
Anomaly Detection for Scientific Workflow
Applications on Networked Clouds

Prathamesh Gaikwad, Anirban Mandal, Paul Ruth
RENCI - UNC Chapel Hill

pratham@cs.unc.edu
{anirban, pruth}@renci.org

Gideon Juve, Dariusz Król, Ewa Deelman
USC Information Sciences Institute
{gideon, darek, deelman}@isi.edu

Abstract—Recent advances in cloud technologies and on-demand
network circuits have created an unprecedented opportunity to
enable complex scientific workflow applications to run on dy-
namic, networked cloud infrastructure. However, it is extremely
challenging to reliably execute these workflows on distributed
clouds because performance anomalies and faults are frequent
in these systems. Hence, accurate, automatic, proactive, online
detection of anomalies is extremely important to pinpoint the
time and source of the observed anomaly and to guide the
adaptation of application and infrastructure. In this work, we
present an anomaly detection algorithm that uses auto-regression
(AR) based statistical methods on online monitoring time-series
data to detect performance anomalies when scientific workflows
and applications execute on networked cloud systems. We present
a thorough evaluation of our auto-regression based anomaly
detection approach by injecting artificial, competing loads into
the system. Results show that our AR based detection algorithm
can accurately detect performance anomalies for a variety of
exemplar scientific workflows and applications.

Keywords—anomaly detection; scientific workflows; networked

clouds; performance monitoring

I. INTRODUCTION

With the advent of pervasive virtualization, compute, net-
work and storage infrastructure is becoming increasingly pro-
grammable at all layers, and end-to-end virtual environments
can be provisioned dynamically in support of science applica-
tions. The recent advances in enabling on-demand network cir-
cuits, coupled with programmable cloud technologies [1], [2]
create an unprecedented opportunity to enable complex data-
intensive scientific applications to run on elastic networked
cloud infrastructure. We refer to this model as Networked
Infrastructure-as-a-Service (NIaaS).

Networked cloud infrastructures link distributed resources
into connected arrangements, slices, targeted at solving a
specific problem. This slice abstraction is central to providing
mutually isolated pieces of networked virtual infrastructure,
carved out from multiple cloud and network transit providers,
and built to order for guest applications like scientific work-
flows (Figure 1). One such exemplar NIaaS system used in
this work is ExoGENI [3] (Section II-A).

Scientific workflows are becoming a centerpiece of modern
computational and data-intensive science. Scientific workflows
have emerged as a flexible representation to declaratively
express complex applications with data and control dependen-
cies. The inherent elasticity present in scientific workflows,

i.e. evolving resource needs as they execute, makes networked
clouds an attractive platform for deploying and executing
science workflows. Advanced virtualization technologies now
make it possible to package execution environments in a way
that science workflows can be highly portable, predictable,
high-performance, and performance isolated.

However, it is extremely challenging for scientists to exe-
cute their science workflows in a reliable and scalable way.
Performance degradation and faults are frequent while execut-
ing science workflows and applications on distributed cloud
platforms. Failures and anomalies at all levels of the system
- hardware infrastructure, system software, middleware, appli-
cation and workflows make detecting, analyzing and acting
on anomaly events challenging. Hence, automatic, proactive,
online detection of anomalies is extremely important to take
remedial actions during runtime so that there is minimal re-
source wastage and minimal effect on the workflow makespan.
Accurate anomaly detection helps pinpointing the time and
source of anomaly and thereby helps choosing the correct
adaptation mechanism, both for the workflow application and
the infrastructure.

Mutually Isolated 
Virtual Networks

  

  

  

  

  

  

  

  

  

  

    

  

  

  

  

    

  

  

  

  

    

  

  

 

 

   

  

  

 

 

   

  

  

 

 

   

VM VM

VM VM

VM VM

VM VM

VM VM

VM VM

VM VM

VM VM

VM VM

VM VM

VM VM

VM VM

Edge Providers
(Compute Clouds and Network Providers)

Mutually Isolated Slices
of Virtual Resources

Fig. 1. Networked clouds.

In this work, we address the challenges of online detection
of anomalies while executing scientific workflow applications
on networked clouds. Using an integrated framework to col-
lect online monitoring time-series data from application and
infrastructure developed as part of the Panorama [4] project,
we developed online detection algorithms to detect perfor-
mance anomalies when science workflows and applications



are executed. The detection algorithms use regression based
statistical methods to generate model parameters to fit the data
and calculate error based on predicted and actual values to
generate anomaly triggers. We present a thorough evaluation of
our auto-regression (AR) based anomaly detection approach to
detect performance anomalies for a variety of scientific work-
flows and applications. We execute several HPC applications
and workflows on the ExoGENI networked cloud testbed to
show the effectiveness of AR based time series analysis to
detect anomalies when artificial, competing loads are injected
into the system.

