Toward Fine-Grained Online Task Characteristics
Estimation in Scientific Workflows

Rafael Ferreira da Silval-2, Gideon Juve?, Ewa Deelman?, Tristan Glatard!:3
Frédéric Desprez*, Douglas Thain®, Benjamin Tovar®, Miron Livny®

Luniversity of Lyon, CNRS, INSERM, CREATIS, Villeurbanne, France
{rafael.silva,glatard}@creatis.insa-lyon.fr
2University of Southern California, Information Sciences Institute, Marina Del Rey, CA, USA
{gideon,deelman}@isi.edu
3McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Canada
4INRIA, University of Lyon, LIP, ENS Lyon, Lyon, France
Frederic.Desprez@inria.fr
SUniversity of Notre Dame, Notre Dame, IN, USA
{dthain,btovar}@nd.edu
SUniversity of Wisconsin Madison, Madison, WI, USA
miron@cs.wisc.edu

ABSTRACT

Task characteristics estimations such as runtime, disk space,
and memory consumption, are commonly used by scheduling
algorithms and resource provisioning techniques to provide
successful and efficient workflow executions. These methods
assume that accurate estimations are available, but in pro-
duction systems it is hard to compute such estimates with
good accuracy. In this work, we first profile three real sci-
entific workflows collecting fine-grained information such as
process I/0O, runtime, memory usage, and CPU utilization.
We then propose a method to automatically characterize
workflow task needs based on these profiles. Our method es-
timates task runtime, disk space, and memory consumption
based on the size of tasks input data. It looks for correla-
tions between the parameters of a dataset, and if no correla-
tion is found, the dataset is divided into smaller subsets by
using a clustering technique. Task behavior estimates are
done based on the ratio parameter/input data size if they
are correlated, or based on the mean value. However, task
dependencies in scientific workflows lead to a chain of esti-
mation errors. To correct such errors, we propose an online
estimation process based on the MAPE-K loop where task
executions are constantly monitored and estimates are up-
dated accordingly. Experiment results show that our online
estimation process yields much more accurate predictions
than an offline approach, where all task needs are estimated
at once.

Keywords
Scientific workflow, workflow characterization, online task
estimation, MAPE-K loop

1. INTRODUCTION

Scientific workflows have been widely used by computational
scientist communities to run complex simulations and analy-
ses [1]. They allow users to easily express multi-step compu-
tational tasks, for example retrieve data from an instrument
or a database, reformat the data, and run an analysis. A
successful and efficient workflow execution mainly depends
on how tasks are planned and executed. Task scheduling
is known to be an NP-complete problem [2], thus several
heuristics have been developed to address this problem. For
instance, classical heuristics such as Min-min, Max-min |3],
and HEFT [4], or recent ones [5, |6, |7], have demonstrated
good performance and improvements on task scheduling. In
contrast, they share the same assumption that they have
an accurate estimate of tasks needs such as execution and
communication times, disk space, or memory usage. In pro-
duction systems, it is hard to compute such estimates online
and with good accuracy. Currently, scheduling algorithms
use task estimation techniques that are not very accurate [§|,
or estimates are obtained from some distribution [9].

In addition, resource provisioning techniques may benefit
from accurate task estimation to determine the number and
characteristics of resources required to perform a computa-
tion. For instance, when a researcher uses a cloud infrastruc-
ture for processing scientific computations, accurate task
needs estimates have direct impact on the cost of the com-
putation and resource utilization [10], i.e. the user should
request a number of resources so that the resource utilization
is highest and the cost is minimal.

In our previous work [11], we presented workflow charac-

terization from the point of view of the performance of the
individual workflow components and overall workflows. Pro-
filing tools were developed to collect and summarize perfor-
mance metrics of workflow applications. These tools collect
fine-grained profile data such as process I/O, runtime, mem-
ory usage, and CPU utilization. In this work, we use these
tools to profile three real scientific workflow executions, and
we propose, as our first contribution, a method to automati-
cally characterize workflow task needs such as runtime, disk
usage, and memory consumption based on the workflow exe-
cution profiles. Our method assumes that these parameters
can be estimated according to the input data size, because
this is a parameter that could be known in advance, and the
application execution time is usually dependent of the input
data. Thus, it looks for correlations between the input data
and the parameters. If no correlation is detected, execution
datasets are divided into sub-datasets by a density cluster-
ing technique. Smaller datasets may have higher correlation
coefficient, or lower standard deviation of the mean value.

Task estimation for scientific workflows differs from the gen-
eral case of task estimation [12| [13] because of the depen-
dencies between tasks. For instance, a bad estimation for a
task output data, implies in poor estimations for dependent
tasks, i.e. tasks where input data are dependent on the out-
put data from the previous task. In a pipeline, estimation
errors are propagated sequentially, however, in a workflow,
estimation errors may be propagated successively. To ad-
dress this issue, we propose an online estimation process
based on the MAPE-K loop (Monitoring, Analysis, Plan-
ning, Execution, and Knowledge) [14] where task executions
are constantly monitored and estimations are updated upon
task completion.

We characterize three real scientific workflows using execu-
tion profiles obtained through workflow runs using the Pe-
gasus workflow management system (WMS) [15] with the
Kickstart profiling tool [16].

