDF 2020]) is a popular approach to address this problem. 
However, this mapping process is very labor-intensive and often requires users to write custom code. To 
accelerate this process, some users rely on tools to easily map a dataset by providing the dataset description. 
Methods such as RML [Dimou et al., 2014], xR2RML [Michel et al., 2015], KR2RML [Slepicka et al., 2015] 
are capable of handling datasets with heterogeneous formats such as XML, CSV, but they only work with 
data in the nested relational model layout. Other tools such as XLWrap [Langegger, et al., 2009], T2WML 
[Szekely et al., 2019] can describe data in many different layouts, but they can only map data in tabular 
formats. There is no unified tool that can be used for these different kinds of datasets. 

Creating representations of datasets generally requires a workflow of many steps, including describing the 
data types and data relationships. These tasks are referred to as semantic labeling and semantic modeling 
[Goel et al. 2012; Pham et al. 2016; Ramnandan et al. 2015; Ritze et al. 2015]. Semantic labeling and semantic 
modeling are necessary steps to create an ontological description of a dataset. Work from the information 
extraction community has considered classifying and mapping tables found on webpages [Cafarella et 
al.2008; Gatterbauer et al. 2007; Sarawagi et al. 2008] as well as using similar query-based approaches for 
relation extraction [Abulaish and Dey 2007; GuoDong et al. 2005]. Table understanding approaches have 
been described from a formal, database-centric perspective [Zanibbi et al, 2004] focused on layout, and more 
algorithmic approaches to understand table layouts [Koci et al., 2016; Dong et al., 2019].  Semantic 
descriptions of tables and other datasets are still largely created manually, and could be more automated. 

Previous research [Krishnan et al., 2016] has developed approaches to allow easier data representation, 
cleaning and transformation. However, previous research still depends on human interaction in early data 
processing stages. Leveraging the power of D-REPR allows MINT to map different data formats and layouts 
into one common representation and thus allows MINT’s transformation system to be format-independent. 
There are multiple systems designed to tackle the data transformation/cleaning problem before. However, 
existing systems (e.g. OpenRefine [OR 2020], Wrangler [Kandel et al., 2011], Trifacta [TF 2020]) only 
support some popular input formats (e.g, csv, json, xml) and layouts of these input data needs to follow a set 
of common conventions so that the content can be handled correctly.  Many models use multi-dimensional 
formats such as netCDF4 or geotiff, which are not handled by these tools. 
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Table 2. Approach to integrated modeling taken in MINT. 

Approach Key Ideas 

 

Goal-Oriented 
Modeling  

	

• Problem framing based on decision space 
• Models extended to expose potential interventions 
• Interactive dashboards to explore interventions and their outcomes 

Modeling as Problem 
Solving  

• Model metadata that enables model discovery based on modeling goals 
• Automated checking of model requirements and data needs 
• Guided model configuration and calibration 

Representing and 
Transforming Data 

• Metadata that enables data discovery 
• Interoperability of data 
• Composable data transformations 
• Generating novel data for modeling 

Interactive Scenario 
Exploration 

• Interactive dashboards to explore model results 
• Stylized narratives of modeling choices and scenarios 
• Provenance records with metadata of model runs 

 

An important task in scientific data cleaning and normalization is the identification, representation and 
transformation of scientific measurement units that are associated with the data. Existing frameworks such 
as the yt Project [Turk et al., 2010] and Measurement-units-in-R [Pebesma et al., 2016] give users the option 
to enforce a unit of measure for a given fixed set of data. These frameworks enable one to add, subtract, 
multiply, and divide using quantities and dimensional arrays. When used in expressions, some of these 
platforms automatically convert units, and simplify them when possible. Measurement-units-in-R gives the 
user the flexibility to expand beyond predefined units but it requires an initial user definition and 
understanding of data.  Even with these tools, the process of data understanding, normalization, and 
transformation is laborious and could be more automated. 

4 Technical Approach 
Our approach has four key ideas: 

1. Goal-oriented modeling as a principle to encapsulate model software that takes into account the 
questions and framing of potential interventions and decisions. These interventions and decisions 
are both geographically dependent and time sensitive. 

2. Modeling as problem solving, where modeling goals drive the selection of models and their 
particular configurations and settings. 

3. Representing and transforming data for scientific modeling, where data is described using a 
variety of metadata extraction and generation techniques, and data transformations to create a 
desired format. 

4. Interactive scenario exploration, through a user interface that drives users through structured 
stages of modeling, provides dynamic visualizations of results, and generates provenance for model 
products to support explanation and reproducibility. 
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These key ideas are summarized in Table 2 and elaborated in the rest of this section. 

4.1 Goal-Oriented Modeling 
A major difficulty in modeling is framing the problem in terms of what are the desired outcomes and decisions 
under consideration for a specific area within a defined timeframe, and how they should be mapped into 
modeling tasks that can help understand possible future situations, potential interventions, and decision 
tradeoffs.  A major source of this difficulty is that this framing determines what models and data are needed 
and what modeling detail is required.  This process takes significant effort, and it involves discussions about 
model capabilities, estimations of the effort involved in developing the models, and tradeoffs between the 
time and effort required for modeling and the criticality of the decision. 

Our approach is to guide users to do goal-oriented modeling, by casting their questions in terms of modeling 
tasks that capture modeling goals.  We define a modeling task as a tuple: 

MT = <TR, TD, TI, TA, TP> 

where: 

• TR is a response from the system that is relevant to the decisions under consideration.  System 
response can be estimated through a set of indicators that provide insights into the behaviors and 
patterns of the system under study. Indicators can be modeling variables, typically output variables 
of a model, or functions of modeling variables into an aggregate quantity (or index).  Examples of 
responses of interest include crop yield and drought indices. 

• TD are a set of drivers that enable studying different possible situations.  Drivers can be input 
variables to the models (e.g., rainfall), or adjustable parameters that reflect changes in initial 
conditions.  A thread could consider crop yield without flooding, another thread could consider a 
moderate amount of rain during the growing rainy season, and another thread major rainfall 
conditions. 

• TI represent interventions that represent actions that have the potential to affect outcomes.  For 
example, a desired outcome to increase crop yield could be addressed with interventions such as 
planting earlier or shorter cycle crops (or a combination of both in a fraction of the area) which 
would allow harvesting earlier before flooding takes place.  The interventions we consider are those 
that can be incorporated into models through specific drivers.  

• TA is a geographical area for the model.  When decisions concern an administrative region, 
appropriate modeling areas would be identified.  For example, hydrology models would be created 
for specific river basins, and agriculture models would target different farms and land crop areas.  
Each task would focus on a single modeling area. 

• TP is a time period for running a model for the task.  This is often several years, as some models 
require a spin up time for the simulation that enables the model to pick up seasonal patterns in the 
driving variables. 

Modeling tasks are often interrelated, we allow modeling tasks to be grouped thematically into modeling 
problems.  Modeling problems serve the purpose of aggregating the results from different tasks.  In some 
cases, modeling tasks may look at different modeling areas or regions.  For example, a modeling problem 
could be to analyze how flooding will affect crop yield in a region, which may lead to several tasks to do 
hydrology modeling for different basins and several tasks to do agriculture modeling in several farmlands 
taking into account the flooded areas.  In other cases, modeling problems can be fleshed out into in separate 
modeling tasks that each explore alternative interventions or responses (e.g., different drought indices).   

The time frame of a task does not necessarily reflect the time period where the model is run. For example, a 
task to analyze the effects of flooding in crop yield during the wet season may require running the agriculture 
model starting further back during the planting time.  

Each modeling task is explored by creating different modeling threads that consider alternative modeling 
assumptions, such as the use of different models and/or variations in parameters and input datasets.  For 
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example, a modeling task to explore crop yield may have two modeling threads, each using a different 
agriculture model.  Separate threads can be created to explore different initial conditions and input data 
sources (e.g. alternative weather forecasts).  The use of alternative models and data sources and the 
comparison of results is crucial to assess uncertainty and increase confidence in the estimated outcomes. 

Note that the focus of our goal-oriented modeling is not on the decision problem but on creating goal-oriented 
modeling tasks that can drive modeling and make it more efficient.  We establish a relationship between 
modeling tasks and decision making through the explicit representation of interventions.  Much more work 
remains to be done to relate decisions to modeling problems and tasks. 

Table 3 summarizes major concepts in goal-oriented modeling.  By capturing the goals of modeling, 
modeling tasks drive the modeling process and constrain the choices of models and data.  In the next two 
sections, we present how models and data are described so they can be matched with the goals represented 
in modeling tasks. 

4.2 Modeling as Problem Solving 
Once the modeling goals have been specified, we can marshal models and data in service of those goals.  This 
section describes how models are retrieved and applied to modeling tasks. 

4.2.1 Creating Problem Solving Components from Expert Models  
Expert models capture sophisticated model theories that are often the result of years of work and are 
implemented in software packages, often with many versions and with many possible settings.  Given the 
software package for a model, we create software components that can be use that bundle together specific 
functionality in the model.  First, we create model configurations that include specific combinations of 
processes and inputs required to execute a model.  For example, for arid regions we may create a 
configuration of a hydrology model that does not include snowmelt processes.  For a given configuration, we 
then create model set ups that are customized for a specific scope. For instance, we may create a set up for a 
hydrology model that is customized for a specific river basin.  Model set ups are often created by adjusting 
model parameters using historical data, which can be automated (referred to as model calibration or model 
parameterization) or a manual process.   

Several considerations are important to the design of model set ups as problem solving components. 

First, an important aspect of creating problem solving components out of models is exposing drivers, 
interventions, and adjustable parameters as inputs to the model. These require:  

• Adjustable parameters whose variations could expose important patterns in the system and 
facilitate the exploration of system behaviors. In the documentation of models there is always 
reference to model parameters, which are used to customize models (e.g., for a specific region).  
Although those parameters are by definition adjustable and have a clear role in modeling, they are 
not necessarily important for exploring possible future situations.  Identifying appropriate adjustable 
parameters can be facilitated by examining examples of drivers and interventions under 
consideration. 

• Data inputs that reflect possible initial states of the system as well as external variables that affect 
the system behavior.  These are data that represent drivers and interventions of interest. 

• Responses that can be generated by a model set up need to be identified and made explicit in the 
description of model results.  

Second, post-processing of model results is often needed in order to support decision making.  Model outputs 
are typically designed to provide a scientific characterization of the system, but are often not directly usable 
to convey patterns of behavior to non-scientists.  Post-processing workflows can be associated with model 
set ups to address the following requirements: 
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Table 3. Glossary of major concepts in goal-oriented modeling. 

Concept Description 

Indicators and 
indices 

An indicator is a quantifiable variable that is identified as playing a special 
role, namely to help characterize a complex property of a system 
being modeled. Indicators can be single variables or combinations of 
variables, called indices.  Indices are created to summarize several 
indicators in an easy to grasp a single value that can be used for 
assessment of alternative modeling scenarios. 

Modeling problems A modeling problem is a theme that is useful to group a set of modeling 
tasks.  A modeling problem can be expressed as a statement, and it 
is not machine readable.  It is simply a convenient mechanism to 
organize modeling tasks. 

Models A model in our context is a software implementation of an idealized 
representation of a physical system that can be used to make 
predictions and manage the system. 

Modeling tasks A modeling task is accomplished through a series of model runs in order 
to answer a question of interest. 

Modeling threads A modeling thread groups together model runs that are conceptually 
related. 

Adjustable parameters Parameters of a model whose value affects an input variable, and can 
be adjusted to explore different situations.  For example, an 
agriculture model can have an adjustable parameter that sets the 
crop to weeds ratio (or range thereof) so users can explore different 
weed growth situations. 

Interventions Interventions reflect human actions that can change the course of a 
system’s behavior.  They can be explored through the settings of 
adjustable parameters and input variables.  For instance, 
interventions to improve weed management practices and increase 
crop yield could be studied in an agriculture model by adjusting the 
crop to weeds ratio. 

 

• Indices often have to be generated by combining raw model outputs with other information (e.g., 
drought indices), in order to provide variables and abstractions that can convey the state of the 
system and behavior patterns that are useful to audiences beyond the model developers.  Indices are 
often statistical in nature and describe deviation from an average condition. For instance, a drought 
index value of 4 means extreme drought conditions (4 standard deviations from the mean). 

• Visualization designs that are useful for a model need to be also captured.  This includes extracting 
useful variables from the inputs and outputs of the model, and creating appropriate views for 
visualization (e.g., coarser-grained results, statistical properties, etc.).  Generating proper 
visualizations may include fetching other data as reference (e.g. fetching historical data in order to 
compare the model predictions with annual averages).  

• Combined results often need to be generated from many model executions, and these combinations 
are specific to each model.   

• Responses that are not directly generated by the model but can be derived from model outputs. 
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Table 4. Glossary of major concepts to describe models. 

Concept Description 

Model theories The principles underpinning the design and implementation of the model, 
including physical laws, biological postulates, chemical reactions, or 
socioeconomic theories. 