The paper is organized as follows. Section II provides
background on ExoGENI, the Pegasus workflow management
system, and deployment of the workflows on ExoGENI.
Section III describes the monitoring framework and the AR
based anomaly detection algorithm. Section IV presents an
evaluation of the anomaly detection technique for several
exemplar scientific workflows and applications. Section V
presents related work and section VI concludes the paper.

II. BACKGROUND

A. ExoGENI
ExoGENI [3] orchestrates a federation of independent cloud

sites located across the US and circuit providers, like Inter-
net2 and ESNet, through their native IaaS API interfaces. It
is a widely distributed networked infrastructure-as-a-service
(NIaaS) platform geared towards experimentation and compu-
tational tasks. Virtual compute, storage, and network resources
are stitched together to form mutually isolated “slices” of in-
frastructure. Experimental slices can have complex topologies
that span one or more ExoGENI sites. Users and applications
can get resources from ExoGENI racks by submitting their
slice requests using several command-line and GUI tools. Ex-
oGENI employs sophisticated topology embedding algorithms
that take advantage of semantic resource descriptions, and map
slice topology requests to underlying infrastructure actions that
instantiate the virtual infrastructure for guest applications.

The ExoGENI testbed, as shown in Figure 2, consists of
cloud sites (racks) on more than 15 host campuses, linked with
national research networks through programmable exchange
points. Compute and storage resources are obtained from pri-
vate clouds at the infrastructure’s edge. Network resources are
obtained from both edge providers and national fabrics using
traditional VLAN-based switching and OpenFlow. ExoGENI
uses the ORCA (Open Resource Control Architecture) [5]
control framework software to offer a unified hosting platform
for deeply networked, multi-domain cloud applications. The
work in this paper uses ExoGENI as an exemplar NIaaS
system.

B. Pegasus Workflow Management System
The Pegasus Workflow Management System [6] has been

used by scientists in many different domains to execute large-
scale computational workflows on a variety of cyberinfrastruc-
ture, ranging from local desktops to campus clusters, grids,
and commercial and academic clouds. In this work, we have

Fig. 2. ExoGENI testbed.

used Pegasus as a representative workflow management system
leveraging NIaaS platforms to plan and execute workflows.

Pegasus focuses on scalable, reliable and efficient workflow
execution on a wide range of systems. The key idea behind
Pegasus is the separation of the workflow description from
the description of the execution environment, which results
in: 1) workflow portability, and 2) the ability for the workflow
management system to make performance- and reliability-
focused decisions at “planning time” and at “runtime”. Pe-
gasus pioneered the use of planning in scientific workflow
systems [7]. The Pegasus planner takes a resource-independent
workflow description, automatically locates the input data and
computational resources necessary for workflow execution,
applies performance optimizing transformations, maps the
workflow onto the available execution resources, then reliably
executes the plan. Pegasus leverages HTCondor [8] as the
underlying execution framework for the workflow jobs.

C. Deploying Workflows on ExoGENI Testbed

We have used racks from the ExoGENI NIaaS platform as
a controlled testbed environment to experiment with anomaly
detection for workflows. Details on the hardware used in the
racks can we found at [9]. Slices were provisioned from these
racks by sending requests for virtual topologies consisting of
a set of virtual machines (VM) connected via a broadcast link
with a specified bandwidth, potentially spread across multiple
racks. In this work, the Pegasus workflow management system,
described above, was used to plan workflows that execute on
HTCondor based systems.

The experiments performed in our work involved deploy-
ing a complete HTCondor site within a slice of ExoGENI
resources by sending a request to ExoGENI to instantiate
a virtual cluster customized for HTCondor. The HTCondor
site includes one HTCondor scheduler/master (head node),
and several HTCondor workers (HTCondor startd’s). The head
node and workers are deployed within virtual machines with a
dedicated layer-2 network. The amount of bandwidth allocated
to the network is configurable.



The VM images had pre-requisite software installed like
HTCondor, Pegasus, including monitoring extensions de-
scribed later. The ExoGENI postboot script feature was lever-
aged to start various HTCondor daemons on VM startup so
that the HTCondor environment is ready as soon as the slice
setup is complete. In addition, the various scientific workflows
and applications were pre-installed as part of virtual machine
images. In essence, the ExoGENI platform enables users to
request tailored networked cloud infrastructure, which can then
be used to rapidly deploy applications and science workflows
using workflow management systems like Pegasus.