Our main contributions are summarized as:

1. an automated method that characterizes scientific work-
flow executions;

2. fine-grained characterization of three real scientific work-

flows;

3. an online estimation process to predict fine-grained
task needs.

This paper is organized as follows. Section [2| presents the
description of the scientific workflows used in this work. In
Section [3] we present execution profiles of these workflows,
and we introduce our automated method to characterize
workflow executions. Owur online task estimation process
is presented in Section [and evaluated in Section Sec-
tion [6] presents the related work, and Section [7] concludes
this paper.

2. SCIENTIFIC WORKFLOWS

A scientific workflow describes the dependencies between
tasks. In most cases, the workflow is described as a directed

acyclic graph (DAG), where the nodes are tasks and the
edges denote task dependencies. This model is supported
by several workflow management systems (WMS), such as
Pegasus 15|, Makeflow |17], Askalon [18|, and Taverna [19].

In this work, we use the following real scientific workflows:

Montage. The Montage workflow [20] was created by the
NASA/IPAC Infrared Science Archive as an open source
toolkit that can be used to generate custom mosaics of the
sky using input images in the Flexible Image Transport Sys-
tem (FITS) format. During the production of the final mo-
saic, the geometry of the output image is calculated from
the input images. The inputs are then re-projected to have
the same spatial scale and rotation, the background emis-
sions in the images are corrected to have a uniform level,
and the re-projected, corrected images are co-added to form
the output mosaic. Figure [l illustrates a small (20 node)
Montage workflow. The size of the workflow depends on the
number of images used in constructing the desired mosaic of
the sky. The structure of the workflow changes to accommo-
date increases in the number of inputs, which corresponds
to an increase in the number of computational tasks.

mConcatFit

mProjectPP (@) mDiffFit
mimgtbl mAdd

mBgModel mBackground

mShrink mJPEG

Figure 1: A small (20 node) Montage workflow.

Epigenomics. The USC Epigenome Centerﬂ is currently
involved in mapping the epigenetic state of human cells on
a genome-wide scale. The Epigenomics workflow (Figure [2)
is a highly parallel application with multiple pipelines oper-
ating on independent chunks of data in parallel. The size of
the workflow depends on the partitioning factor used on the
input data.

"http://epigenome.usc.edu

http://epigenome.usc.edu

fastQSplit
l . filterContams
l sol2sanger

fastq2bfq

el ep

| mapMerge
| magqIindex

pileup

Figure 2: Epigenomics workflow.

Periodogram. The Periodogram WOI‘kﬂOWﬂ searches for extra-
solar planets, either by detecting “wobbles” in the radial ve-
locity of a star, or dips in the starOs intensity. In either case,
the workflow searches for repeating variations over time in
a sub-set of the light curves released by the Kepler project.
Currently, three algorithms are available for computing peri-
odograms from light curves: Lomb-Scargle (LS), Box-fitting
Least Squares (BLS), and Plavchan. Figure [3] shows an il-
lustration of a Periodogram workflow. The workflow can be
seen as a bag-of-tasks of periodogram_wrapper tasks where
each task can execute one of the available algorithms.

@ nveriodogram wrapper

Figure 3: Periodogram workflow.

3. WORKFLOW CHARACTERIZATION

In this section, we characterize execution profiles for the
three scientific workflows described in the previous section.

3.1 Workflow execution profiling

We profiled the three workflows by using the Kickstart
profiling tool, and the Pegasus WMEE| for workflow execu-
tion. Kickstart monitors and records task execution in scien-
tific workflows. It captures fine-grained profiling data such
as process 1/O, runtime, memory usage, and CPU utiliza-
tion. Pegasus is a workflow management system that bridges

Zhttps://portal.futuregrid.org/projects/77
3http://pegasus.isi.edu

the scientific domain and the execution environment by au-
tomatically mapping high-level abstract workflow descrip-
tions onto distributed resources. It manages data on behalf
of the user: infers the required data transfers, registers data
into catalogs, and captures performance information while
maintaining a common user interface for workflow submis-
sion.

Three runs of each workflow were performed with different
data sets. Workflows were executed on a 16-core cluster,
composed by 5 Dual core MP Opteron™ Processor 250
2.4GHz with 8GB of RAM, and 3 Dual core MD AMD
Opteron™ Processor 275 2.2 GHz with 8GB of RAM.

Table[T]shows the execution profile for 3 runs of the Montage
workflow. Some tasks have small standard deviation values
compared to the mean, thus task estimation could be based
on their mean values. However, for high standard deviation
values of the mean, as for runtime of mDiffFit, and I/O
write of mBackground, task estimation based on the average
may lead to significant estimation errors. In particular, re-
source underestimation yields task failures while resource
overestimation reduces resource utilization. Similarly, in
the execution profile of the Epigenomics workflow (Table
pileup runtime values could be estimated based on the av-
erage, while mapMerge values would have more than 100% of
estimation error if the average is used. This high estimation
error case is also valid for the periodogram_wrapper task as
shown in Table [3

3.2 Automatic workflow execution character-
ization

We propose a method to characterize workflow tasks based
on their estimation capability. We assume that task needs
such as runtime, I/O write, and memory peak, can be esti-
mated based on the I/O read parameter. Commonly, input
data is read into memory, therefore there is a correlation
between memory use and input size. Similarly, output data
size may be correlated to the input data size, for example,
when a task performs an image segmentation, or it may have
a constant size, when the output data is a value. Experiment
results presented in Section [5] support this assumption.