Model parameters The parameters in the equations that express model theories.  To apply 
the model to a specific system, model parameters are often adjusted 
based on the observations collected for that specific system. 

Model variables The observed or inferred quantities that can be measured or estimated 
about a complex system to describe its state over time.  A model can 
have input variables, internal variables, and output variables. 

Model processes The dynamic drivers that make a system change state and therefore the 
value of its variables.   

Model software A software package that includes many different functions to set up and 
run a model under a variety of assumptions.  A model software can 
have different versions. 

Model configurations A specific invocation function for model software that ensures the 
inclusion of certain model processes and variables while excluding 
others. 

Model set ups The adaptation of a generic model configuration to a specific system, so 
that model parameters are adjusted to that system based on the 
observations collected about the system’s past behaviors. 

Adjustable parameters A parameter of a model whose value affects an input variable, and can 
be adjusted to explore different situations.  For example, an 
agriculture model can have an adjustable parameter that sets the 
crop to weeds ratio (or range thereof) so users can explore different 
weed growth situations. 

Interventions Human actions that can change the course of a system’s behavior, and 
can be explored through the settings of adjustable parameters and 
input variables.   

Model files Files that are inputs to a model or generated by a model, and contain 
input and output variables as well as model parameters. 

 

Table 4 summarizes major concepts to describe models as problem solving components.  The rest of this 
section provides formal definitions for the terms that are used in our work. 

Important modeling processes, such as model calibration, gridding, and sensitivity analysis, are not currently 
included in our framework.  Model calibration (or parameterization) requires adjusting model parameters so 
its predictions are consistent with historical data.  Gridding requires setting up spatial grids of a shape (e.g., 
regular cubes, irregular polygons) and size (e.g., 1 km, 1m) that allow the model to capture the physical 
environment with adequate granularity. Sensitivity analysis provides information about uncertain the results 
would be given underdetermined parameter values. These processes can be largely automated, but may 
require manual intervention and checking.  This is a priority area for future work. 
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4.2.2 Model Set Ups and Model Discovery 
A model set up is a tuple: 

MS = <SC, SE, SA, SF, SP, SI, SO, SM, SN, SR, SS, ST> 

where: 

• SC are pre-selected input file types that are to be used with the model set up, including configuration 
files that specify values for some of the model parameters, and possibly also input datasets that are 
fixed for that set up.   

• SE are pre-selected parameter values that are to be used with the model set up.   

• SA is the set of adjustable parameters that are exposed in the model invocation signature, each 
specified with a valid range of values for that set up. 

• SF is the set of input file types that still need to be provided in order for the set up to be executed. 

• SP is the set of output file types that will contain the model results when the model is executed. 

• SI is the set of input variables that are associated with SF. 

• SO is the set of output variables that are associated with SP. 

• SM is a set of mappings that specifies how SI, SO, and SA are represented in SF and SP. 

• SN is the set of interventions that can be associated with SI. 

• SR is the set of responses that can be associated with SO. 

• SS is the area (or scope) where the model set up is appropriate, expressed as a polygon for 
geographical areas. 

• ST is the time period when the model can be run, expressed as begin and end dates. 

A model set up MS = <SC, SE, SA, SF, SP, SI, SO, SM, SN, SR, SS, ST> is a match for the goals of a 
modeling task MT = <TR, TD, TI, TA, TP> iff: 

TR Í SR and TD Í  SI and TI Í  SN and  

TA is geographically contained in SS and 

TP contains ST 

Several model set ups can match any given modeling task. 

Note that almost all the elements of a MS tuple are used for goal-based modeling.  In effect, they are metadata 
that enable model discovery. 

4.2.3 Mapping Model Variables to Data  
A set of mappings SM in the model set up specifies how the model variables and parameters SI, SO, and SA 
are represented in the input and output files (SF and SP respectively). Each file has its own format, typically 
a standard such as CSV, netCDF, or shapefiles.  The SM mappings expose where each modeling variable can 
be found within the file.  In addition, it specifies a unique variable name and units required by the model. 

Standard variable names are taken from the Scientific Variables Ontology (SVO) [Peckham and Stoica 2018; 
Stoica and Peckham 2019; SVO 2020], an ontology that describes thousands of variables in geosciences 
applications, and has been mapped to other domain specific standards like the Climate and Forecasting 
Conventions and Metadata [CF 2020]. For example, a variable in a model may be informally referred to as 
“streamflow” while in another model it may be called “discharge”, but both represent the same SVO physical 
variable “watershed_outlet_water__volume_flow_rate”.  We chose SVO among other existing ontologies 
(such as SWEET [Raskin and Pan 2005] and ENVO [Buttigieg et al 2013]) because it adopts a principled 
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design of an upper ontology and naming patterns to create unique identifiers for physical variables.  For 
example, other ontologies have a concept for “precipitation”, but precipitation can be an amount, a flux, or a 
rate, and there are separate terms for each in SVO. SVO captures the context and relationships of variables, 
so it is not just a concept hierarchy. In addition, SVO has a clear set of principles for creating new variables 
in case a new concept needs to be created for one of our models.  SVO variable identifiers include the physical 
object being measured (the water in the watershed outlet), the property of that object that is being measured 
(outflow rate) and the quantity (volume), in addition to other qualifiers that define the context in which a 
variable is used.  

4.2.4 Representing Adjustable Parameters 
Adjustable parameters are very important for exploring drivers and interventions. Their representations must 
describe any constraints that will guide users to create sensible initial conditions and explore system patterns. 

An adjustable parameter is a tuple: 

AP = <PE, PU, PV, PD, PT, PM> 

where: 

• PE is an explanation of the parameter represents (e.g., the parameter weed fraction is the proportion 
of weeds that remain after a given weeding practice) 

• PU is the units for the parameter value (e.g., a fraction or percentage) 

• PV is the range of values that the parameter can take, which can be a discrete set of values or a range 
expressed as a minimum and maximum (e.g., between 0 and 1) 

• PD is the default value for the parameter (e.g., .25) 

• PT is the parameter type 

• PM is the model variables affected when the parameter is adjusted  

In addition, parameters are associated with interventions.  For example, an adjustable parameter for weed 
fraction in an agriculture model may have an associated intervention representing weed control and weed 
management practices, where the intervention is specified by indicating in this parameter the fraction of 
weeds that will remain after the weed treatments applied. A forced migration due to political instability may 
require weed control to be set to low due to its influence on labor availability. Weeds may fester and yields 
will be affected once the crops are harvested. Model inputs and model parameters allow translating practical 
questions into model operations. 

4.2.5 Other Model Metadata 
Besides supporting discovery, model metadata is needed for other important aspects of modeling. 

Some metadata is useful for model execution. The adjustable parameters SA and the input file types SF will 
need to be specified by the user, and together with the pre-selected inputs SC and SE will turn a model set 
up into an executable model as we describe in Section 4.4.  The mappings SM of variables and parameters 
to files also enables model execution as these mappings are used to do automated transformations of data as 
we describe in Section 4.3. 

Other metadata allow users to understand the model.  This includes extensive documentation, including 
model authors, model assumptions (e.g., that the region is arid), model constraints (e.g. that the input weather 
data provides daily values), usage notes (e.g., the outputs of the model use a certain coordinate projection) 
and other information relevant for reproducibility and understandability.  This documentation is typically 
scattered in publications, software manuals, code documentation, and is often obtained through personal 
communication with model authors.  Providing this documentation is crucial for usability, so users can 
understand the model and its uses and limitations.  It is also crucial for documenting the provenance of 
modeling products, for reproducibility, and for future exploration of variations of the model executions. 
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Figure 1 illustrates how models can be characterized and differentiated through their metadata, though only 
a select subset of the information is shown here for space reasons.  The model shown at the top is version 
2005, and is used to estimate the height of the water table (i.e., the top of the aquifer).  For the Barton Springs 
area, two calibrations were done that correspond to drought and average conditions.  One of the setups of the 
model allows recharge to be specified, while the other has already pre-set inputs with average values.  The 
model shown at the bottom is used to estimate downstream model flow rates, and is version v36-2.1.0.  For 
the Baro basin in Ethiopia, a setup of the model was calibrated including infiltration processes and another 
set up was calibrated without infiltration.  Many different configurations, calibrations, and setups can be 
created for the same model software, and all the metadata and information captured not only characterizes 
each of them but helps relate them to one another as well as making useful distinctions and comparisons. 

In other publications we provide more details on the rationale for characterizing models as software [Gil et 
al 2016], their versions and calibrations [Carvalho et al 2018], configurations and setups [Garijo et al 2018].  
In other work we describe where modelers typically document this important information in different 
locations, including published articles, technical reports, code documentation, and web sites [Essawy et al 
2017], making it time consuming for others to understand and compare alternative implementations. 

4.3 Representing and Transforming Data for Scientific Modeling 
In this section we describe the techniques to prepare and organize the data for use in the various models.  We 
first describe how we represent, store and use metadata to support the search and discovery of new 
datasets.   Next, we describe the semantic representation of the individual datasets to support search and 
transformations, how we automatically import new datasets to create this semantic representation, and how 
we automatically perform unit detection on the cells of data.  Then, we describe how the system composes 
data transformations on the datasets using the rich semantic representations of the data.  Finally, we present 
a method for generating derived data products from raw satellite imagery that can be used for calibrating 
scientific models. 
4.3.1 Metadata that Enables Data Discovery 
A major challenge in integrating cross-disciplinary models is the amount of effort required to locate model-
appropriate data (e.g., elevation, weather, or soil type) with the right quality and granularity, both temporal 
and spatial. Additionally, once a dataset is found, modelers oftentimes have to go through the additional 
challenge of transforming the data into a format that is required by their model (e.g., cropping global dataset 
to the specific region of interest, selecting only a relevant subset of the dataset’s variables, or translating 
variables from one system of units to another).  

Our approach was designed to address these issues. At a high level, it facilitates data discovery using a search 
and filtering mechanism based on the temporal and spatial extents of datasets as well as keywords and 
variable names.  In contrast with existing approaches that put an onerous burden on data consumers, we take 
a more principled approach to data sharing whereby we require data publishers to also describe a dataset's 
variables in a semantically standardized manner (using SVO). The philosophy behind this approach is that 
data are usually produced once but consumed many more times. Therefore, by requiring data providers to go 
through the extra step of describing their data using machine-readable format, it reduces the amount of effort 
end users would need to spend on (traditionally time-consuming) data pre-processing steps. 
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Figure 1: Characterizing and differentiating related configurations and setups of models. 

 

MODFLOW-2005
• Publisher: US Geological Survey
• Authors: A. W. Harbaugh
• Indicator: Water table level height

MODFLOW-2005-BartonSprings-2001-2010-AvgConds-AllInputs
• Region: Barton Springs, Texas
• Period: 2001-2010
• Calibration: AverageConditions
• Recharge: Recharge-BarronSpr-2001-2010-AvgConds.rch
• Wells: Wells-BartonSpr-2001-2010-AvgConds.wel
• HorizontalFlowBarrier: HFB-BartonSpr-2001-2010-AvgConds.hf6
• GroundwaterFlowProcesses: GFP-BartonSpr-2001-2010-AvgConds.ba6

MODFLOW-2005-BartonSprings-2001-2010-Drought-AllInputs
• Region: Barton Springs, Texas
• Period: 2001-2010
• Calibration: DroughtConditions
• Recharge: Recharge-BarronSpr-2001-2010-Drought.rch
• Wells: Wells-BartonSpr-2001-2010-Drought.wel
• HorizontalFlowBarrier: HFB-BartonSpr-2001-2010-Drought.hf6
• GroundwaterFlowProcesses: GFP-BartonSpr-2001-2010-Drought.ba6

MODFLOW-2005-BartonSprings-2001-2010-AvgConds-RechargeTBS
• Region: Barton Springs, Texas
• Period: 2001-2010
• Calibration: AverageConditions
• Recharge:  \______________/
• Wells: Wells-BartonSpr-2001-2010-AvgConds.wel
• Horizontal flow barrier: HFB-BartonSpr-2001-2010-AvgConds.hf6
• Groundwater flow processes: GFP-BartonSpr-2001-2010-AvgConds.ba6

TopoFlow
• Authors: S. Peckham
• Version: v36-2.1.0
• Index: Downstream model flow rate

TopoFlow-Baro-2017-Infil-PrecipTBS
• Region: Baro Basin, Ethiopia
• Period: 2017
• Processes: Channel flow, meteorology, saturation, infiltration
• Model driver timestep parameter: 2 secs
• Meteorology timestep parameter: 1800 secs
• Model inputs: Aggregated-Baro-2017.zip
• Precipitation rates:  \______________/

TopoFlow-Baro-2017-NoInfil-PrecipTBS
• Region: Baro Basin, Ethiopia
• Period: 2017
• Processes: Channel flow, meteorology, saturation
• Model driver timestep parameter: 2 secs
• Meteorology timestep parameter: 1800 secs
• Model inputs: Aggregated-Baro-2017.zip
• Precipitation rates :  \______________/

One model is 
calibrated for 
drought conditions 
and another for 
average conditions

One model includes 
recharge averages 
and another will 
require recharge to 
be specified
as an input

One model 
includes 
infiltration, 
another does not
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Figure 2: Generating additional keywords for datasets through a fuzzy augmentation process. 