III. ANOMALY DETECTION SYSTEM

In this section, we present an overview of the monitoring
and data collection architecture for obtaining online perfor-
mance data for science workflows and applications running on
the ExoGENI testbed, and how the collected data can be used
for runtime detection of anomalies using statistical methods
and algorithms. First, we present our monitoring framework.

A. Monitoring and Data Collection Framework

Cloud Infrastructure

Monitoring DB
<InfluxDB>

Workflow
Monitor

<monitord>

Real Time
Job Monitor
<Kickstart>

Monitoring
Events

Actual
Performance

Workflow 
Planner

<Pegasus>

Workflow Logs

Workflow Engine
<DAGMan>

Job Manager
<Condor>

Application
Job

Message 
Broker

<RabbitMQ>

Anomaly Detection
Engine

App Monitoring
Timeseries

Fig. 3. Integrated workflow monitoring and anomaly detection system.

In this work, we leveraged the monitoring capabilities of
the Pegasus Workflow Management System to collect online
monitoring data. Figure 3 shows the overall architecture of
the monitoring framework. Pegasus uses HTCondor DAGMan
and the HTCondor scheduler as the underlying execution
framework for launching workflow jobs on computational
resources. The monitord service collects, aggregates and
publishes all the monitoring data produced by the workflow.
This includes high-level information on the state of the work-
flow generated by the workflow execution engine (DAGMan)
and the workflow scheduler (HTCondor), as well as low-level
information published by job monitoring tools.

Job-level monitoring is performed by Kickstart [10], a
monitoring and tracing tool used to launch computation and
data management jobs, and to collect information about the
behavior of the jobs and their execution environment. A
Kickstart process forks application processes on the compute
node and uses its position as the parent process to inspect the
behavior of the application. Kickstart writes trace data to a file

for offline analysis, and reports real-time monitoring data to
monitord.

As part of the DOE dV/dt project [11], we added func-
tionality to Kickstart to automatically capture resource us-
age metrics for workflow jobs [12]. This functionality uses
operating system monitoring facilities such as procfs and
getrusage() as well as library call interposition to col-
lect fine-grained profile data that includes process I/O, file
accesses, runtime, memory usage, and CPU utilization. Li-
brary call interposition is used to implement monitoring
functionality that requires access to the internal state of an
application process. It is implemented by a component called
libinterpose, which uses LD_PRELOAD to intercept calls
to POSIX functions for file and network I/O and threads,
as well as performing monitoring activities at process start
and exit, such as starting monitoring threads, activating CPU
counters, and reporting final performance metrics.

The monitord service publishes the resulting real-time
monitoring data to a monitoring data store, which in our
case is an InfluxDB [13] time series database. The Anomaly
Detection Engine continuously queries this monitoring store,
runs detection algorithms described in Section III-B on the
online monitoring data, and sends triggers to the Pegasus
Dashboard (not shown) to notify users of anomalies.

B. Auto-Regression (AR) Based Detection Algorithm
We now present details on the anomaly detection algorithm

used by the detection engine described above. The architecture
allows several detection algorithms to be pluggable in the
detection engine. Analyzing time series data for detecting
anomalies has been studied in the great detail in the liter-
ature (Section V). Among the several approaches proposed,
we employed regression based statistical techniques on the
monitoring time-series data.

Statistical techniques learn a model in the form of parame-
ters, which describes the kth observation in terms of previous
(k � 1) observations. Using these learnt parameters we can
also predict the kth test value based on previous (k � 1)
test observations. Using the predicted value and the actual
value of test observation, error can be calculated at each test
observation. If the error increases beyond a certain threshold
then we say an anomaly has occurred. We use 2 techniques
- Moving Average (MA) and Auto Regression, which differ
in model parameters and previous observations chosen. In
Moving Average, the first element is calculated by taking
average of the initial fixed subset of series of numbers. To
calculate the next element, the subset is modified by removing
the first number of the series and including the next number
following the last element of the original subset. We then
calculate average of this new subset of numbers to get the next
element. The process is repeated to get a plot of MA of the
original series, where each point in MA is average of subset of
original series of numbers. Moving average can be thought of
as filter which ignores the instantaneous changes and captures
the trend of the original series, since we always take average
of subset of values. Although we have employed the MA



approach to detect anomalies in infrastructure time series data,
i.e. monitoring data from the infrastructure, the focus of this
paper is on detecting workflow application anomalies. We
employed the Auto Regression technique for application time
series data.