For each parameter that will be estimated, the method gen-
erates a dataset per task type containing information about
the I/O read parameter and the actual parameter. Then,
correlation statistics are enforced to the datasets to identify
statistical relationships between parameters. Table E| shows
correlation (p) and standard deviation (o) values for each
task type for the three workflows, respectively. We consider
that two parameters are correlated if their correlation value
p is greater than 0.8. The threshold value of 0.8 was selected
arbitrarily based on common sense. Correlated parameters,
highlighted in the table, yield accurate estimations and no
further analysis is required for them.

However, most correlation measures are sensitive to the data
distribution. Therefore, density-based clustering is per-
formed to identify groups of high-density areas in datasets
where no correlations were identified (e.g. Figure top).
Smaller datasets may increase the correlation coefficient, or
lower standard deviation of the mean value.

https://portal.futuregrid.org/projects/77
http://pegasus.isi.edu

Task Count Runtime 1/0 Read 1/0 Write Memory Peak
Mean (s) Std. Dev. Mean (MB) Std. Dev. Mean (MB) Std. Dev. Mean (MB) Std. Dev.

mProjectPP 7965 2.59 0.69 4.24 0.19 16.20 0.80 9.96 0.40
mDiffFit 23733 1.25 0.92 24.08 5.76 1.35 111 5.32 0.90
mConcatFit 3 122.04 5.27 2.70 0.01 3.15 0.01 7.26 0.01
mBgModel 3 2008.08 88.50 4.14 0.04 0.27 0.00 14.41 0.01
mBackground 7965 2.14 1.68 13.67 6.78 13.05 6.44 11.75 5.78
mImgtbl 51 4.65 2.04 22.64 4.61 0.25 0.05 6.37 0.13
mAdd 51 47.69 14.03 2191.76 560.39 1574.22 383.86 21.66 3.40
mShrink 48 11.53 2.25 835.57 0.31 1.00 0.00 3.05 0.01
mJPEG 3 1.03 0.07 46.18 0.02 0.78 0.00 2.66 0.01

Table 1: Execution profile of Montage workflow executions for a 8 degrees square region of the sky.

Task Count Runtime I1/0 Read 1/0 Write Memory Peak

Mean (s) Std. Dev. Mean (MB) Std. Dev. Mean (MB) Std. Dev. Mean (MB) Std. Dev.
fastqSplit 15 22.94 9.00 755.85 297.11 755.94 297.15 1.92 0.01
filterContams 842 1.25 0.27 13.48 1.46 13.51 1.46 2.03 0.01
sol2sanger 842 0.56 0.32 24.58 2.11 18.46 1.49 3.57 0.01
fast2bfq 842 0.60 0.22 18.44 1.58 4.45 0.57 3.85 0.01
map 842 106.16 16.97 276.04 7.97 1.67 0.60 177.60 1.39
mapMerge 18 12.22 13.33 151.15 190.58 145.73 189.81 8.02 2.14
pileup 3 109.36 4.73 7347.57 576.47 6664.40 249.78 133.06 25.70

Table 2: Execution profile of Epigenomics workflow executions.

Task Count Runtime I/O Read 1/O Write Memory Peak
Mean (s) Std. Dev. Mean (MB) Std. Dev. Mean (MB) Std. Dev. Mean (MB) Std. Dev.
periodogram_wrapper 86617 26.36 93.01 5.72 3.41 7.85 3.05 29.27 0.34

Table 3: Execution profile of Periodogram workflow executions.

Task Runtime 1/O Write Memory Peak
2 o) o 2 o
mProjectPP 0.15 0.68 0.88 0.19 0.88 0.40
mDiffFit 0.46 0.91 0.01 1.19 0.01 1.08
mConcatFit 0.00 5.27 0.00 0.01 0.00 0.01
mBgModel -0.99 88.50 1.00 0.00 0.96 0.01
mBackground 0.62 2.68 0.99 6.44 0.99 5.78
mImgtbl 0.54 2.84 0.92 0.05 0.88 0.13
mAdd 0.84 14.03 0.98 383.86 0.97 3.40
mShrink -0.02 4.25 1.00 0.00 0.00 0.01
mJPEG 0.00 0.07 0.00 0.00 0.98 0.01
(a)
Task Runtime I/O Write Memory Peak
2 o 2 o p o
fastqSplit 0.98 9.00 1.00 297.15 0.00 0.01
filterContams -0.03 0.27 0.99 1.46 0.00 0.01
sol2sanger 0.21 0.41 0.90 1.49 0.00 0.01
fast2bfq 0.18 0.27 0.56 0.87 0.00 0.01
map 0.02 18.96 0.06 0.70 0.01 1.43
mapMerge 0.98 13.33 0.99 189.81 -0.36 2.15
pileup 0.99 4.73 0.17 249.78 0.87 25.70
(b)
Task Runtime 1/0 Write Memory Peak
p o 2 o p o
periodogram_wrapper 0.68 1333.12 0.69 189.81 0.83 0.34

(c)

Table 4: Correlation (p) and standard deviation (o) values for the (a) Montage, (b) Epigenomics, and (c¢) Periodogram
workflows. Highlighted cells indicate high correlation values.