More concretely, we consider a dataset to be a logical grouping of data about specific system variables 
contained in one or more resources (i.e., a set of files in a file system, web resources, or API endpoints). The 
resources in a dataset share metadata such as geospatial and temporal extent and provenance. Each dataset 
contains information about one or more variables, or scientific quantities of interest with a precise ontological 
definition. Variables are associated with one or more SVO names. We define variable presentations that 
include information about the variable’s representation such as the units of measure, handling of missing 
values, and metadata about collection. For each resource, we define a layout, which captures the physical 
relationships between variables in the resource. For example, in a CSV file with columns corresponding to 
months and rows corresponding to different variables of interest (e.g., GDP, inflation rate, imports, exports, 
etc.), the layout specifies which row contains each variable and how those variables relate to the columns 
(time), while the variable presentation provides metadata such as units and how the variables were measured. 
Raw datasets frequently contain very little context to determine their contents, often limited to a few 
keywords within its resources or to filenames. This presents a challenge for data discovery.  Using these 
meager clues to determine the correct semantic data types or ontological classes pertinent to the data poses a 
technical challenge.  We address this challenge through an augmentation-based approach that improves the 
alignment between ontological classes and keywords within data.  

Figure 2 illustrates the overall approach to create dataset entries using a fuzzy augmentation process. The 
first step of this process identifies keywords or terms within datasets, and in a second step these keywords 
are augmented using semantic sources and statistical techniques, generating an expanded set of dataset 
descriptors that are then re-weighted to create the final set of keywords.  The resulting keywords enable fuzzy 
search capabilities, where either informal keywords or technical terms used for search can be quickly matched 
to the relevant datasets. 

Table understanding enables automated detection of headers and attributes (described in the next section), 
allowing the system to identify prominent keywords within the dataset. Since many extracted keywords may 
not provide meaningful information about ontological classes, such as stop words, units of measurement, or 
general metadata about collection, the system must discard some keywords. Our system uses common 
information retrieval filtering techniques such as term frequency-inverse document frequency (TF-IDF).  
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Figure 3: Steps for building a D-REPR model for an agricultural price dataset. 

 

The second step uses these relevant keywords to generate additional keywords using three different sources. 
The first is a set of semantic resources such as WordNet [Miller, 1995], DBPedia [Auer et al., 2007], or 
ConceptNet [Liu and Singh, 2004], which include synonyms, hypernyms, meronyms, and relations to other 
concepts. The second source of keywords are statistical models such as word embeddings like Word2Vec 
[Mikolov et al., 2013] and GloVe [Pennington et al., 2014], and topic models [Blei et al., 2003] trained on 
corpora of scientific literature.  The final source of keywords are queries to the World Wide Web, where a 
query is constructed using the dataset's keywords and results are retrieved from commercial search engines 
which offer public API access.  
Through these three augmentation techniques, a set of augmentation candidates is generated. These 
candidates are re-weighted based on the number of sources that support the candidate, and then filtered using 
a similar TF-IDF technique. The final step of the fuzzy augmentation process is aligning the dataset to a user 
query or target ontology. Often, it is helpful to use the same augmentation techniques applied to dataset 
keywords to the query keywords or ontological data description. Using a combined set of weighted 
augmented keywords from both the data and user query, our system uses several different alignment 
techniques. We use well-known approaches, such as the cosine similarity and the Jaccard index, which can 
be extended to weighted set elements.  

4.3.2 Interoperability of Data 
A key aspect of our work to support interoperability of data is developing representations that support data 
integration and transformations.  Public datasets are available in various formats (e.g., XML, netCDF, 
spreadsheets), often have different data layouts (e.g., relational or matrix tables) and vocabularies to describe 
the data. To use these datasets for model calibration or prediction, we need the data to be represented in a 
unified and consistent way. Specifically, we use SVO and other standard ontologies (e.g., RDF Data Cube 
[DataCube 2020]) as a standard vocabulary, and RDF as a unified data model. Once the datasets are virtually 
or materially mapped to RDF, downstream tasks such as unit transformation, cropping by a bounding box or 
re-formatting to prepare data for running models can be easily done. 
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Figure 4: Stages in table understanding. 

D-REPR Representation Language:  To make the mapping process easier and less laborious, we developed 
a language called D-REPR [Vu et al 2019] for describing datasets. Users build a D-REPR model for a dataset 
through four steps. First, they specify the dataset's format and then define the dataset's attributes with their 
locations in the dataset. As the values of an attribute after the second step are collected as an array, this results 
in a set of arrays, in which each array is associated with an attribute. In the third step, users specify rules to 
join these arrays together to form tables containing all records in the dataset. Finally, they provide the 
semantic meaning of each attribute and the relationships between the attributes using ontology classes and 
predicates. Figure 3 depicts the process of building a D-REPR model for an agricultural price dataset. 

D-REPR offers several advantages over existing mapping systems such as RML [Dimou et al 2014] or 
XLWrap [Lefrançois et al 2015]: it can model datasets in different formats and layouts and can virtually map 
gigantic datasets to RDF. The later feature is very critical, especially in the scientific domain. One example 
is that the GLDAS [GLDAS 2020] weather dataset is stored efficiently in hundreds of GBs in netCDF, but it 
could be ten times bigger if stored in RDF triples. By processing the dataset using D-REPR in virtual mode, 
we achieve roughly the same speed as directly using netCDF without sacrificing the benefits of the RDF data 
model. 

Automatic Table Understanding: Another key aspect of our work to support data integration is table 
understanding. Data representations such as D-REPR enrich data interoperability, but constructing such 
representations can involve significant user effort and become a barrier to adoption of data catalogs. To assist 
users with data curation, the MINT Data Catalog supports a sophisticated set of tools for automatically 
profiling datasets to determine the syntactic and semantic representation and then generating a D-REPR 
definition.  Once this automated process is complete, a user may inspect the D-REPR file and correct any 
errors.  
The tools we present are focused on understanding tabular data, which provides coverage over a large portion 
of scientific datasets.  Figure 4 shows how we decompose the table understanding problem into three stages: 
cell classification, block identification, and layout detection. Each stage of the process provides a different 
contribution to the D-REPR definition of a dataset, by identify ontological types, data locations, and join 
relationships respectively. 
Cell classification assigns each individual data item to a label class, either at a syntactic level (floating point 
value) or a semantic level (mass) depending on the needs of the domain. Cell classification techniques can 
benefit from models for semantic labeling or semantic typing, and our tools provide the semantic types used 
in the semantic model of the D-REPR definition. Our implementation of this task uses probabilistic graphical 
models, models that are able to use information of neighboring cells or headers in a table to make 
predictions.  The blocks of functionally similar table cells are identified using cell labels. 
Block identification identifies spatially contiguous regions of a table that have a similar functional role in the 
dataset. Identifying blocks uses information about the cell types, and our implementation adopts an entropy-
based approach that evaluates candidate blocks based on the homogeneity of the cell types in the 
dataset.  Once block boundaries are identified, they are used to determine the location of attributes in the 
dataset in the D-REPR definition. 
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Figure 5: The CCUT process demonstrated over a compound unit of textual format `km/s^2`. 

The final step of table understanding is layout detection. Layout detection is formulated as a link prediction 
task between blocks identified in the previous stage. This task attempts to determine if a join relationship 
exists between two blocks, such as when an attribute block describes a set of observations. During layout 
detection, these relationships can optionally be labeled with properties in a semantic model based on type 
information from cell classification. 
We have released a flexible framework for table understanding, providing the core APIs for cell 
classification, block identification, and layout detection, along with reference implementations and utilities 
to provide visualizations of model output to assist in debugging and tools to translate input data into 
normalized data frames (Pujara et al., 2019). In our current architecture, these three stages are performed as 
a linear workflow, with earlier predictions used to influence subsequent decisions.  The user can interact with 
the results in each of these three stages to review and make corrections as needed. In the future, we envision 
iteratively or jointly performing all three tasks and more sophisticated user interaction workflows. 
Representing and Transforming Units:  For the kinds of modeling domains that we focus on, representing 
and transforming units of measurement is key. The identification of measurement units that are associated 
with source data is a challenging task because it requires having some domain knowledge about the process 
that produced the data. Frequently, units appear in files within datasets in a textual representation that is not 
easily recognized and does not carry any semantic or dimensional meaning. We developed CCUT [Shbita et 
al 2019], an approach which uses grammar tools to automatically parse the different components in a unit 
found in textual data in files and map them to elements of a standard ontology that is used extensively in 
geosciences called QUDT [Chalk et al 2017] to form a structured semantic output. The output depicts the 
different relationships, attributes and semantics of units and allows users to have a better understanding of 
their data. 
The underlying pipeline behind CCUT is illustrated in Figure 5. First, we identify and parse the individual 
prefixes, single units, their exponents and multipliers which compose a string of a compound unit. Then, p 
we map each unit to its correct ontology in the schema. Finally, we compute the dimension of the compound 
unit and construct a normalized representation of the unit with attributes that are required for transformation. 
The evaluation of an early prototype has demonstrated a faster process of data analysis and understanding. 
4.3.3 Composable Data Transformations 
In order to combine, transform or reformat datasets, we developed a framework called D-TRAN which 
constructs a transformation pipeline based on some specification from users. The framework uses the D-
REPR representation presented in Section 4.3.2 to represent the actual data which may need to be transformed 
into one standard format for later uses. The idea is that we use smaller components (we refer to them as 
adapters or building blocks) which we concatenate to form a transformation flow. This modular design allows 
us to reuse existing modules and wrap ready-scripts to create a format-independent module and pipeline.  
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Figure 6: General approach to data transformations. 

 
Figure 7: A data transformation pipeline for a hydrology model. 

In order to ensure the format independence of our system, all system inputs and outputs are described 
semantically using D-REPR models. Based on the D-REPR models, data in different formats will be 
converted into our internal D-TRAN format. Therefore, all of the transformation adapters written in our 
system only need to work on the D-TRAN format and thus can be generalized easily. The D-TRAN format 
supports a graph-like interface, which allows users to search and process data in an ontological manner. Using 
the D-REPR models, our system can serialize input data into a graph form for normal use cases; or build a 
set of indices that map data values to their locations and thus allow graph queries for high volume datasets. 

There are three types of adapters in our transformation system: 

• Reader adapters are the entry point in the pipeline. A reader adapter reads a set of input files (data) 
and their descriptions using D-REPR, then create a dataset in D-TRAN format 

• Transformation adapters are the main execution modules in our pipeline. A transformation adapter 
takes a D-TRAN dataset as input, transforms it and outputs the resulting D-TRAN dataset. 

• Writer adapters are the exit points of the pipeline. A writer adapter outputs a set of files based on its 
input D-TRAN format following the design specified in a D-REPR model. 

Figure 6 depicts the general idea of our architecture that is based on reader, transformation and writer adapters 
and components that can be concatenated. The figure shows a simplified scheme of a transformation pipeline 
involving a reader adapter, two transformation adapters and a writer adapter. The reader adapter takes the 
input files and their D-REPR model to create a dataset in D-TRAN format. Then the dataset is transformed 
using two different transformation adapters. In the end, the transformed dataset will be written into files using 
a new D-REPR model. 

Figure 7 shows a transformation pipeline for a hydrology model where our transformation pipeline processes 
the global daily GPM1 weather data in 2018 in netCDF4 [Unidata 2020] format to create a CSV file which 
contains the monthly precipitation for every administrative region. First, the transformation pipeline takes 

	
1	https://gpm.nasa.gov/data-access/downloads/gpm	



	 24	

both GPM netCDF4 and administrative region shape files as the input. Based on their D-REPR models, the 
pipeline creates two D-TRAN datasets and transfers them to later adapters. The Cropping adapter crops the 
global spatial dataset into multiple subsets for all Ethiopia districts based on their shape files. Then the 
precipitation values are aggregated for every month in the Aggregation adapter. Finally, the result D-TRAN 
dataset will be materialized based on its D-REPR model. 

Our approach is the first to support transformation between any type of data format. By leveraging the data 
representation power of D-REPR, D-TRAN can process and export data in any format while allowing users 
to write format-independent transformation functions. 