The AR model in terms of filter is sometimes referred to
as recursive filter or infinite impulse response filter because
it uses previous values of its own series to calculate the
next value. In AR model of order p, the current term can be
estimated by linear weighted sum of previous terms in series.
The value of y(t) can be calculated using the following
equation:

y(t) =
i=pX

i=1

aiyt�i + ✏

where ai are the AR coefficients, y is the series and p is order
of the AR filter which is usually much less than the actual
length of series y. The noise term in the above equation (✏) is
assumed to be Gaussian white noise.

The problem statement in AR is to find the “best” values
for ai for a given series y of length N. AR model usually
assumes series y is linear and stationary and has a zero mean.
If the series y does have not have zero mean, we simply add
a0 in front of summation in the equation above.

The AR coefficients can be estimated using 3 different
techniques 1) Yule-Walker method 2) Burg method and 3)
Least squares method. The least squares method is based
on the Yule-Walker method of estimating AR coefficients.
In our detection framework, we have implemented the least
squares method to estimate the AR coefficients. The equation
to estimate AR coefficients using least square method for
model of order p is given by:

0

BBBBBB@

c11 c12 ... c1p
c21 c22 ... c2p
. . ... .
. . ... .
. . ... .

cp1 cp2 ... cpp

1

CCCCCCA

0

BBBBBB@

â1
â2
.
.
.
âp

1

CCCCCCA
= �

0

BBBBBB@

c01
c02
.
.
.

c0p

1

CCCCCCA

where,

cij = 1/N � p
t=NX

t=p+1

yt�iyt�j

and cij is an estimate of the auto-covariance function for delay
(i - j) between yt�i and yt�j and N is the length of series. We
solve the above set of equations to obtain â1, â1 .. âp, which
are estimated coefficients of AR(p) model.

To calculate the optimal value of order of model (p) we
must draw a plot of Root Mean Square (RMS) error vs.
order of model. When we gradually increase the order, we
see RMS error keeps on reducing until there is no significant
effect of increasing order on the RMS error. After a certain
order, the RMS error is almost constant and plot of RMS
error vs. order(p) looks like flat line parallel to the X-axis.

The optimal value of order(p) is somewhere near where line
starts to flatten out. More formal techniques like Akaike
Information Criterion [14] can be used to calculate optimal
value of p. The advantages of the AR approach are (a) AR
model can be used when train and test time series are of
different lengths, (b) it does not require a distance measure
used in similarity calculations in window and clustering based
techniques, and (c) it captures the trend of time series using
the AR coefficients.

We have chosen the above AR technique to detect anomalies
using our framework. After a series of experiments with
different orders for minimizing errors, which are not reported
here for space limitations, we chose the AR model of order
5 to detect anomalies in our application metrics. For each
workflow application we studied, we first made training runs of
the workflows to collect the training time series data. The con-
trolled testbed environment provided by ExoGENI was critical
to obtaining “clean” training series data. The AR coefficients,
and hence the AR(p) model parameters were calculated based
on this offline training data. During future executions of the
workflow applications, we used the AR model to predict the
value for the next time instant and compared it with the actual
online monitoring data for errors. When errors exceeded a
certain threshold (say 20%), we generated anomaly triggers.

IV. EVALUATION

In this section, we present an evaluation of the AR based
anomaly detection approach for several example scientific
workflows and applications running on the ExoGENI cloud
testbed. For each example, we created artificial loads using
competing applications or system tools while the workflow
application is executing, and ran the AR based algorithm
to determine errors from predicted metric values to pinpoint
the time when an anomaly is triggered. All workflows and
applications were pre-installed in virtual machine images.
For the experiments, we used these images to instantiate
HTCondor based virtual clusters on-demand on the ExoGENI
rack at the Wayne State University (WSU), and then used
Pegasus to plan and execute the workflows. We now present
the results for each workflow/application example.

A. Periodogram Workflow
The Kepler satellite [15] produces a light curve recording

the brightness of stars over time. Analyzing these light curves
to identify the periodic signals that arise from transiting exo-
planets requires the computation of periodograms that reveal
periodicities in the time-series data along with estimates of
their significance. Periodograms are computationally intensive,
and the volume of data generated by Kepler requires high-
performance processing. The periodogram workflow [16] par-
allelizes and distributes the computation of periodograms using
several different algorithms and parameter sets over many
thousands of light curves.