Density-based clustering. We use DBSCAN [22] (density-
based spatial clustering of applications with noise) as the
clustering algorithm. The choice of DBSCAN was because
it is one of the most common density-based clustering algo-
rithm used in the scientific literature. DBSCAN’s definition
of a cluster is based on the notion of density reachability,
i.e. a point q is directly density-reachable from a point p if
the distance between them is smaller than a given distance
€, and p is surrounded by sufficiently many points such that
one may consider p and ¢ to be part of a cluster. A point
is defined by a pair of parameter values, where in the =
axis are represented the I/O read parameter values. For in-
stance, Figure E| shows the dataset clustering of the runtime
and I/O write parameters for two task types (mProjectPP
and mDiffFit) of the Montage workflow. In these datasets,
4 smaller datasets are identified where the correlation value
is more significant or they converge to a unique point. Algo-
rithm [I| shows the DBSCAN pseudocode. The value of the
distance € is chosen by using a k-distance graph, plotting the
distance to the minPts nearest neighbors; good values of €
are where this plot shows a strong bend.

Algorithm 1 DBSCAN algorithm.

inputs: D dataset, eps, minPts
cluster C =0
for p € D and p is unvisited do
mark p as visited
neighborPts = regionQuery(p, eps, D)
if neighborPts.size < minPts then
mark p as noise
else
C' = next cluster
expandCluster(p, neighborPts, C, eps, minPts)
end if
end for

expandCluster(p, neighborPts, C, eps, minPts)
add p to C
for p’ € neighborPts do
if p’ is unvisited then
mark p’ as visited
neighborPts’ = regionQuery(p’, eps, D)
if neighborPts’.size > minPts then
neighborPts = neighborPts U neighborPts’
end if
end if
if p’ ¢ any cluster then
add p’ to C
end if
end for

regionQuery (p, eps, D)
return D’ C D, where distance(p,q) < eps, ¢ € D’

Correlation (p) and standard deviation (o) values, and clus-
ters (c) per task type are shown in Tables and (7] for
the Montage, Epigenomics, and Periodogram workflows, re-
spectively. Datasets with high correlation values were not
clustered (highlighted cells in Table , for example the 1/0O
write parameter of mAdd for the Montage workflow, and £il-
terContams for the Epigenomics workflow. Otherwise, sub-
sets (clusters) of the datasets may have higher correlation
values, and standard deviation values are smaller (e.g. run-
time parameter of periodogram_wrapper in Table . In
clusters where the correlation is null and the standard de-
viation is negligible, the data is concentrated in a unique
point, i.e. the parameter is a constant value independent of

mProjectPP
10.0-

7.5-

5.0-

Duration (s)

25-

~ - > >
o

1/0 Read (MB)

mDiffFit

12.5- o

10.0-
7.5-

5.0-

1/0 Write (MB)

25-

00- A

20 30
1/0 Read (MB)

Figure 4: Dataset clustering of runtime and I/O write pa-
rameters for the Montage workflow.

the workflow input dataset. This is observed for most mem-
ory peak parameter of the Montage and Epigenomics work-
flows. After clustering, some datasets, as for the runtime
parameter of mImgtbl for the Montage workflow, have lower
correlation values than before, but also have lower standard
deviation values. Thus, task estimation errors based on the
mean values are smaller.

Task Runtime 1/O Write Memory Peak
c p o c P o c p o
mProjectPP 1 0.00 068 1 0.88 0.19 1 0.88 0.40
2 0.00 0.54
3 0.00 0.28
mDiffFit 1 004 1.08 1 0.01 1.17 1 0.01 1.03
2 005 0.84 2 0.00 0.00 2 0.00 0.00
3 007 0.61
mConcatFit 1 0.00 527 1 0.00 0.01 1 0.00 0.01
mBgModel 1 -0.99 88.50 1 1.00 0.00 1 0.96 0.01
mBackground 1 -0.02 146 1 0.99 6.44 1 0.99 5.78
2 0.00 0.00
3 -0.09 0.66
mlImgtbl 1 0.00 0.17 1 0.92 0.05 1 0.88 0.13
2 0.28 1.85
mAdd 1 084 14.03 1 098 383.86 1 0.97 3.40
mShrink 1 0.00 225 1 1.00 0.00 1 0.00 0.01
2 000 1.58
mJPEG 1 0.00 0.07 1 0.00 0.00 1 0.98 0.01

Table 5: Montage: clusters (c), correlation (p), and standard
deviation (o) values.

4. TASK ESTIMATION PROCESS

Figure [f] shows our general estimation process for one pa-
rameter. The process is based on regression trees. The tree
is built offline from analyses of historical data. First, tasks
are classified by application (workflow), then by task type.
The next step decides whether runtime, I/O write, or mem-
ory parameters should be estimated based on the input data
size. If the parameter is strong correlated to the input data,
values are estimated according to the ratio parameter/input
data size. Otherwise, values are estimated as the mean.