Finally, a very important aspect of data transformations is unit conversion. Scientific units of measurement 
are critical when end-users and non-domain experts desire to transform quantitative data. Unit conversions, 
which are commonly necessary in modeling world systems, can be automated using the same CCUT 
approach described above. We adapt the dimensions-based approach encoded in the QUDT ontology, which 
relates each unit to a system of base units using numeric factors. For example, any measurement of length 
can be expressed as a number multiplied by the unit ‘meter’ (the SI base for the length dimension). Given 
that, and the set of exponents, prefixes and multipliers derived from the grammar and put in a structured 
semantic output, we are able to generate the required calculation to perform unit conversions of the same 
dimension. This allows a safe and fast conversion between complex compound units without requiring the 
user to specify conversion multipliers or numerical offsets. As described in [Shbita et al 2019], our method 
has been tested on spreadsheets and can be easily deployed over a range of quantitative data resources and 
thus accelerate and improve the modeling process in any scientific domain. 
4.3.4 Generating Novel Data for Modeling from Remote Sensing Sources 
Physical models rely heavily on ground observations to ensure robust performance. These observations are 
primarily used to calibrate or customize the models for any given region.  For example, hydrological models 
contain numerous parameters (e.g., soil conductivity at different grid points) whose values need to be 
calibrated for each study region with the help of observations. However, in many regions, calibration is a key 
challenge because these ground observations are scarce or absent. Gage stations are costly to install and 
maintain, and thus are limited in number.  This paucity of observational data can lead to poorly calibrated 
models that provide incorrect predictions or have high uncertainty in practice. For this reason, we incorporate 
in our approach techniques to derive new data products from raw data, which we consider as a special kind 
of data transformations. 

Our approach is to use novel machine learning techniques to derive new data products from freely available 
from satellite imagery data (such as Sentinel and Landsat). We describe here a method to generate river 
surface area dynamics. For hydrological models, the most commonly used observation is discharge (volume 
per second). Even though discharge cannot be estimated directly from satellite imagery, it can be 
approximated using surface extent of rivers. Specifically, surface extent of rivers can be used to estimate 
proxies for discharge if the extent estimates are available for several locations on the river at regular intervals 
(due to physical relationships between width and discharge). To illustrate this relationship, Figure 8 shows 
the comparison between surface area variation in a river segment and discharge estimates from a nearby gage 
station. The USGS gage station (ID:02232500) is located on St. Johns river near Christmas, Florida. A river 
segment ~ 8km away was selected to compare the surface area variations with discharge estimates from the 
gage. The surface area estimates were created by analyzing satellite imagery data from Sentinel-2 satellite 
(10 m spatial resolution, ~10 day repeat frequency). As we can see, surface area (shown as blue timeseries) 
and discharge (shown as red timeseries) show a very high correlation. This illustrates the promise of our 
approach in using river width as a surrogate for river gauges where such calibration data is difficult to obtain. 
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                        (a)                                                                                  (b) 

Figure 8:  An illustrative example of the potential of satellite imagery analysis to provide calibration data for 
hydrological models. (a) Study region: St. Johns river near Christmas, Florida. The red star on the image shows 
the location of the USGS gage station (ID:02232500). The blue circle shows the river segment (~8kms away from 
the gage station) analyzed using machine learning and satellite imagery from Sentinel 2 between 2015 and 2020. 
(b) Estimated river segment surface area (in blue) and daily discharge measured from the gage station (in red). 

 

Figure 9:  An illustrative example to demonstrate the ability of auto-encoder architecture to learn inherent 
characteristics in the data. The three sets of images show a sample of 25 images from three different clusters that 

were obtained by clustering images based on the features learned by the auto-encoder architecture. 

 

   (a)                                            (b) 

Figure 10:  An illustrative example to demonstrate the utility of our physics guided machine learning approach 
(a) False color composite of the river segment (same segment as Figure 7) on June 23rd, 2016. (b) The 

corresponding land/water mask that captures the surface extent despite the presence of issues such as clouds and 
shadows. 
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A key challenge in deriving surface extents of river segments is high degree of heterogeneity in spatial 
properties of land and water across different geographies and time which makes it difficult for traditional 
pixel-based machine learning algorithms to achieve good performance [Karpatne et al. 2016]. These issues 
are exacerbated by atmospheric disturbances such as clouds, cloud shadows and haze. In MINT, we have 
developed new techniques based on Deep Convolutional Neural Networks (DCNNs) to estimate the surface 
extents of river segments. These methods can produce spatially consistent mappings of land and water that 
are robust against atmospheric effects such as clouds, haze as well as missing data. However, for performing 
accurately, these methods require a lot of training data, which is very difficult and expensive to obtain on a 
global scale, especially given the heterogeneity in both space and time. To address this issue, we used an 
auto-encoder architecture to automatically construct highly expressive features in an unsupervised setting. 
Specifically, we trained the auto-encoder architecture using 11,000 images (each image covered roughly a 
region of 1kmx1km) that were sampled manually from river networks around the world.  

The effectiveness of this architecture can be seen in the ability of these features to cluster similar river 
segments as shown in Figure 9. We first used the auto-encoder architecture [Le et al. 2013] to learn low-
dimensional features. These features were then used to cluster images into 100 clusters using a k-means 
algorithm. The figure shows a sample of 25 images from three different clusters. As we can see, different 
clusters capture very different types of river segments and there a lot of similarity among the images within 
a cluster.   

A convolutional neural network (CNN) based on semantic image segmentation network [Ronneberger et al. 
2015] is initialized using this unsupervised framework and then trained using 2,900 training images for which 
we manually constructed ground truth. This architecture was able to much better handle issues related to light 
haze and shadows that often confound the performance of pixel-based methods for identifying land and water 
pixels, as we reported in [Wei et al 2020]. To make the paradigm more robust, we incorporated physical 
principles into traditional machine learning frameworks [Khandelwal et al. 2017, 2019]. Specifically, pixels 
of a river segment do not change independently but are related to each other through hydraulic and 
bathymetric constraints. These constraints can be used to identify and correct physical inconsistencies in 
land/water labels obtained from machine learning algorithms.  

Figure 10 illustrates the utility of this physics guided machine learning approach to obtain robust surface area 
estimates. Figure 9 (a) shows the false color image (Near Infrared as Red channel, Red as Green channel, 
Green as Blue channel) of the river segment (same segment as Figure 8) on June 23, 2016. This band 
combination highlights vegetation and water appears distinctively black in color. Figure 9 (b) shows the 
corresponding land/water mask obtained using our approach. Water pixels are shown in dark blue color; and 
a large shadow and some clouds can be seen on the bottom of the image. Even with the presence of these 
occlusions, the machine learning algorithms are able to effectively estimate the surface extent.  We continue 
to improve these algorithms and to reduce the amount of labeled data needed. 

4.4 User Guidance for Interactive Scenario Exploration 
Ultimately, the guidance provided to users is key to the efficient selection and use of models.  This section 
describes how the semantic representations about models and data are used to guide users through structured 
stages of modeling.   

4.4.1 Guiding Users Through Modeling Stages 
MINT guides users through several steps, illustrated in Figure 11: 

1. Formulate modeling objectives:  This is done by specifying a modeling task, consisting (as defined 
earlier) of drivers, responses, interventions, region, and time period.   

2. Select models: MINT then shows users the models available that generate the indicators of interest, 
and that have the adjustable parameters and intervention inputs desired by the analyst.  Users can 
compare models and select one or more models to run. 
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Figure 11: Major steps involved in modeling. 

 

3. Select datasets: MINT then shows users the datasets that are available as inputs to the models 
selected, either directly in their existing formats or that can be transformed into the formats required.  
Users can compare datasets and select one or more datasets to run. 

4. Set up models: MINT shows users the adjustable parameters that are input to the model, and the 
possible values that they can take. Users can select multiple parameter values which result in 
different runs. 

5. Monitor the status of model runs:  This allows users to track model executions that take a long time, 
and to be informed of execution failures. 

6. View results of model executions: Users can download and save any results from models. 

7. Visualize model results: MINT generates interactive visualizations that allow users to understand 
the model results. 

Models and datasets are described using the techniques mentioned in Sections 4.1 and 4.2.  This enables 
MINT to find models that are relevant to the modeling objectives defined.  Once a model is selected, its data 
requirements result in a search for relevant datasets that either already have the model’s input formats or can 
be transformed into those formats. 
4.4.2 Model Executions and Ensembles 
To run a model, a user would choose a model set up MS = <SC, SE, SA, SF, SP, SI, SO, SM, SN, SR, SS, 
ST> and specify a model set up assignment.  A model set up assignment MA is a set of bindings B for all the 
files in SF and all the adjustable parameters SA for a model set up MS.  The model is then executed using 
the set up assignment, the files and parameters in SC and SE, and the area TA and time period TP of the 
modeling task MT = <TR, TD, TI, TA, TP> being solved. 

Once a modeling task is specified and models and data are selected, users may want to run the model under 
different assumptions and initial conditions.   

Users often want to see how the model behaves under different assumptions or initial conditions, so each 
model is typically run many times to capture these different initial conditions. For example, a hydrology 
model can be run with different forecasts of rainfall (e.g., 20% less rain than the previous year, 10% less rain, 
10% more rain, etc.).  Therefore, it is useful to define a model ensemble as a model set up and a collection 
of model set up assignments that need to be executed.  A collection of model set up assignments can be 
specified as a model ensemble specification, where the columns correspond to adjustable parameters and 
inputs and each row specifies the values chosen for each run.  Once the model is executed, the execution 
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results become part of the ensemble specification, and each row is augmented with an additional column that 
links to the model outputs of that run. 

4.4.3 Provenance for Explanation and Reproducibility 
Provenance is key to generating explanations of model products.  Extensive provenance accompanies the 
model runs.  The provenance includes what model and software version was used, and all the parameter 
values used for each run.  This is summarized for the user so that the provenance of the data products is well 
documented.  Because provenance records contain references to all model setups, data, and parameters used, 
they can be used to grab any information required for explanation.  In that sense, provenance records serve 
as the basis for explaining and presenting model products to a user.   

Because the provenance records are linked to specific choices during the modeling process, users can browse 
a provenance report and drill down to examine other alternatives and the reasons for a certain selection.   

Provenance records are also useful for reproducibility, in case the model needs to be re-executed with 
different initial situations.  In addition, this enables the re-execution of the model in the future when the 
forecasts change. 

The treatment of provenance as a mechanism for drill down to details, revisiting choices, and re-running 
analyses is crucial to creating interactive reports for decision making. 

4.4.4 Interactive Dashboards 
MINT creates interactive dashboards with visualizations that take the results of individual model executions 
and aggregate the results to allow users to contrast different scenarios and interventions.  Once models or 
model ensembles are executed, the data is reorganized by extracting relevant variables only which are those 
specified in TR, TD, TI of the modeling task at hand.  This process may take time, particularly if a model 
ensemble contains tens of thousands of runs.  MINT then generates visualizations that are designed based on 
the type of model and the type of data. 

The values specified by the user for the adjustable parameters of the model parameters are used to create user 
controls in the dashboard. Therefore, when creating models, it is important to specify adjustable parameters 
based on what the users interacting with these visualizations would want to see.  

These dashboards can be integrated within a user’s report, so that a decision maker can explore the results of 
different tradeoffs and additional outcomes. 

5 Modeling with MINT 
This section provides a walkthrough of how a user interacts with MINT, and the models and data capabilities 
currently available.  

5.1 Models and Data 
Our work to date has focused on the impacts of drought and flooding in crop production in Sub-Saharan 
Africa, as well as water availability in the South-Central region of the United States.  This requires models 
and data that span climate, hydrology, agriculture, and economics.  MINT contains a range of relevant models 
and datasets, including: 

• Hydrology models to simulate water movement on the land surface, including river flow, flooding, 
and infiltration. These models require a large number of spatially-distributed input variables that 
describe various properties of the topography (e.g. elevation, slope, flow direction, total contributing 
area), the meteorology (rainfall rate, relative humidity, air temperature, surface temperature, etc.) 
and the soil (including many intrinsic and hydraulic properties), and river banks (e.g. slope).  

• An agriculture model that generates regional potential crop yields (e.g. maize, sorghum, wheat, 
sesame, cassava, teff, and peanuts) for a choice of planting dates, fertilization rates, and weed 
pressure levels.   
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• An econometrics model that represent the effect of decisions by agricultural households on estimates 
of crop production in a region. This decisions include subsidies for fertilizers and/or land as well as 
the effect of crop price. 

• A groundwater model for storage and recharge of aquifers, for instance in response to   depletion of 
groundwater through pumping through wells and irrigation for farming. 

• A drought model that uses data from several climate sources on precipitation and temperature to 
generate three useful drought indices based on precipitation, precipitation evapotranspiration, and 
evapotranspiration. 

• Climate data that include precipitation, temperature, and other variables from monthly to daily 
frequencies.  This data is extracted from sources that provide this information at global scales, and 
subsets of interest are automatically extracted so they are readily available for modeling. 

• Historical water levels extracted from remote sensing data, since observations from river gauges are 
only available for some points and only for a few years for some regions. 

MINT includes other datasets needed by the models, such as soil data, digital elevation, and market prices. 

Major models that we use include PIHM [Shi et al 2013; Qu and Duffy 2007], TopoFlow [Peckham et al 
2017], Cycles [Kemanian and Stöckle 2010; Stöckle et al 2014], HAND [Zheng et al 2018a; 2018b], and 
MODFLOW [MODFLOW 2020] among others.  These models are configured by experts for a variety of 
regions in different regional testbeds as described below.   