The periodogram application is computationally intensive,
and hence we used a CPU intensive anomaly load generator,
a competing application called the Conjugate Gradient (CG)



class C program from the suite of NAS parallel benchmarks
(NPB) [17]. We instantiated the CG class C program at 270
seconds since the start of Periodogram application. The online
monitoring data published in InfluxDB includes time series for
several metrics for each application job in the workflow. In
this case, we monitored the time-series for the utime metric
for the Periodogram application, which is a measure of the
time scheduled for the application process in user space.
Figure 4 shows plot of utime collected over the duration of
Periodogram execution with CG class C anomaly running in
the background. We observe that the utime of Periodogram
almost halves since the start of CG anomaly at 270 seconds
and rises in value after the end of anomaly.

Fig. 4. Periodogram application with CG class C anomaly.

We calculated the AR coefficients using a training time
series and generated the predicted time series. To detect the
time at which anomaly was introduced, we plotted the error
between predicted and the anomalous run at each second.
Figure 5 shows the error plot in which X-axis represents the
seconds since the start of Periodogram application and Y-axis
represents the error of anomalous run from the predicted value.
The error crosses the threshold of 20% at the 270 second mark.
We can infer that our AR based anomaly detection technique
is successfully able to detect the time at which anomaly was
introduced.

B. Genomics Workflow
We used one of the analysis workflows used to process

and prepare data generated by the UNC High-Throughput Se-
quencing Facility (HTSF) as the next example workflow. These
workflows focus on a variety of applications, including full
and partial genome assembly and alignment, variant detection,
etc. We present results for two important applications in the
genomic workflow.

1) Genomics gatk application: The gatk job in the ge-
nomics workflow stands for Tookit for Genome Anaylsis. The
gatk job is CPU and memory intensive and hence we chose
an anomaly load that stresses both the CPU and memory
resources. We selected Multigrid (MG) class B program using
a 256 x 256 x 256 grid from NPB suite as the anomaly load
generator.

Fig. 5. Error plot for Periodogram application with CG class C anomaly.

For our anomalous run, we had 10 parallel threads each
running MG class B program on the same HTCondor worker
node which was running the gatk application. The anomalous
load was introduced at 188 seconds into the execution of the
job using shell scripts. As the gatk application is CPU and
memory intensive, it starved due to resources being consumed
by the anomalous load. To detect the anomaly, we collected
the utime metric for gatk job which is shown in Figure 6. The
effect of the anomalous load can be clearly seen in the utime
drop in initial phase of the job run.

Fig. 6. Utime metric of gatk application with memory and CPU anomaly.

We calculated the AR coefficients from the training time
series and generated the predicted time series. Figure 7 shows
the error between the predicted time series and the anomalous
time series. The error crosses the threshold at 220 seconds
on the time axis. We had introduced the anomaly at 188
seconds and our approach detects it at 220 seconds into the
run. The possible reason for that is although the scripts were
initiated at 188 seconds, the MG program itself requires some
initialization and startup time. This causes a small delay till
the actual CPU and memory load kicks in. However, detecting
the anomaly within 32 seconds after it was introduced is still
quite useful considering the gatk application in the genomics
workflow runs for approximately 42 mins (2520 seconds).



Fig. 7. Error plot of utime metric for gatk application with memory and CPU
anomaly.

2) Genomics BWA application: Burrows-Wheeler Aligner
(BWA) is a program that aligns small genome sequences with
larger reference sequences, such as human genome. The BWA
application is a part of the genomics workflow. The BWA
application is CPU and memory intensive. Similar to the gatk
application, we used the MG class B program to stress the
CPU and memory resources of the system to validate our AR
based anomaly detection approach. BWA application requires
higher percentage of CPU and memory resources during its
run as compared to the gatk application. Hence we required
only 5 threads of MG class B program running in parallel to
create the bottleneck due to lack of enough CPU and memory
resources. Each thread of MG class B program was instantiated
40 seconds since the start of BWA application and ran for
a total duration of 7 minutes and 30 seconds ending at 490
seconds. To detect the anomaly, we collected the utime metric
for BWA application over the entire duration of the application
run.

Figure 8 shows the plot of utime over the execution of BWA
application. The X-axis represents seconds since the start of
BWA application and Y-axis represents the utime usage at each
second by BWA application. We can clearly observe the strong
effect of the introduced anomaly at 40 seconds on X-axis.