Task Runtime 1/0O Write Memory Peak
c p o c p o c p o
fastqSplit 1 098 9.00 1 1.00 297.15 1 0.00 0.01
filterContams 1 -0.03 0.27 1 0.99 1.46 1 0.00 0.01
2 0.70 0.17
sol2sanger 1 019 031 1 0.90 1.49 1 0.00 0.01
2 039 031
3 0.17 0.08
fast2bfq 1 012 021 1 0.24 0.73 1 0.00 0.01
2 063 0.17 2 0.00 0.00
map 1 -0.04 16.95 1 0.36 0.59 1 0.05 1.38
2 041 14.10 2 0.37 0.55 2 0.54 0.89
mapMerge 1 098 1333 1 0.99 189.81 1 0.55 1.98
2 0.00 0.00
3 0.00 0.00
pileup 1 099 473 1 0.17 249.78 1 0.87 25.70

Table 6: Epigenomics: clusters (c), correlation (p), and stan-
dard deviation (o) values.

Task Runtime I/O Write Memory Peak

c p o c p o c p o

periodogram_wrapper 1 0.85 28.27 1 0.64 3.07 1 0.83 0.34
2 -0.96 2937.36 2 -1.00 37.18

Table 7: Periodogram: clusters (c), correlation (p), and
standard deviation (o) values.

An intermediate step could be added to the process to clas-
sify tasks by execution parameters (e.g. the ‘degree’ param-
eter for Montage workflows). The process outputs rules used
to estimate future workflow executions. Figure[f]show exam-

ples of rules to estimate I/O write for the periodogram_wrapper

task (Periodogram workflow).

An offline task estimation approach estimates at once task
runtimes, output data sizes (I/O write), and memory peaks
for all tasks in a workflow. In scientific workflows, poor
output data estimations may lead to a chain of estimation
errors: the output data of a task is the input data of another
task in a subsequent level. Hence, runtime and memory peak
may also be poorly estimated for the sub-sequential task—as
our estimation process is based on the input data. There-
fore, we propose an online task estimation process based on
the MAPE-K loop (Monitoring, Analysis, Planning, Execu-
tion, and Knowledge), where task executions are constantly
monitored . Upon task completion, estimated values for
the task are updated with the real values, and based on these
values a new prediction is done (using the regression tree of
Figure [5)) for subsequent tasks of multiple levels (tasks that
are data-dependent of the current task). Figure [7] summa-
rizes the online estimation process. Note that in a workflow,
tasks may have multiple parents, thus at an instant time ¢,
their input data will be a composition of estimated and real
(for completed parent tasks) values.

5. EXPERIMENT AND EVALUATION

The experiment presented hereafter aims at evaluating the
accuracy of the online estimation process in comparison to
the offline estimation process.

5.1 Experiment conditions

Trace analyzes were performed in the three workflow appli-
cations described in Section [3}] Montage, Epigenomics, and
Periodogram. For each workflow, we use the three different
executions used to characterize the workflows. Two execu-

Application?

[
Y Y
|AppA| |AppB| App Z
Task type?
'''''''' [|
A4 \ 4 4
Task A.1 | Task A.2 | Task A.n
Parameter?
v v v
Runtime | 1/0 write | Memory

Figure 5: Estimation process for one parameter.

tions are reserved for training purposes (generation of rules),
and the third one is used for test the accuracy of the esti-
mation process (leave-one-out cross-validation). For each
execution, we perform an analysis to test the accuracy of
the prediction, thus results presented in the next subsection
are an average of these analyzes. We assume that a param-
eter is statistically correlated if its correlation coefficient p
is greater than or equal to 0.8. Otherwise, the mean value
is used.

We implemented a simple DAG analyzer that parses a work-
flow description and spawns tasks and their dependencies.
The analyzer implements both the offline and online estima-
tion processes. An analysis consists in replaying a workflow
execution, estimating tasks runtimes, I/O writes, and mem-
ory peaks at once, for the offline approach, or upon task
completion, for the online one. Replaying a workflow exe-
cution means that our simulator processes each task in the
same order of its real execution; tasks experience the same
delays and resource performances. The simulator only com-
putes task needs estimations, and compares them to the real
values to assess estimation errors. We do not aim at evaluat-
ing the efficiency of scheduling algorithms, but the accuracy
of our online estimation process.

5.2 Results and discussion

if work flow = ‘Periodogram’
and taskType = ‘periodogram_wrapper’
and parameter = ‘write’
and input_size < 45088768 then
return [7371489.28, mean] // mean value in bytes
end if

if work flow = ‘Periodogram’
and taskT'ype = ‘periodogram_wrapper’
and parameter = ‘write’
and input_size > 45088768 then
return [0.38, ratio] // ratio of output and input data
end if

Figure 6: Rules for I/O write estimation of the Periodogram
workflow.

Offline Estimation

Tasks
____Submissiond ___________________________ \
—>|Initoring |<—| Execution
Task 4 .
- Replanning
completion v

New Estimation

A

Analysis

Correct
estimation?

yes

Online Estimation Process

Figure 7: Online estimation process.