These models and data support a range of scenarios and interventions: 

• Crop yield under different weather conditions, planting date and fertilizer choices, and weed 
management practices.  Soil moisture affects plant growth within a given planting window.  
Interventions that force potential planting windows can be specified as start and end planting dates.  
Interventions concerning weed control and weed management practices can be reflected as a 
parameter for the weed fraction remaining after the weed treatments applied by farmers. 

• Crop production under different farmer decisions.  Interventions concerning fertilizer subsidies can 
be expressed as a percentage of fertilizer prices. 

• Flooding under different weather conditions, with detailed flood maps that outline not only the areas 
that are likely to be affected by floods but the dates when flooding is likely. 

• Drought severity scenarios under different weather forecasts. 

Both model and dataset metadata can be edited through the MINT user interface, allowing model developers 
to describe their models with the desired level of detail, add configurations for new regions, or specify 
parameter values for manual calibration. 

5.2 Interacting with MINT 
The MINT user interface (UI) guides users through modeling steps, providing assistance and automation 
along the way. When a step has been completed, it is shown in a darker color.  Users can revisit an earlier 
step, and if the choices are changed for that step then the subsequent steps are canceled and need to be redone.  
Each of these steps is done in a separate Web page and has its own URL, which allows users to share with 
others a particular selection or result by sharing its URL. 
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Figure 12: MINT User Interface: Exploring data and models available. 

Figure 12 illustrates the first step (shown in green at the top left), where users can select a region and browse 
the models and data available.  Here, the user has selected a region in South Sudan where there are several 
agriculture model prepared by experts for that region that can be explored (top right), and datasets that can 
be downloaded and transformed to run the model (bottom right).  This step allows users to understand the 
scope of modeling capabilities available for that region, which helps them frame the modeling problem in a 
later step.  Users can also prepare models and browse datasets, as shown at the top.  The model selection, in 
this case Cycles, exposes the user to model input that can be changed. Preparing models is a stage where 
users can fine-tune an existing model for a region, by adjusting parameters with values that can improve 
model accuracy for that region. Repeating the process for multiple models or with the same model but 
different data sources while seeking the same output variables provides the user with a quick but not 
systematic, way of estimating uncertainty.  Output convergence increases confidence and output divergence 
suggests that further exploration is needed. 
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Figure 13: MINT User Interface: Specifying modeling tasks. 

 

The next stage is to use the models and generate results.  Before setting up and running models, MINT asks 
users to frame the modeling problem.  Figure 13 shows that the user has specified modeling tasks (left), and 
for each task has defined variables of interest (top right).  These include an indicator or response of interest 
as well as input variables that can be specified by the user, and MINT notes the possibility of exploring 
interventions through adjustments to the input variables.  Next, the user creates modeling threads to explore 
alternative problems related to the task, possibly through different data inputs, different models, or different 
parameters and interventions.  For each thread, MINT guides users through several substeps as shown in the 
figure, with the first substep highlighted to indicate that the user needs to start by choosing the models to be 
used. MINT shows the models that are relevant to the region and have variables specified in the task. 

Figure 14 illustrates the next two substeps. The user selects input datasets for the model selected (left side of 
the figure).  Similar to models, MINT shows datasets that are compatible with the model selected, and users 
can compare their main features and do more detailed exploration if needed.  Next, the user sets up parameter 
values for the model selected (right side of the figure).  For each parameter, several possible values can be 
specified, and MINT will run all combinations of values.  Note that these parameters are not all model 
parameters, but a carefully selected subset of parameters that are of interest for decision making.  Each 
combination of parameter values is submitted as a model execution.   
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Figure 14:  MINT User Interface: Selecting model inputs, both datasets and parameters. 

The next substep allows a user to track model executions, and note any execution failures due to missing or 
low-quality data in input files, inconsistencies in parameter settings, and other modeling issues.  At the 
moment, MINT proceeds with the executions that are successful, and leaves it to the user to work on repairs 
to any of the failures.  These repairs may be as simple as fixing a missing value in an input file, or adjusting 
some parameters in the model to be mutually consistent, or in some cases rejecting an input dataset because 
it is not appropriate for the model.  With the validation that we have done for our models in our regions of 
interest, execution failures are rare.  However, execution failures will not be uncommon when using models 
in new regions.  This is an area of future work, where we plan to extend MINT with knowledge about model 
constraints that can be used to avoid these execution failures or to advise users on how to address them.   

In the substeps that follow, the user can examine and visualize the model execution results.  Users may 
browse and download model outputs, and use them in custom visualizations or download them.  

Figure 15 shows an example of a visualization dashboard in MINT. The first and second visualizations show 
the results from an agriculture model that estimates crop yield for several different locations within the 
Western Flood Plains of South Sudan. An ensemble was set up that varied the location, the year, the start 
planting date, and weed fractions for several crops.  The graphs in the figure show crop yield for sorghum 
and maize in the year 2005 for various amount of fertilizers, with varying weed fractions shown as different 
colored lines.  Users can slide over different years, plotting the potential crop yield with different weed 
fractions. Interacting with this dashboard shows that: 1) the response to the use of fertilizer varies greatly for 
different locations, and 2) the weather in 2017 leads to a much lower yield overall than other years.  The third 
visualization in the figure shows the results from an economic model that generates potential crop production 
by considering the potential crop yield from the agriculture model, projected market prices for different crops, 
and fertilizer cost (which can be affected through an intervention such as fertilizer subsidies) to analyze what 
crops farmers will most likely be planting. Through interaction with the visualization dashboard, users can 
easily see that: 1) Higher subsidies for sorghum fertilizer will increase sorghum production and decrease 
production of all other crops; 2) If sorghum prices fall, production for all other crops will increase; 3) 
Sorghum has the highest range of possible production outcomes depending on the chosen intervention. 
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Figure 15: Interactive Dashboards in MINT. 
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Figure 16: Showing Provenance of Model Results. 

Finally, users start to prepare reports for decision makers, and can get from MINT information extracted from 
the provenance records for each thread.  Figure 16 shows a summary of all the details involved in generating 
a particular model output or visualization. Users will add many additional aspects to their reports, notably 
the user’s comments about the findings based on the modeling results.  What MINT offers is a sound 
justification for how the results were obtained, and the means to quickly update the results when more data 
or models become available. 

Individual models can be combined to create integrated models of complex systems.  For example, hydrology 
model outputs can be used as input in the daily time step of agriculture models provided these models have 
a means to uptake such data.  In such cases, the input weather data sources have to be the same for both 
models in order for the model outputs to be meaningful.  Another example of model integration is the use of 
agriculture model outputs to estimate crop yield elasticity as a factor for modeling actual crop production.  
Combining models, even in simple ways, enables powerful integrated modeling and opens the door to causal 
reasoning about interventions, their intended consequences, and potential undesirable side effects. 

5.3 MINT Modeling Testbeds 
We show here two focal testbeds that we have created to support our research. 

5.3.1 Sub-Saharan Africa 
Food shortages may result in human migration and displacement.  With droughts reducing water availability 
and floods destroying crop fields, many areas have food shortages and food insecurity for large populations.  
Some countries have limited capacity to compensate local shortages with domestic or international trade, 
which results in migrations and in extreme cases famines.  When flooding is expected, planting could be 
delayed in order to save seed, labor and ultimately the crop harvest.  But in what areas will flooding likely 
occur?  For what crops and under what conditions can the harvest be accomplished before the floods to avoid 
food shortages and migration?  While long-term planning for such situations is desirable, decision makers 
pose questions that are often short fused in order to prepare for natural disasters or to decide on near-term 
policies.  Delivering modeling systems and outputs in a form that allows decision makers to explore scenarios 
and policies remains a challenge. 
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Figure 17: Models of flooding in South Sudan and Ethiopia. 

We have been developing models for Ethiopia and South Sudan, including hydrology models for major river 
basins, and agriculture models for large administrative regions and smaller administrative units.  MINT 
contains many models and model outputs for major regions of interest.  Most models focus on the Oromia 
and Gambella regions of Ethiopia, and the Western Flood Plains of South Sudan. 

This testbed currently includes 26 model configurations and 95 model setups.  It includes 297 datasets with 
over 2.46 million resources for relevant regions of Sub-Saharan Africa.  MINT has models and data for 
different administrative regions of Ethiopia, all the way down to woredas that make independent land 
allocations and other decisions that affect crop production.  MINT also has models for major river basins, in 
particular for Baro, Muger, Guder, Bashilo, Beko-Tippi, Ganale, Tezeke, Shebelle, Awash, and Jamma. The 
models were run for backcasting for the past decade, using alternative weather sources.  A total of 33,412 
model runs have been executed to date, with more than 3.1 Terabytes of model outputs. 

Figure 17 shows an example of two models of flooding, on the left for the 2017 wet season in the Bahr El 
Ghazal basin in South Sudan generated with PIHM, and on the right for the Baro basin in Ethiopia in 2017 
generated with TopoFlow.  These models generate detailed timeseries of water flow along the river channel.  
The figure on the left shows in pink the locations with high risk of flooding during at that particular point in 
time, showing roads in yellow and cities in red.  The figure on the right shows in red two separate segments 
of the river that have higher water volumes at that time.  

5.3.2 South-Central United States 
South-central regions of the United States, such as the state of Texas, are faced with unprecedented risks due 
to expected intensification of weather patterns and the projected doubling of population in the next thirty 
years, with concomitant urban, agricultural and industrial growth posing increasing demands on water and 
energy resources.  Vulnerability to drought is exacerbated by increased pumping of groundwater as 
population expands. This leads to regional depletion of major aquifers by hundreds of wells, reducing water 
reserves and resulting in impacts to ecosystems such as lower spring flow rates, limitations to land use due 
to subsidence, and sinking of land areas.  In addition, extreme events such as destructive floods require 
accurate modeling of potential overflow of rivers particularly in urban areas.  Models of the hydrological and 
ground water systems help answer important questions and support planning for future scenarios. What levels 
of pumping in wells are sufficient to conserve water for expected drought periods?  What areas will be safe 
from flooding so that infrastructure and critical services can be properly positioned?   
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Figure 18: Models of flood vulnerability in central Texas. 

In collaboration with the Planet Texas 2050 research initiative at The University of Texas at Austin, we have 
been including in MINT hydrologic models for groundwater across the state, as well as surface water for 
flooding and other related models. 

Figure 18 shows model results of flooding risk for a small urban area near Austin, generated using the HAND 
model.  The model is simple and can be run quickly for large areas.  The model does an assessment of flood 
risk down to the building level. 

6 User Evaluations 
The MINT framework is continuously improving based on user feedback, as we incorporate additional 
features and improve its usability.  We recognize the importance of formal user evaluations, even though 
they require significant effort for a complex system like MINT.  Evaluating MINT with modelers and 
decision makers would be very difficult since they are scarcely available and designing and arranging the 
evaluations would require significant resources.  In addition, that level of effort would only be worth doing 
with a more polished and improved user interface that we are more confident will reveal useful insights.  
Since we are still early in the development of MINT, we have not done formal user evaluations in our work 
to date.  Instead, we have focused on formative evaluations with few users intended to inform our work 
intended to inform our research, reveal usability issues, and prioritize planned extensions and future work.   

We carried out an initial formative evaluation in September of 2019 when MINT was in early stages of 
development.  This evaluation focused on model search and model execution capabilities of the MINT UI. 
The subjects were graduate students with basic expertise in economic modeling but no previous exposure to 
MINT. Each participant was provided a user guide of MINT, plus instructions to complete a series of 
modeling tasks using a simplified economic model for agriculture production in South Sudan. All subjects 
were able to complete their modeling tasks within 40 and 70 minutes. When asked about their impression, 
all participants gave positive feedback about the modeling capabilities of the system, specifically 
commenting on the ability to easily learn more about models, and the ability to execute models with different 
data. Users also reported some difficulties when using the UI, in particular having to make assumptions about 
how the models worked in order to successfully finish their tasks. We used this feedback to extend model 
metadata, to improve the documentation about models, and to allow users to access information based on the 
region of interest. 

A second formative evaluation was carried out in December 2020 with a more advanced version of MINT. 
The nine participants ranged from graduate students with some modeling background to modelers who had 
an interest in AI technologies. Each participant attended a short twenty-minute tutorial overview of MINT, 
and was given an hour to complete three tasks: 1) find models according to given keywords or indices and 
describe their inputs and variables; 2) find existing results and datasets in the data and provenance catalogs; 
and 3) execute two models for assessing drought and crop production respectively and answer questions 
about the results. Once the tasks were finalized, participants were asked to fill in a survey about the usability 
of MINT. All usability questions followed a five-point Licker scale, ranging from “Very easy” to “Very 
difficult” (the neutral answer was “moderate”).  
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Figure 19: An overview of the MINT architecture, showing the interdependencies between its  modules. 