Similar to previous experiments, we calculated the AR co-
efficients from training time series and generated the predicted
time series. In order to correctly determine when the anomaly
was introduced we plotted the error from the predicted values
at each second of the application run. The point where error
threshold first crosses 20% is the time at which anomaly was
introduced. Figure 9 shows the plot of error between predicted
and anomalous values at each second of execution of BWA
application. The error values first cross the threshold at the
50 second mark. We introduced the anomaly at 40 second
since the start of BWA, and it was detected at 50 second. In
Figure 9, we can also see some points cross the error threshold
near the 500 second mark. These points indicate the end of
introduced anomaly at the 500 second mark according to our
detection technique. The anomaly was stopped at 490 seconds

Fig. 8. Utime metric of BWA with memory and CPU anomaly.

using shell scripts and our AR based approach detects end of
anomaly at 500 seconds. This experiment shows that our AR
based anomaly detection technique is not only able to detect
the anomaly with good accuracy it is also able to determine
the duration the anomaly was running. In some cases, knowing
both the time of introduction and duration of anomaly can be
highly useful to determine the cause of the anomaly.

Fig. 9. Error plot of utime metric for BWA with memory and CPU anomaly.

C. Block Tri-diagonal Solver
We used the Block Tri-diagonal (BT) solver class C from

the NPB suite as the next example. The BT program is CPU
intensive, and we used the stress benchmark [18], which is
a workload generator for POSIX systems, and can be used
to create artificial CPU load. We configured stress to use 4
threads continuously running the sqrt() function to introduce
anomaly 480 seconds into the BT program. We collected the
utime metric for BT program using the /proc/pid/stat file in
linux, where pid stands for the process ID. Figure 10 shows
the graph of utime collected over the duration of BT program
while running the stress anomaly.

We observe that there is sudden drop in utime after ap-
proximately 480 seconds. This sudden drop in utime is due to
aforementioned CPU load introduced using the stress tool. As



Fig. 10. BT class C program with CPU stress anomaly.

explained before, we generate a predicted time series based
on AR coefficients from training time series. We also plot the
difference of anomalous input time series and predicted time
series as error at each time instant. Figure 11 shows the error
plot of the utime metric. As seen in the figure, when error
threshold crosses 20% at 480 seconds, we can conclude that
anomaly was introduced at that point of time. Our approach is
correctly able to pinpoint the precise time at which anomaly
was introduced in the BT program.

Fig. 11. Error plot for BT class C program with CPU stress anomaly.

We have also investigated AR based detection for anomalies
during execution of I/O intensive benchmarks (FIO [19]) and
applications (like NAMD molecular simulations), specifically
for metrics like write bytes and iowait, a measure of time
spent for waiting on I/O, when being injected with external
I/O load using stress. The AR models can identify beginning
and ending of anomaly for these cases. We are omitting these
results for space constraints.

V. RELATED WORK

Although different methods and techniques have been re-
searched to detect anomalies, a majority of them are either
machine learning or statistical techniques. Tan [20] discusses
machine learning techniques - Tree Augmented Networks and

Bayesian classifiers for predicting anomalies. Dean et. al. [21]
present anomaly detection in IaaS clouds using unsupervised
machine learning technique called Self Organizing Maps to
predict emergent system behaviors.

Gaussian based statistical techniques use distribution mean
µ and standard deviation of distribution � to detect the outlier
points [22], [23]. Students t-test [23] and Grubbs test [24],
among other Gaussian based techniques, use the probability
density function to calculate the estimated µ and � for each
observation, to detect if its anomalous.

Regression based statistical methods generate model param-
eters to fit the data and calculate error based on predicted and
actual value. Our AR based anomaly detection technique falls
under the category of regression based statistical techniques.
Bianco et. al. [25] and Chen et. al. [26] discuss anomaly
detection using another variant of regression model called the
Autoregressive Integrated Moving Average (ARIMA) model.
The AR method in conjunction with other methods has been
previously used to detect anomalies. One such example is
[27], where the authors discuss about building probabilistic
models using relevance vector and Auto Regression (AR)
to detect anomalies. They use the probability density of the
data points to detect anomalies. To our knowledge, the work
discussed in this paper is the only work that describes the
application of AR based anomaly detection techniques on
scientific workflows to pinpoint the time at which anomaly
was introduced with marginal error.

Extensive research has been done in qualitative performance
evaluation of scientific workflow applications. Buneci [28]
discusses the performance evaluation approaches to assess
if overall application behavior is as expected. This work
describes methods to extract the temporal information like
patterns and variance of performance time series to predict
behaviors in long running scientific applications.