Table [§ shows the average estimation error of both estima-
tion processes for the Montage workflow. In general, the
online process has an average estimation error of 18% for
runtime, 9% for I/O write, and 13% for memory peak, while
the offline has 43%, 56%, and 53% respectively. For the first-
level tasks (mProjectPP) both offline and online approaches
have the same accuracy as tasks are estimated directly from
the workflow input data. However, offline estimations for
tasks such as mDiffFit, mBackground, mImgtbl, and mAdd
are extremely affected by the propagation of estimation er-
rors. For instance, the input data of a mDiffFit task are
multiples mProjectPP output data. From Table [5} we no-
tice that mDiffFit has low correlation values, thus mean
values are used in the prediction. A bad estimation of the
input data size may lead the process to select the wrong
cluster. The online process initially faces the same problem
of erroneous estimations, but upon task completion, wrong
predictions are replaced by the actual value.

Table [J] shows the average estimation error for the Epige-
nomics workflow. The average estimation error for the of-
fline process is 29% for runtime, 57% for I/O write, and
48% for memory, and for the online process is 13%, 5%,
and 8% respectively. Similarly, first-level task estimations
(fastqSplit) are the same for both approaches. Offline es-
timations for filterContams, sol2sanger, fast2bfq, and
mapMerge are significantly affected by previous erroneous es-
timations of their parent tasks.

Runtime I/O Write Memory

Task Estimation Avg. Error Avg.Error Avg.Error
(%) (%) (%)

mProjectPP Offline 18.95 1.63 2.80

Online 18.95 1.63 2.80

mDiffFit Offline 191.02 159.46 91.07

Online 46.52 69.14 73.72

mConcatFit Offline 4.38 0.00 7.62

Online 4.03 0.00 6.22

mBgModel Offline 23.83 0.00 22.08

Online 1.17 0.00 3.43

mBackground Offline 65.13 102.80 104.62

Online 44.90 1.23 1.84

mImgtbl Offline 61.27 127.29 126.58

Online 29.15 5.53 8.35

mAdd Offline 9.67 113.14 110.20

Online 9.31 3.43 9.06

mShrink Offline 13.72 0.34 0.00

Online 7.61 0.33 0.00

mJPEG Offline 1.61 0.00 19.09

Online 1.37 0.00 11.40

Table 8: Montage: average estimation errors of task run-
time, I/O write, and memory peak.

Runtime I/O Write Memory

Task Estimation Avg. Error Avg.Error Avg.Error
(%) (%) (%)

fastqSplit Offline 8.36 3.28 9.14

Online 8.36 3.28 9.14

filterContams Offline 59.31 109.81 102.83

Online 29.13 5.35 8.15

sol2sanger Offline 54.93 98.20 96.68

Online 34.74 1.23 1.96

fast2bfq Offline 27.13 128.18 99.98

Online 17.09 15.11 10.65

map Offline 23.62 0.00 21.07

Online 1.39 0.00 3.33

mapMerge Offline 53.74 93.34 T.01

Online 10.22 9.39 1.00

pileup Offline 6.00 4.17 49.42

Online 5.11 3.87 19.31

Table 9: Epigenomics: average estimation errors of task run-
time, I/O write, and memory peak.

Table @ presents average estimation errors for the Peri-
odogram workflow. As the workflow has only one task level
(periodogram_wrapper, see Figure , the online approach
produces the same result as the offline. I/O write and mem-
ory estimation errors are low, but runtime predictions are
correctly for a bit more than 50% of the tasks.

Runtime I/O Write Memory

Task Estimation Avg. Error Avg.Error Avg.Error

(%) (%) (%)
periodogram_wrapper Offline 45.13 16.72 1.02
Online 45.13 16.72 1.02

Table 10: Periodogram: average estimation errors of task
runtime, I/O write, and memory peak.

In all analyzes for the 3 scientific workflows, the online pro-
cess is more accurate when predicting task needs. The im-
portance of using a loop to constantly monitor task exe-
cutions to update estimations is emphasized on workflows
due to their task dependency model. Although the online
strategy counterbalances the propagation of estimation er-
rors, the estimation of first-level tasks have strong influence
in subsequent estimations. Therefore, efforts should be con-
centrated on techniques to address more accurate offline pre-
dictions. One approach to improve offline predictions would

be to consider other parameters such as command-line ar-
guments when estimating workflow executions.

6. RELATED WORK

Workload archives are widely used for research on distributed
systems, to validate assumptions, to model computational
activity, and to evaluate methods in simulation or in ex-
perimental conditions. Available workload archives, such
as the Parallel Workloads Archive [24], the Grid Workload
Archive [25], and the Grid Observatory [26|, provide work-
loads from parallel and grid execution environments. These
workloads mainly capture information about task execu-
tions, but lack fine-grained information of scientific work-
flow executions, such as dependencies among tasks, task sub-
steps, and artifacts introduced by application-level schedul-
ing. Therefore, some efforts have been done to collect and
publish traces and performance statistics for real scientific
workflows. We recently published traces for a few workflows
executed using Pegasus [27], and traces of several work-
flow executions obtained from a science-gateway [28]. We
also published synthetic workflows based on statistics from
real applications for use in simulations [29]. Similarly, Ra-
makrishnan and Ganon [30] have provided data statistics for
many real workflow applications, and Ostermann et al. [31}
32] have provided analyzes of workflow-based workload traces
from the Austrian grid.