Eight participants were able to complete all three tasks correctly. All participants managed to find their target 
datasets and models in MINT, execute models, and answer brief questions about the results. A ninth 
participant completed most of the tasks successfully, but was not able to finalize the third as they were not 
able to locate the execution results of the crop and planting date specified in the task. We believe that this is 
due to the current design of the user interface that separates the search for raw data (done in the data catalog) 
and the search for data products of models (done in the provenance catalog), and that a unified, consistent 
view on data would improve usability. When asked for feedback, all participants found easy or very easy to 
find a model to fit their purposes in MINT, and the majority found it easy or moderate to understand the 
purpose of a model. Most participants (56%) found it moderate to compare the differences between existing 
models for a given task. All participants except one found it easy or very easy to find datasets and existing 
results; and most participants found it was easy or very easy to set up a new modeling task. As for the points 
for improvement, respondents mentioned that the user interface is sometimes “a little overcrowded with text”, 
and suggested improvements for the specification of problem statements.  They also asked for better support 
for visualizations of model results.  

Overall, 77% of the participants found it easy or very easy to use MINT once familiar with the platform (23% 
considered it moderate), mentioning that they were surprised by the suggestions made by the system at least 
once. Several comments mentioned that the user interface was clear and the information well organized (e.g., 
“This is a fantastic tool and will be very helpful for scientists to run models”, “The interface is very 
intuitive”).  

We continue to improve the MINT system and its user interface.  Major areas currently being redesigned are 
the specification of modeling tasks and threads, integrated access of raw data and model products, and the 
development of visualizations that highlight spatial-temporal patterns in the data.  
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7 MINT System Architecture and Software 
Figure 19 shows an overview of the MINT architecture components, illustrating the services and catalogs 
that implement the capabilities described in previous sections. The MINT User Interface and Scenario 
Exploration component, described in Section 4.4 and illustrated in Section 5.2, serves as an entry point for 
users and orchestrates the invocation of all other MINT components. This user interface allows users can 
define their own tasks and problems to investigate, issue ensembles of model runs for execution, keep track 
of the problems and tasks defined by others; and explore datasets, provenance of existing runs and models 
by querying the data, provenance and model services respectively. 

A snapshot of the MINT software and documentation can be found under open-source licenses in [MINT 
2020], including data services, model services, execution services, and the user interface.  

Our representation for models and associated metadata is available as the Software Description Ontology for 
Models [SDM 2020].  All the model, model version, model configuration and model setup metadata are 
described in a model catalog that uses semantic web standards [Garijo et al 2019], with links to external 
resources (e.g., GitHub, DockerHub) to appropriately version and store code and execution environments.  
The SVO ontology is available at [SVO 2020]. 

8 Discussion: Integrated Modeling and Decision Making 
Table 5 revisits the modeling challenges in Table 1 and points out the relevant capabilities and benefits of 
MINT. Modeling in the context of decision making involves diverse users and tasks, particularly when it 
concerns complex systems that require the integration of models from different disciplines. This section 
discusses the particular aspects of modeling that are addressed by our work to date. 

A literature review about the use of models for decision making is presented in [Elshall et al 2020], with a 
focus on groundwater models but offering general views on the modeling context. It describes the diversity 
of perspectives and values brought in by different stakeholders as considerations evolve from basic concerns 
with safe yield, to longer-term sustainable yield, to more comprehensive sustainable water management.  It 
is important also to acknowledge the plurality of modeling expertise and types of knowledge that can be 
brought to bear in any given context [Krueger et al 2012].  Because the underlying systems are interconnected 
and interdependent, and each may be studied by a different discipline, integrated modeling can be approached 
as integrating that diverse expertise.  Stakeholders are often seen simply as providers of data, but participatory 
modeling emphasizes the use models to empower stakeholders [Oliver et al 2012]. 

One way to set the context for our work is to see the different kinds of users that would be involved in 
different aspects of those modeling and decision-making phases and stages. In that regard, we distinguish 
three different types of users based on required skill sets that can use MINT for different purposes: 

• Modeler: This user generates model outputs and has basic expertise in the modeling domain.  A 
modeler can use MINT to browse through pre-prepared models and pre-prepared datasets, select 
appropriate ones for their problems, and set up and run models.  A modeler can also use MINT to 
explore interventions in models. This user can also use MINT to publish model outputs to be used 
by other modelers (with expertise in other disciplines) or by analysts. 

• Analyst: This user defines problem/scenarios for the modeler, and creates reports for decision 
makers based on model products.  They may have some limited modeling expertise in the domain, 
enough to be able to run models already selected by the modelers. This user can use MINT to 
generate model outputs, determine problem areas, explore interventions, and create reports for 
decision makers.  An analyst can use MINT to do large amounts of model runs in order to explore 
scenarios, which can then be used in other tools to estimate and characterize uncertainty. 

• Decision maker: This user makes decisions and understands causality for interventions based on 
reports from analysts.  They can use MINT simply to browse reports from analysts to understand 
situation and interventions, drilling down if needed to understand how model outputs were 
generated. 
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Table 5. Benefits of AI capabilities in MINT. 

Problem Addressed Relevant AI Capabilities in MINT Benefit 

Delays in decision 
making 

• Metadata that enables data discovery 
• Generating novel data for modeling 
• Automated data transformations 
• Metadata that enables data and model discovery 
• Automated checking of model requirements and 

constraints 
• Step-by-step guidance for modeling tasks 

Timely 
analysis 

Limited scenario 
exploration 

• Problem framing based on decision space 
• Models extended to expose potential interventions 
• Interactive dashboards to explore scenarios and 

interventions as well as their outcomes 

Intervention
-centered 
modeling 

Restricted domain 
modeling 

• Models expose only parameters that are relevant for 
decision making 

• Models are pre-configured/pre-calibrated for easy use 
by others for scenario exploration 

Accessible 
models 

Static analysis 
reports 

• Interactive dashboards to explore scenarios 
• Stylized narratives of modeling choices and scenarios 
• Provenance records with metadata of model runs 

Interactive 
model 
products 

 

We also consider two additional types of users that populate MINT with models, data, and related software:  

• Expert modeler: This user has deep expertise in a particular domain (e.g., agriculture modeling), 
and has a detailed understanding of modeling variables and processes as well as model software.  
This user would add new models with appropriate model configurations and setups for the problems 
and decisions of interest, and to run model with example/test data.  This user would also implement 
custom data preparation, model calibration, data post-processing, and visualization codes that enable 
easy use of each model. This user would also do a sensitivity analysis to determine what model 
inputs result in the most uncertainty for the model outputs. 

• Data specialist: This user is proficient in data formats and data systems, and can characterize, 
catalog, and curate data sources useful for modeling in the context of interest.  This user would 
incorporate new data sources and datasets with necessary metadata.  This user would also populate 
the system with specialized data products, e.g. extracted from remote sensing data, rescaling 
products, highly curated data, etc.  This user would also implement custom data preparation and 
data transformation procedures for commonly used formats and models. 

These tasks need to be accomplished before modelers and analysists can use MINT, and they are currently 
supported through APIs and services to add models and data. We note that an expert modeler is typically 
proficient in a particular domain, so in the case of complex systems several expert modelers may be involved.  
Similarly, a range of skills may be required for handling data, so different data specialists may be involved.  
We are extending MINT to support these kinds of users. 
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Figure 20: Major stages in integrated modeling. 

Figure 20 illustrates the context in which MINT operates.  Our focus has been on empowering modelers who 
are not necessarily expert in a domain to find appropriate models that have already been configured for a 
specific context (e.g., for a region) and find necessary data to run them.  This kind of user is shown in the 
middle of the figure.  In order for their work to be possible, expert modelers and data scientists would have 
to populate the system ahead of time by preparing the models for the regions of interest and incorporating 
relevant datasets into the framework.  They also scope the context for modeling, in our case defining regions 
for agriculture models and well-outlined river basins.  Once modelers have created models, analysts can do 
uncertainty analysis, and generate reports with appropriate explanations and supporting materials extracted 
from the provenance records so that decision makers can drill-down and understand scenarios and 
interventions. 

Figure 21 takes an even broader context, showing an idealized view of the stages involved in modeling in the 
context of decision making, inspired by the cycle of participatory modeling proposed in [Voinov et al 2016] 
and the model building steps articulated in [Jakeman et al 2006]. Before the modeling stage that MINT 
addresses, there is an initial phase where an expert modeler would confer with an analyst and decision maker 
to frame the modeling problem based on key issues facing the complex system under study, and then to focus 
on key variables of interest in the system under consideration as well as reference behaviors and desirable 
outcomes.  Once this is accomplished, the modeler moves to a second phase to explore potential scenarios.  
In a modeling stage, models are created and a baseline case is generated. The next stage involves search to 
explore the solution space and alternative scenarios.  A rank stage is used to filter and rank solutions to select 
those of interest.  The analyst then goes through an analysis stage to create a summary of the solutions 
explored and assess uncertainty. The third and final phase involves the generation of a report for decision 
makers, and involves a judgement stage to adjudicate possible interventions, a bargain stage to consider 
tradeoffs between them, and a choice stage to make recommendations and converge on decisions. These steps 
are iterated to refine, reframe, and refocus modeling goals.  Our work to date focuses on modeling stage of 
the second phase, but MINT can provide support throughout this process.   
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Figure 21: Modeling in the context of decision making. 

 

We have not discussed the economic cost of interventions, which usually offer tradeoffs that are crucial for 
decision making.  Optimization algorithms are important for understanding these tradeoffs and finding choice 
points in the decision space. 

There are many opportunities to use AI to make these modeling processes more efficient, by optimizing the 
role of the modeler and accelerating learning by the analyst. There are many opportunities to assist an analyst 
so they can work more efficiently. Provided that the computing and data storage capacities allow running 
simulations unattended, there are multiple options to run and rank simulations to explore a large array of 
model input and intervention combinations. An AI system can learn which of those combinations provide 
solutions within acceptable boundaries. For such task, the modeling system needs to be able to run 
unsupervised, still a toll order for many expert domain models. Indicator variables in the outputs as well as 
indices need to be carefully selected and weighted to allow an AI system to grade scenarios, so that it can 
learn in a way that mimics modelers and analyst. The AI system can be nested, for example testing first the 
agricultural space to rule out conditions that are not worth exploring further with other models. Finding the 
right combination of automated and human effort requires further work to exploit synergies, a work that can 
only be done systematically with robust systems as such describe here. 

9 Conclusions 
This paper describes AI techniques to assist modelers to create models of complex systems efficiently, and 
in a form that will be relevant to decision makers.  Our work makes several innovative contributions.  First, 
goal-oriented modeling is used to frame modeling questions and formulate potential interventions and 
decision variables.  Second, problem solving is used to select models and datasets relevant to the goals.  This 
requires models to be encapsulated into configurations and settings that expose only relevant parameters and 
variables as drivers, responses, and relates them to interventions and decisions.  Third, data is represented in 
terms of metadata, formats, structure, and contents, so that it can be found and automatically transformed.  
Fourth, novel machine learning techniques are used to extract data from remote sensing sources that can be 
used when historical observations are not available to calibrate models.  Fifth, an intelligent user interface 
guides users through structured stages of modeling, allows interactive exploration of scenarios, and generates 
provenance for model products to support explanation and reproducibility of the resulting reports presented 
to decision makers.   
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These innovations are implemented in the MINT framework, which includes real models and datasets for 
two different regions to analyze the interactions between natural and human systems, in particular the 
relationships between climate, water availability, agriculture production, and markets.  Users with general 
modeling background are guided to use sophisticated models in an accessible manner.  

There are many directions for future work.  We plan to extend MINT to assist expert models to encapsulate 
their models so they can be easily used by other modelers.  We plan to improve MINT to allow data scientists 
to extend the library of data transformations and data formats that can be handled, many of them are of 
spatiotemporal nature.  We are also starting to apply our framework to modeling in other regions (Asia) and 
domains (fire). Finally, while our formative evaluations have shown how users can use MINT successfully 
to find models, existing results and set up modeling tasks and problems, we also plan to extend our assessment 
by evaluating the use of MINT by expert modelers to apply models created by others; and by analysists to 
run models and create reports with useful scenarios and uncertainty records that enable them to explore 
interventions and tradeoffs. 

MINT provides assistance for core modeling tasks surrounding the execution of models, such as identifying 
modeling objectives, transforming data, and running models.   MINT could be extended to provide assistance 
in upstream tasks involving framing the modeling problem and preparing models for a region.  MINT could 
also be extended to assist with subsequent tasks such as uncertainty analysis and report preparation.   

A major area for future work is to leverage our approach to streamline model integration. In many cases, 
models are tightly integrated through model coupling where state variables are exchanged continuously 
across models during simulation. Our approach would be best suited for other types of model integration that 
are more sequential in nature, where the results of a model would be used by another model.  Given the rich 
semantic data and model representations that we have developed, it should be possible to automate or assist 
with data transformations needed to convert a model’s results into the formats needed by another model. An 
important aspect in model integration is ensuring that the models are used consistently, for example in terms 
of their assumptions, the treatment of processes, and the use of the same or at least compatible data sources. 
Future research is needed to capture such forms of model dependencies as constraints, and to develop 
constraint reasoning techniques to assist users to ensure the integrated models can produce valid results. 