Although, our paper focusses mainly on anomaly detection,
there has been considerable work done on fault handling
and fault tolerant systems for scientific workflows. Bala and
Chana [29] present use of failure prediction models to predict
task failures while running scientific workflows on cloud
services. Their work evaluates different machine learning
models and suggests the use of Naive Bayes model over other
models for good accuracy of failure predictions. Sometimes,
the job failures occur at the workflow level itself, and Samak
et. al. [30] propose the use of k-means clustering algorithm
to identify workflow classes with high failure percentages.
The online prediction system developed in [30] classifies
if the running workflow is high failure percentage class or
not. Crawl and Altintas [31] propose methods to record data
dependencies for provenance information in Kepler scientific
workflow system, and describe how it can be used for failure
recovery. Chen and Deelman [32] propose a task failure mod-
eling framework that uses Maximum Likelihood estimation
method to model workflow performance. They present three
different fault tolerant task clustering strategies to improve the
performance of scientific workflows.



VI. CONCLUSIONS AND FUTURE WORK

In this work, we presented a system for detecting anomalies
when scientific workflows and applications execute on net-
worked clouds. We described our monitoring data collection
framework that uses new Pegasus monitoring capabilities to
obtain time series data for various performance metrics rele-
vant to the workflow application performance. We presented
our anomaly detection algorithm based on auto-regression
technique, which can analyze the time-series data and generate
anomaly triggers when errors from predicted AR model in
the online monitoring data exceed a certain threshold. We
presented an evaluation of the AR based detection technique
using example workflows from genomics, astronomy and NAS
parallel benchmarks, and showed that our approach can effec-
tively pinpoint anomalies when external load is introduced.
In future, we plan to extend the work to detect other kinds
of anomalies, for eg. workflow level anomalies, data transfer
anomalies, which are also observed in real systems. We also
plan to investigate other kinds of detection algorithms. We plan
to leverage this work to pinpoint the sources of anomalies, and
develop different kinds of adaptation mechanisms to respond
to observed anomalies.

ACKNOWLEDGMENTS

Work for this paper was supported by several grants - DoE
ASCR Panorama (DE-SC0012390), DoE SciDAC SUPER
(DE-FG02-11ER26050/DE-SC0006925), and the NSF GENI
(#1872).

REFERENCES

[1] Amazon Elastic Compute Cloud (Amazon EC2),
http://www.amazon.com/ec2.

[2] OpenStack Cloud Software, http://openstack.org.
[3] I. Baldine, Y. Xin, A. Mandal, P. Ruth, A. Yumerefendi, and J. Chase,

“Exogeni: A multi-domain infrastructure-as-a-service testbed,” in 8th
International ICST Conference on Testbeds and Research Infrastructures
for the Development of Networks and Communities (TRIDENTCOM),
2012.

[4] “PANORAMA: predictive modeling and diagnos-
tic monitoring of extreme science workflows,”
http://sites.google.com/site/panoramaofworkflows.

[5] J. Chase, L.Grit, D.Irwin, V.Marupadi, P.Shivam, and A.Yumerefendi,
“Beyond virtual data centers: Toward an open resource control archi-
tecture,” in Selected Papers from the International Conference on the
Virtual Computing Initiative (ACM Digital Library), May 2007.

[6] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob,
and D. S. Katz, “Pegasus: A framework for mapping complex scientific
workflows onto distributed systems,” Scientific Programming, vol. 13,
no. 3, pp. 219–237, 2005.

[7] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi,
K. Blackburn, A. Lazzarini, A. Arbree, R. Cavanaugh et al., “Mapping
abstract complex workflows onto grid environments,” Journal of Grid
Computing, vol. 1, no. 1, pp. 25–39, 2003.

[8] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in
practice: the condor experience.” Concurrency - Practice and Experi-
ence, vol. 17, no. 2-4, pp. 323–356, 2005.

[9] Exogeni Wiki, https://wiki.exogeni.net/.
[10] J. S. Vockler, G. Mehta, Y. Zhao, E. Deelman, and M. Wilde, “Kickstart-

ing remote applications,” in International Workshop on Grid Computing
Environments, 2007.

[11] “dv/dt: Accelerating the rate of progress towards extreme scale collab-
orative science,” https://sites.google.com/site/acceleratingexascale/.

[12] G. Juve, B. Tovar, R. Ferreira da Silva, D. Król, D. Thain, E. Deelman,
W. Allcock, and M. Livny, “Practical resource monitoring for robust
high throughput computing,” in 2nd Workshop on Monitoring and
Analysis for High Performance Computing Systems Plus Applications,
ser. HPCMASPA’15, 2015, pp. 650–657.