On workload characterization in distributed environment,
Iosup and Epema [33] and Hart [34] presented analyzes of
grid and HPC workloads characteristics including system us-
age, user population, application characteristics, and char-
acteristics of grid-specific application types. Ren et al. [35]
presented an analysis of a MapReduce trace derived from a
production Hadoop cluster, where they analyzed job char-
acteristics such as CPU utilization, memory usage, slots al-
location, I/O operations, and network transfers. Mahambre
et al. [36] characterized a cloud workload into patterns based
on their behavioral characteristics and presented statistical
techniques to understand the patterns. They categorized the
virtual machine workload in the following patterns: period-
icity, threshold, relationship, variability, and image similar-
ity. Recently, Madougou et al. |[37] provided a characteriza-
tion of workflow executions using provenance data captured
from a workflow management system. They analyzed usage
and failure patterns at workflow and task levels.

Workload estimations are generally used by resource alloca-
tion strategies and task scheduling algorithms in distributed
platforms, such as clouds and grids. Verboven et al. [§]
presented a parameter sweep prediction framework GIPSy,
which estimates task runtimes based on previous runtime
information. They performed evaluations using six different
models: polynomial approach, radial basis functions, krig-
ing models, neural networks, support vector machines, and
nearest neighbor prediction. Their approach gives good ac-
curacy, but is not applicable to an online environment. Son-
mez et al. [12] studied job runtime and queue wait time
prediction methods and their application in grid schedul-
ing. They evaluated time series prediction methods when
predicting job runtimes, and point-valued and upper-bound
predictions when estimating queue wait times. A compar-
ison to scheduling techniques that do not use prediction,
show that the use of these techniques do not imply a better

performance of grid scheduling. Pacheco-Sanchez et al. [38|
proposed a Markovian Arrival Process (MAP) to predict
HTTP workloads in cloud infrastructures. The process cap-
tures moments of the probability distribution, autocorrela-
tion, and temporal dependencies of a time serie. Khan et
al. [39] also proposed a method of characterizing and pre-
dicting workload in a cloud environment. Their method dis-
covers and leverages repeatable workload patterns within
groups of virtual machines (VMs) that belong to a cloud
customer. They also developed a co-clustering technique for
identifying such VM groups and the common workload pat-
terns. A method based on Hidden Markov Modeling is used
capture temporal correlations and to predict the changes of
workload pattern. The use of Markov-based techniques pro-
vide good accuracy when predicting workloads. However,
it adds a significant overhead to the application execution.
In this work, we adopted an approach where the methods
used to provide estimation should be computed online with
negligible overheads.

On workflow workloads estimation, Duan et al. [40] pro-
posed a hybrid Bayesian neural network method for model-
ing and predicting execution time of workflow activities in
grids. Contrary to our work, they use resource information
to estimate runtime. Thus, their approach is useful for the
task scheduling problem, but it is not applicable for the re-
source provisioning problem. On the other hand, Eun-Kyu
Byun et al. [41] and Huang et al. [42] proposed heuristics
and models to estimate the number of resources required to
execute a workflow. They assume that task runtimes are
available. Nadeem and Fahringer [43] proposed a workflow
performance prediction system using similarity templates.
Templates are generated from different workflow attributes
reflecting workflow performance at different grid infrastruc-
ture levels, and are evaluated through an exhaustive search
method. The drawback of their approach is that they rely
on an expert user to emphasize attributes when defining
templates.

7. CONCLUSION

We presented a method to online estimate fine-grained task
needs such as runtime, disk usage, and memory consump-
tion. We profiled three real scientific workflow executions,
and defined a process to automatic characterize these pro-
files. We assume that task needs can be estimated based
on the size of the input data. Our process looks for correla-
tions between the task need parameters and the input data
size. If no correlation is found, density-based clustering is
performed to identify groups of high density areas. Smaller
groups may have higher correlation, or lower standard de-
viation values. Then, we defined a process, based on the
MAPE-K loop, to online estimate task needs according to
workflow execution characterizations.

The method was evaluated through the analysis of workflow
execution traces where the accuracy of our process was mea-
sured in comparison with the real value. We also compared
the accuracy of our online method against an offline esti-
mation process, where all tasks of a workflow are estimated
at once. Results shows that our online estimation process
outcomes more accurate estimation than the offline method.
In addition, we showed that poor output data estimations
lead to a chain of estimation errors in scientific workflows,

hence the importance of using an online strategy where task
executions are constantly monitored and estimations are up-
dated accordingly. Future work includes the analysis of the
impact of re-planning a workflow when using an online esti-
mation strategy, and a sensitivity analysis of the correlation
value p. We also plan to increase the number of workflow
samples and to compare the results with other monitoring
tools.

Acknowledgments

This work was funded by DOE under the contract number
ER26110, “dV/dt - Accelerating the Rate of Progress To-
wards Extreme Scale Collaborative Science”. The research
leading to this publication has also received funding from the
EC FP7 Programme under grant agreement 312579 ER-flow
= Building an European Research Community through In-
teroperable Workflows and Data, and the framework LABEX
ANR-11-LABX-0063 of Université de Lyon, within the pro-
gram “Investissements d’Avenir” (ANR-11-IDEX-0007) op-
erated by the French National Research Agency (ANR).