The need for modeling complex systems is crucial for environmental sciences.  This need is ubiquitous in 
many sciences, from physics to biology to medicine. By providing assistance and automation and by ensuring 
proper use of models, AI has immense potential to make modeling more efficient by orders of magnitude.  
This will accelerate the progress of science, and our understanding of the world. 

 

ACKNOWLEDGMENTS 
We would like to thank our collaborators over the years for many useful insights that inspired and shaped 
this work.  This work was funded by the Defense Advanced Research Projects Agency with award W911NF-
18-1-0027, the Planet Texas 2050 program of The University of Texas at Austin, and the National Science 
Foundation with award ICER-1440323.  

 

REFERENCES 
	
[Abdelghaffar et al 2010] Abdelghaffar, H., Kamel, S., and Duquenoy, P. 2010. “Studying E-Government 

Trust in Developing Nations: Case of University and Colleges Admissions and Services in Egypt”. 
Proceedings of the International Information Management Association Conference, Utrecht, The 
Netherlands. 

[Abdelsalam et al 2013] Abdelsalam, H., Reddick, C., Gamal, S., and Al-shaar, A. 2013. “Social Media in 
Egyptian Government Websites: Presence, Usage, and Effectiveness”. Government Information 
Quarterly, 30(4): 406-416. 



	 43	

[Abulaish and Dey 2007] Abulaish M., and Dey, L. 2007. “Biological relation extraction and query answering 
from MEDLINE abstracts using ontology-based text mining”. Data & Knowledge Engineering 61, 2, 
228–262 

[Afgan et al 2018] Enis Afgan, Dannon Baker, Bérénice Batut, Marius van den Beek, Dave Bouvier, Martin 
Čech, John Chilton, Dave Clements, Nate Coraor, Björn Grüning, Aysam Guerler, Jennifer Hillman-
Jackson, Vahid Jalili, Helena Rasche, Nicola Soranzo, Jeremy Goecks, James Taylor, Anton Nekrutenko, 
and Daniel Blankenberg. The Galaxy platform for accessible, reproducible and collaborative biomedical 
analyses: 2018 update, Nucleic Acids Research, Volume 46, Issue W1, 2 July 2018, Pages W537–W544, 
doi:10.1093/nar/gky379 

[Auer et al 2007] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., and Ives, Z. 2007. “Dbpedia: 
A nucleus for a web of open data”. In The semantic web. Springer, 722–735 

[Baldassare 2000] Baldassare, M. 2000. “California in the New Millennium: The Changing Social and 
Political Landscape”. Berkeley: University of California Press 

[Bauer, and Kaltenböck 2011] Bauer, F, and Kaltenböck, M. 2011. "Linked open data: The essentials". 
Edition mono/monochrom, Vienna 710. 

[Bertot and Grimes 2012] Bertot, J. and Grimes, J. 2012. “Promoting Transparency and Accountability 
through ICTs, Social Media, and Collaborative E-Government”. Transforming Government: People, 
Process and Policy, 6(1): 78-91. 

[Blei et al 2003] Blei, D. M., Ng, A. Y., and Jordan, M. I. 2003. “Latent dirichlet allocation”. Journal of 
Machine Learning Research, 3, 993–1022. 

[Brickley et al 2019] Brickley, D., Burgess, M., and Noy, N. 2019. “Google Dataset Search: Building a search 
engine for datasets in an open Web ecosystem”. In The World Wide Web Conference (WWW ’19). 
Association for Computing Machinery, New York, NY, USA, 1365–1375. 

[Buttigieg et al 2013] Buttigieg, P. L., Morrison, N., Smith, B., Mungall, C. J., & Lewis, S. E. 2013. “The 
environment ontology: contextualising biological and biomedical entities.” Journal of Biomedical 
Semantics, 4(1), 43. doi:10.1186/2041-1480-4-43 

[Cafarella et al 2008] Cafarella, M. J., Halevy, A., Wang, D. Z., Wu, E., and Zhang, Y. 2008. “Webtables: 
exploring the power of tables on the web”. Proceedings of the VLDB Endowment 1, 1, 538–549. 

[Carvalho et al 2018] Carvalho, L.; Garijo, D., Medeiros, C. B., and Gil, Y. 2018. “Semantic Software 
Metadata for Workflow Exploration and Evolution”.  Proceedings of the Fourteenth IEEE International 
Conference on eScience, Amsterdam, The Netherlands. 

[Chalk et al 2017] Chalk, S., Hodgson, R., and Ray, S. 2017. “Qudt toolkit: Development of framework to 
allow management of digital scientific units”. In Abstracts of Papers of the American Chemical Society, 
Volume 253.  

[CF 2020] The Climate and Forecasting (CF) Conventions and Metadata.  2020. Available from 
https://cfconventions.org/. 

[Cycles. 2020] Cycles. 2020. http://plantscience.psu.edu/research/labs/kemanian/models-and-tools/cycles 
[DataCube 2020] DataCube.  2020. https://www.w3.org/TR/vocab-data-cube/ 
[David et al 2013] David, O., Ascough II, J., Lloyd, W., Green, T., Rojas, K., Leavesley, G., and. Ahuja,  L. 

2013. “A software engineering perspective on environmental modeling framework design: The Object 
Modeling System”. Environmental Modelling & Software 39, pp 201-213.  

[DCAT 2020]  The Data Catalog Vocabulary (DCAT).  2020. https://www.w3.org/TR/vocab-dcat/. 
[Dimou et al 2014] Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., and Van de 

Walle, R. 2014. “RML: A Generic Language for Integrated RDF Mappings of Heterogeneous Data”. 7th 
Workshop on Linked Data on the Web, Proceedings 1184. 

[DockerHub 2020] Docker Hub. 2020.  https://hub.docker.com/. 
[Dong et al 2019] Dong, H., Liu, S., Han, S., Fu, Z., Zhang, D. 2019. "Tablesense: Spreadsheet table detection 

with convolutional neural networks". Proceedings of the AAAI Conference on Artificial Intelligence. 
Vol. 33.  



	 44	

[Elshall et al 2020] Elshall, A. S., Arik A. D., El-Kadi, A., Pierce, S., Ye, M., Burnett, K., Wada, C., Bremer, 
L., and G. Chun. 2020. “Groundwater sustainability: A review of the interactions between science and 
policy.” Environmental Research Letters.  https://doi.org/10.1088/1748-9326/ab8e8c 

[Essawy et al 2017] Essawy, B. T., Goodall, J. L., Xu, H., and Gil, Y. 2017. “Evaluation of the OntoSoft 
Ontology for Describing Legacy Hydrologic Modeling Software”. Environmental Modelling & Software, 
92. 

[Garijo et al 2018] Garijo, D., Khider, D., Gil, Y., Carvalho, L., Essawy, B., Pierce, S., Lewis, D. H., Ratnakar, 
V.; Peckham, S. D., Duffy, C., and Goodall, J. 2018. “A Semantic Model Registry to Support 
Comparison and Reuse”. Proceedings of the Ninth International Congress on Environmental Modeling 
and Software, Ft Collins, CO,  

[Garijo et al 2019] Garijo, D., Khider, D., Ratnakar, V., Gil, Y., Deelman, E., Ferreira da Silva, R., Knoblock, 
C., Chiang, Y., Pham, M., Pujara, J., Vu, B., Feldman, D., Mayani, R., Cobourn, K., Duffy, C., Kemanian, 
A., Shu, L., Kumar, V., Khandelwal, A., Tayal, K., Peckham, S.D., Stoica, M., Dabrowski, A., Hardesty-
Lewis, D., and Pierce, S. 2019. “An Intelligent Interface for Integrating Climate, Hydrology, Agriculture, 
and Socioeconomic Models”. ACM 24th International Conference on Intelligent User Interfaces 
(IUI’19) p. 111–112. 

[Garijo et al 2019] Garijo, D., Osorio, M., Khider, D., Ratnakar, V., and Gil, Y. 2019. “OKG-Soft: An Open 
Knowledge Graph with Machine Readable Scientific Software Metadata”. Proceedings of the 15th IEEE 
Conference on eScience. 

[Gatterbauer et ak 2007] Gatterbauer, W., Bohunsky, P., Herzog, M., Krüpl, B., and Pollak, B. 2007. 
“Towards domain-independent information extraction from web tables”. In Proceedings of the 16th 
international conference on World Wide Web. ACM,71–80 

[Gil et al 2011] Gil, Y.; Gonzalez-Calero, P. A.; Kim, J.; Moody, J.; and Ratnakar, V. “A Semantic 
Framework for Automatic Generation of Computational Workflows Using Distributed Data and 
Component Catalogs.” Journal of Experimental and Theoretical Artificial Intelligence, 23(4). 2011. 

[Gil et al 2016] Gil, Y., Garijo, D., Mishra, S., and Ratnakar, V. 2016. “OntoSoft: A Distributed Semantic 
Registry for Scientific Software”. Proceedings of the Twelfth IEEE Conference on eScience, Baltimore, 
MD. 

[Gil et al 2018] Gil, Y., Cobourn, K., Deelman, E., Duffy, C., Ferreira da Silva, R., Kemanian, A., Knoblock, 
C., Kumar, V., Peckham, S.D., Carvalho, L., Chiang, Y., Garijo, D., Khider, D., Khandelwal, A., Pham, 
M., Pujara, J., Ratnakar, V., Stoica, M., and Vu, B. 2018. “MINT: Model Integration Through 
Knowledge-Powered Data and Process Composition”. 9th International Congress on Environmental 
Modelling and Software. 

[GitHub 2020] GitHub. 2020.  Available from https://github.com/  
[GLDAS 2020] GLDAS. 2020. Available from https://ldas.gsfc.nasa.gov/gldas.  
[Gleason et al 2014] Gleason, C.J., Smith, L.C. and Lee, J. 2014. “Retrieval of river discharge solely from 

satellite imagery and at‐many‐stations hydraulic geometry: Sensitivity to river form and optimization 
parameters”. Water Resources Research, 50(12), pp.9604-9619. 

[Goel et al ICAI], Goel, A., Knoblock, C., and Lerman, K. ICAI. "Exploiting structure within data for 
accurate labeling using conditional random fields". Proceedings on the International Conference on 
Artificial Intelligence (ICAI). 

[Guha et al 2016] Guha, R. V., Brickley, D., and Macbeth, S. 2016. "Schema. org: evolution of structured 
data on the web." Communications of the ACM 59.2: 44-51. 

[GuoDong et al 2005] GuoDong, Z., Jian, S., Jie, Z., and Min, Z. 2005. “Exploring various knowledge in 
relation extraction”. In Proceedings of the 43rd annual meeting on association for computational 
linguistics. Association for Computational Linguistics, 427–434 

[HDX 2020] Humanitarian Data Exchange.  2020. Available from https://data.humdata.org/  
[Hellerstein et al 2019] Hellerstein, Joseph L., Stanley Gu, Kiri Choi, and Herbert M. Sauro. "Recent 

advances in biomedical simulations: a manifesto for model engineering." F1000Research 8 (2019). 



	 45	

[Hoehndorf et al 2011] Hoehndorf, Robert, Michel Dumontier, John H. Gennari, Sarala Wimalaratne, 
Bernard De Bono, Daniel L. Cook, and Georgios V. Gkoutos. "Integrating systems biology models and 
biomedical ontologies." BMC systems biology 5, no. 1 (2011): 124. 

[Jakeman et al 2006] Jakeman, A.J., Letcher, R.A., and J.P. Norton. 2006. “Ten iterative steps in development 
and evaluation of environmental models.” Environmental Modelling & Software, 21(5). 
https://doi.org/10.1016/j.envsoft.2006.01.004  

[Kandel et al 2011] Kandel,S., Paepcke, A., Hellerstein,J., and Heer, J. 2011. “Wrangler: Interactive visual 
specification of data transformation scripts”. In Proceedings of the SIGCHI Conference on Human 
Factors in Computing Systems, pp. 3363-3372.  

[Karpatne et al 2016] Karpatne, A., Khandelwal, A., Chen, X., Mithal, V., Faghmous, J., and Kumar, V., 
2016. “Global monitoring of inland water dynamics: State-of-the-art, challenges, and opportunities”. In: 
Lässig J., Kersting K., Morik K. (eds) Computational Sustainability. Studies in Computational 
Intelligence, vol 645. Springer, Cham. https://doi.org/10.1007/978-3-319-31858-5_7. 

[Kemanian and Stöckle 2010] Kemanian, A. R., and Stöckle, C. O. 2010.  "C-Farm: A simple model to 
evaluate the carbon balance of soil profiles". European Journal of Agronomy 32, no. 1: 22-29. 

[Khandelwal 2019] Khandelwal, A. 2019. “ORBIT (Ordering Based Information Transfer): A Physics 
Guided Machine Learning Framework to Monitor the Dynamics of Water Bodies at a Global Scale”. 

[Khandelwal et al 2017] Khandelwal, A., Karpatne, A., Marlier, M.E., Kim, J., Lettenmaier, D.P. and Kumar, 
V. 2017. “An approach for global monitoring of surface water extent variations in reservoirs using 
MODIS data”. Remote Sensing of Environment, 202, pp.113-128. 