[13] “InfluxDB,” https://influxdata.com/.
[14] C. M. Hurvich and C.-L. Tsai, “Regression and time

series model selection in small samples,” Biometrika,
vol. 76, no. 2, pp. 297–307, 1989. [Online]. Available:
http://biomet.oxfordjournals.org/content/76/2/297.abstract

[15] “Kepler: A Search for Habitable Planets,” http://kepler.nasa.gov.
[16] G. B. Berriman, G. Juve, E. Deelman, M. Regelson, and P. Plavchan,

“The application of cloud computing to astronomy: A study of cost and
performance,” in In Workshop on e-Science Challenges in Astronomy
and Astrophysics, 2010.

[17] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and
S. K. Weeratunga, “The nas parallel benchmarks&mdash;summary
and preliminary results,” in Proceedings of the 1991 ACM/IEEE
Conference on Supercomputing, ser. Supercomputing ’91. New
York, NY, USA: ACM, 1991, pp. 158–165. [Online]. Available:
http://doi.acm.org/10.1145/125826.125925

[18] “stress workload generator,” http://people.seas.harvard.edu/ apw/stress/.
[19] “fio - Flexible I/O Tester,” https://github.com/axboe/fio.
[20] Y. Tan, “Online performance anomaly prediction and prevention for

complex distributed systems,” Ph.D. dissertation, 2012, aAI3538490.
[21] D. J. Dean, H. Nguyen, and X. Gu, “Ubl: Unsupervised

behavior learning for predicting performance anomalies in
virtualized cloud systems,” in Proceedings of the 9th International
Conference on Autonomic Computing, ser. ICAC ’12. New
York, NY, USA: ACM, 2012, pp. 191–200. [Online]. Available:
http://doi.acm.org/10.1145/2371536.2371572

[22] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, Jul. 2009.
[Online]. Available: http://doi.acm.org/10.1145/1541880.1541882

[23] M. Markou and S. Singh, “Novelty detection: A re-
view&mdash;part 1: Statistical approaches,” Signal Process.,
vol. 83, no. 12, pp. 2481–2497, Dec. 2003. [Online]. Available:
http://dx.doi.org/10.1016/j.sigpro.2003.07.018

[24] F. E. Grubbs, “Procedures for detecting outlying observations in sam-
ples,” Technometrics, vol. 11, pp. 1–21, 1969.

[25] A. M. Bianco, M. Garca Ben, E. J. Martnez, and V. J. Yohai,
“Outlier detection in regression models with arima errors using robust
estimates,” Journal of Forecasting, vol. 20, no. 8, pp. 565–579, 2001.
[Online]. Available: http://dx.doi.org/10.1002/for.768

[26] D. Chen, X. Shao, B. Hu, and Q. Su, “Simultaneous wavelength
selection and outlier detection in multivariate regression of near-infrared
spectra,” Analytical sciences : the international journal of the Japan
Society for Analytical Chemistry, vol. 21, no. 2, pp. 161–166, February
2005. [Online]. Available: http://dx.doi.org/10.2116/analsci.21.161

[27] R. Fujimaki, T. Yairi, and K. Machida, Advances in Knowledge
Discovery and Data Mining: 9th Pacific-Asia Conference, PAKDD
2005, Hanoi, Vietnam, May 18-20, 2005. Proceedings. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, ch. An Anomaly
Detection Method for Spacecraft Using Relevance Vector Learning, pp.
785–790. [Online]. Available: http://dx.doi.org/10.1007/11430919 92

[28] E. S. Buneci, “Qualitative performance analysis for large-scale scientific
workflows,” Ph.D. dissertation, Duke University, 2008.

[29] A. Bala and I. Chana, “Intelligent failure prediction models for scientific
workflows,” Expert Syst. Appl., vol. 42, no. 3, pp. 980–989, Feb. 2015.

[30] T. Samak, D. Gunter, M. Goode, E. Deelman, G. Juve, G. Mehta,
F. Silva, and K. Vahi, “Online fault and anomaly detection for large-
scale scientific workflows,” in High Performance Computing and Com-
munications (HPCC), 2011 IEEE 13th International Conference on, Sept
2011, pp. 373–381.

[31] D. Crawl and I. Altintas, Provenance and Annotation of Data and
Processes: Second International Provenance and Annotation Workshop,
IPAW 2008, Salt Lake City, UT, USA, June 17-18, 2008. Revised Selected
Papers, 2008, ch. A Provenance-Based Fault Tolerance Mechanism for
Scientific Workflows, pp. 152–159.

[32] W. Chen and E. Deelman, “Fault tolerant clustering in scientific work-
flows,” in Services (SERVICES), 2012 IEEE Eighth World Congress on,
June 2012, pp. 9–16.