[King 2007] King, G. 2007. “An Introduction to the Dataverse Network as an Infrastructure for Data Sharing”. 
Sociological Methods & Research, 36(2), 173–199. 

[Koci et al 2016] Koci, E., Thiele, M., Romero, O., Lehner, W. 2016. “Cell classification for layout 
recognition in spreadsheets.”  International Joint Conference on Knowledge Discovery, Knowledge 
Engineering, and Knowledge Management. pp. 78–100  

[Kolaitis 2005] Kolaitis, P. G. 2005. "Schema mappings, data exchange, and metadata management". 
Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of 
database systems.  

[Krishnan et al 2016] Krishnan, S., Wang, J., Wu, E., Franklin, M.J., and Goldberg, K. 2016. “Activeclean: 
interactive data cleaning for statistical modeling”. Proceedings of the VLDB Endowment, 9(12). 

[Krueger et al 2012] Krueger, T., Page, T., Hubacek, K., Smith, L., and K. Hiscock. 2012. “The role of expert 
opinion in environmental modelling.” Environmental Modelling & Software, 36. 
https://doi.org/10.1016/j.envsoft.2012.01.011 

[Langegger and Wolfram 2009] Langegger, A., and Wolfram Wöß. 2009. “XLWrap — Querying and 
Integrating Arbitrary Spreadsheets with SPARQL”. In ISWC ’09 Proceedings of the 8th International 
Semantic Web Conference. 359–374.  

[Le 2013] Le, Q.V. 2013. “Building high-level features using large scale unsupervised learning”. 2013. 
Proceedings of the IEEE international conference on acoustics, speech and signal processing (pp. 8595-
8598). 

[Lefrançois et al 2017] Lefrançois, M., Zimmermann, A., and Bakerally, N. 2017. “A SPARQL extension 
for generating RDF from heterogeneous formats”. In European Semantic Web Conference, Vol. 10249. 
35–50. 

[Liu and Singh 2004] Liu, H., and Singh, P. 2004.  “ConceptNet—a practical commonsense reasoning 
toolkit”. BT technology journal 22, 4, 211–226 

[Maeir et al 2014] Maier, H. R., Kapelan, Z., Kasprzyk, J., Kollat, J., Matott, L. S.,  Cunha, M. C., Dandy, 
G.C. 2014. "Evolutionary algorithms and other metaheuristics in water resources: Current status, 
research challenges and future directions". Environmental Modelling & Software 62: 271-299. 

[Manning et al 2008] Manning, C., Raghavan, P., and Schutza, H. 2008. “Introduction to information 
retrieval”. An Introduction to Information Retrieval. 151, 177. 



	 46	

[McLennan and Kennell 2010] McLennan, M., and Kennell, R. 2010. "HUBzero: A Platform for 
Dissemination and Collaboration in Computational Science and Engineerin,". Computing in Science & 
Engineering, vol. 12, no. 2, pp. 48-53. [MCT 2020] Model Coupling Toolkit. https://portal.enes.org/oasis  

[Michel et al 2015] Michel, F., Djimenou, L., Faron Zucker, C., and Montagnat, J. 2015. “Translation of 
relational and non-relational databases into RDF with xR2RML”. In 11th International Conference on 
Web Information Systems and Technologies (WEBIST’15). 443–454.  

[Mikolov et al 2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., and Dean, J. 2013. “Distributed 
representations of words and phrases and their compositionality”. In Advances in neural information 
processing systems. 3111–3119 

[Miller 1995] Miller, G.A. 1995. “WordNet: a lexical database for English.” Communications of the ACM,  
38, 11, 39–41 

[MINT 2020] MINT software. Available from https://mintproject.github.io/mint/ 
[MODFLOW 2020] MODFLOW. 2020. US Geological Survey https://water.usgs.gov/ogw/modflow/ 
[Oliver et al 2012] Oliver, D. M., Fish, R. D., Winter, M., Hodgson, C. J., Heathwaite, A. L., and D. R. 

Chadwick. 2012. “Valuing local knowledge as a source of expert data: Farmer engagement and the 
design of decision support systems.” Environmental Modelling & Software, 36. 
https://doi.org/10.1016/j.envsoft.2011.09.013.  

[OR 2020] OpenRefine.  2020. Available from https://openrefine.org/ 
[Palmblad et al 2019] Magnus Palmblad, Anna-Lena Lamprecht, Jon Ison, Veit Schwämmle, Automated 

workflow composition in mass spectrometry-based proteomics, Bioinformatics, Volume 35, Issue 4, 15 
February 2019, Pages 656–664, https://doi.org/10.1093/bioinformatics/bty646 

[Perkel 2017] Perkel JM. How bioinformatics tools are bringing genetic analysis to the masses. Nature. 
2017;543(7643):137-138. doi:10.1038/543137a 

[Pebesma et al 2016] Pebesma, E., Mailund, T., and Hiebert, J. 2016. “Measurement units in R”. The R 
Journal, 8(2). 

[Peckham and Stoica 2018] Peckham, S.D., and Stoica, M. 2018. “Principle-based, Semi-automatic Ontology 
Generation to Support Cross-Domain Interoperability of Data Sets and Models”. 9th International 
Congress on Environmental Modelling and Software. 

[Peckham et al 2013] Peckham S.D., Hutton, EWH., Norris, B. 2013. “A component-based approach to 
integrated modeling in the geosciences: The design of CSDMS”. Computers and Geosciences 53:3-12. 

[Peckham et al 2017] Peckham, S.D., Stoica, M., Jafarov, E.E., Endalamaw, A., Bolton, W.R. 2017. 
“Reproducible, component-based modeling with TopoFlow, a spatial hydrologic modeling toolkit”. 
Earth and Space Science, 4(6). 

[Pennington et al 2014] Pennington, J., Socher, R., and Manning, C. 2014. “Glove: Global Vectors for word 
representation”. Proceedings of the 2014 conference on empirical methods in natural language 
processing (EMNLP). 1532–1545  

[Pham et al 2016] Pham, M., Alse, S., Knoblock, C.A., Szekely, P. 2016 "Semantic labeling: a domain-
independent approach". International Semantic Web Conference. Springer, Cham. 

[Pujara et al 2019] Pujara, J., Rajendran, A., Ghasemi-Gol, M., and Szekely, P. 2019. “A Common 
Framework for Developing Table Understanding Models”. International Semantic Web Conference - 
Posters.  

[Qu and Duffy 2007] Qu Y., Duffy, C. J. 2007. “A semidiscrete finite volume formulation for multiprocess 
watershed simulation”. Water Resources Research, 43:W08419. https://doi.org/10.1029/2006wr005752 

[Ramnandan et al 2015] Ramnandan, S. K., Mittal, A., Knoblock, C. 2015. "Assigning semantic labels to 
data sources". European Semantic Web Conference. Springer, Cham. 

[Raskin and Pan 2005] Robert G. Raskin, Michael J. Pan. 2005. “Knowledge representation in the semantic 
web for Earth and environmental terminology (SWEET).” Computers & Geosciences, Volume 31, Issue 
9. https://doi.org/10.1016/j.cageo.2004.12.004. 

[RDF 2020] RDF. 2020.  Available from https://www.w3.org/RDF/ 



	 47	

[Ritze et al 2015] Ritze, D., Lehmberg, O., and Bizer, C. 2015. “Matching HTML Tables to DBPedia”. In 
Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics. ACM, 10. 

[Rodriguez-Tomé 1998] Patricia Rodriguez-Tomé, The BioCatalog., Bioinformatics, Volume 14, Issue 5, 
Jun 1998, Pages 469–470, https://doi.org/10.1093/bioinformatics/14.5.469 

[Ronneberger et al 2015] Ronneberger, O., Fischer, P. and Brox, T. 2015. “U-net: Convolutional networks 
for biomedical image segmentation”. International Conference on Medical image computing and 
computer-assisted intervention (pp. 234-241), Springer. 

[Sarawagi 2008] Sarawagi, S. 2008. “Information extraction”. Foundations and Trends in Databases. 1(3), 
261–377. 

[SDM 2020] The Software Description Ontology for Models.  2020.  Available from 
https://w3id.org/okn/o/sdm/. 

[Shamir et al 2013] Shamir, L., Wallin, JF., Allen, A. 2013. “Practices in source code sharing in astrophysics”. 
Astron Comput. 1:54-58.  

[Shbita et al 2019] Shbita, B., Rajendran, A., Pujara, J., and Knoblock, C. 2019. “Parsing, Representing and 
Transforming Units of Measure”. Modeling the World’s Systems Conference, Washington DC.  

[Shi et al 2013] Shi, Y., K. J. Davis, C. J. Duffy, and X. Yu, 2013: Development of a coupled land surface 
hydrologic model and evaluation at a critical zone observatory. Journal of Hydrometeorology, 14, 
1401—1420, doi:10.1175/JHM-D-12-0145.1.  

[Slepicka et al 2015] Slepicka, J., Yin, C., Szekely, P., and Knoblock, C. 2015. “KR2RML: An Alternative 
Interpretation of R2RML for Heterogeneous Sources”. In Proceedings of the 6th International Workshop 
on Consuming Linked Data (COLD).  

[Stöckle et al 2014] Stöckle, C. O., Kemanian, A. R., Nelson, R. L., Adam, J.C., Sommer, R., and Carlson, 
B. 2014. "CropSyst model evolution: From field to regional to global scales and from research to 
decision support systems". Environmental Modelling & Software 62: 361-369. 

[Stoica and Peckham 2018] Stoica, M., and Peckham, S.D. 2018. "An Ontology Blueprint for Constructing 
Qualitative and Quantitative Scientific Variables." International Semantic Web Conference 
(P&D/Industry/BlueSky).   

[Stoica and Peckham 2019] Stoica M., and Peckham, S.D. 2019. “Incorporating New Concepts into the 
Scientific Variables Ontology”. Workshop on Advanced Knowledge Technologies for Science in a FAIR 
World. 

[Stoica and Peckham 2019] Stoica, M. and Peckham, S.D. 2019. “The Scientific Variables Ontology: A 
Blueprint for Custom Manual and Automated Creation and Alignment of Machine-Interpretable 
Qualitative and Quantitative Variable Concepts”. Modeling the World's Systems Conference. 

[SVO 2020] The Scientific Variables Ontology (SVO). 2020. Available from 
http://www.geoscienceontology.org/svo/1.0.0/ 

[Szekely et al 2019] Szekely, P., Garijo, D., Bhatia, D., Wu, J., Yao, Y., and Pujara, J. 2019. “T2WML: Table 
To Wikidata Mapping Language”. In Proceedings of the 10th International Conference on Knowledge 
Capture (K-CAP ’19). Association for Computing Machinery, New York, NY, USA, 267–270. 

[TauDEM 2020] “Terrain Analysis Using Digital Elevation Models (TauDEM)”. 2020. Available from 
https://github.com/dtarb/TauDEM 

[TF 2020] Trifacta.  2020.  Available from https://www.trifacta.com/  
[Turk et al AJSS] Turk, M. J., Smith, B. D., Oishi, J. S., Skory, S., Skillman, S. W., Abel, T., and Norman, 

M. L. AJSS. “yt: A multi-code analysis toolkit for astrophysical simulation data”. The Astrophysical 
Journal Supplement Series,192(1). 

[Unidata 2020] Unidata, 2012: Integrated Data Viewer (IDV) version 3.1 [software]. Boulder, CO: 
UCAR/Unidata. (http://doi.org/10.5065/D6RN35XM)   

[Voinov et al 2016] Voinov, A., Kolagani, N., McCall, M. K., Glynn, P. D., Kragt, M. E., Ostermann, F. O., 
Pierce, S. A., and Ramu, P. 2016. “Modelling with stakeholders – Next generation.” Environmental 
Modelling & Software, 77. https://doi.org/10.1016/j.envsoft.2015.11.016  



	 48	

[Vu et al 2019] Vu, B., Pujara, J., and Knoblock, C. 2019. “D-REPR: A Language for Describing and 
Mapping Diversely-Structured Data Sources to RDF”. In Proceedings of the 10th International 
Conference on Knowledge Capture (K-CAP ’19). Association for Computing Machinery, New York, 
NY, USA, 189–196. 

[Wei et al 2020] Wei, Zhihao, Kebin Jia, Xiaowei Jia, Ankush Khandelwal, and Vipin Kumar. "Global River 
Monitoring Using Semantic Fusion Networks." Water 12, no. 8 (2020): 2258. 

[Wilkinson et al 2011] Wilkinson, M.D., Vandervalk, B. & McCarthy, L. The Semantic Automated 
Discovery and Integration (SADI) Web service Design-Pattern, API and Reference Implementation. J 
Biomed Semant 2, 8 (2011). https://doi.org/10.1186/2041-1480-2-8 

[Zanibbi et al 2004] Zanibbi, R., Blostein, D. and Cordy, J.R. 2004. “A survey of table recognition”. IJDAR 
7, 1–16. https://doi.org/10.1007/s10032-004-0120-9  

	