8. REFERENCES

[1] I. Taylor, E. Deelman, D. Gannon, and M. Shields,
Workflows for e-Science. Springer, 2007.

[2] J. D. Ullman, “Np-complete scheduling problems,” J.
Comput. Syst. Sci., vol. 10, no. 3, pp. 384-393, Jun.
1975.

[3] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and
R. F. Freund, “Dynamic matching and scheduling of a
class of independent tasks onto heterogeneous
computing systems,” in Proceedings of the Fighth
Heterogeneous Computing Workshop, ser. HCW ’99.
Washington, DC, USA: IEEE Computer Society, 1999,
pp. 30—.

[4] H. Topcuouglu, S. Hariri, and M.-y. Wu,
“Performance-effective and low-complexity task
scheduling for heterogeneous computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 13, no. 3, pp. 260-274,
Mar. 2002.

[5] M. Rahman, R. Hassan, R. Ranjan, and R. Buyya,
“Adaptive workflow scheduling for dynamic grid and
cloud computing environment,” Concurrency and
Computation: Practice and Experience, pp. n/a-n/a,
2013.

[6] S. Su, J. Li, Q. Huang, X. Huang, K. Shuang, and
J. Wang, “Cost-efficient task scheduling for executing
large programs in the cloud,” Parallel Computing,
vol. 39, no. 44AS5, pp. 177 — 188, 2013.

[7] K. Bessai, S. Youcef, A. Oulamara, C. Godart, and
S. Nurcan, “Bi-criteria workflow tasks allocation and
scheduling in cloud computing environments,” in
Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on, 2012, pp. 638—645.

[8] S. Verboven, P. Hellinckx, F. Arickx, and
J. Broeckhove, “Runtime prediction based grid
scheduling of parameter sweep jobs,” in Asia-Pacific
Services Computing Conference, 2008. APSCC 08.
IEEE, 2008, pp. 33-38.

[9] C. Yan, H. Luo, Z. Hu, X. Li, and Y. Zhang,
“Deadline guarantee enhanced scheduling of scientific
workflow applications in grid,” Journal of Computers,
vol. 8, no. 4, 2013.

[10] J. O. Gutierrez-Garcia and K. M. Sim, “A family of
heuristics for agent-based elastic cloud bag-of-tasks
concurrent scheduling,” Future Generation Computer
Systems, vol. 29, no. 7, pp. 1682 — 1699, 2013.

[11] G. Juve, A. Chervenak, E. Deelman, S. Bharathi,

G. Mehta, and K. Vahi, “Characterizing and profiling
scientific workflows,” Future Generation Computer
Systems, vol. 29, no. 3, pp. 682 — 692, 2013, special
Section: Recent Developments in High Performance
Computing and Security.

[12] O. Sonmez, N. Yigitbasi, A. Iosup, and D. Epema,
“Trace-based evaluation of job runtime and queue wait
time predictions in grids,” in Proceedings of the 18th
ACM international symposium on High performance
distributed computing, ser. HPDC ’09. New York,
NY, USA: ACM, 2009, pp. 111-120.

[13] D. Martinez-Rego and M. Pontil, “Multi-task
averaging via task clustering,” in Similarity-Based
Pattern Recognition, ser. Lecture Notes in Computer
Science, E. Hancock and M. Pelillo, Eds. Springer
Berlin Heidelberg, 2013, vol. 7953, pp. 148-159.

[14] J. Kephart and D. Chess, “The vision of autonomic
computing,” Computer, vol. 36, no. 1, pp. 41-50, 2003.

[15] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil,
C. Kesselman, G. Mehta, K. Vahi, G. B. Berriman,

J. Good, A. Laity, J. C. Jacob, and D. S. Katz,
“Pegasus: A framework for mapping complex scientific
workflows onto distributed systems,” Sci. Program.,
vol. 13, no. 3, pp. 219-237, Jul. 2005.

[16] J. s. VZckler, G. Mehta, Y. Zhao, E. Deelman, and
M. Wilde, “Kickstarting remote applications,” in 2nd
International Workshop on Grid Computing
FEnvironments, 2006.

[17] M. Albrecht, P. Donnelly, P. Bui, and D. Thain,
“Makeflow: a portable abstraction for data intensive
computing on clusters, clouds, and grids,” in
Proceedings of the 1st ACM SIGMOD Workshop on
Scalable Workflow Execution Engines and
Technologies, ser. SWEET ’12. New York, NY, USA:
ACM, 2012, pp. 1:1-1:13.

[18] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan,

C. Seragiotto, Jr., and H.-L. Truong, “Askalon: a tool
set for cluster and grid computing: Research articles,”
Concurr. Comput. : Pract. Exper., vol. 17, no. 2-4, pp.
143-169, Feb. 2005.

[19] T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir,
J. Ferris, K. Glover, C. Goble, A. Goderis, D. Hull,
D. Marvin, P. Li, P. Lord, M. R. Pocock, M. Senger,
R. Stevens, A. Wipat, and C. Wroe, “Taverna: lessons
in creating a workflow environment for the life
sciences: Research articles,” Concurr. Comput. :
Pract. Ezper., vol. 18, no. 10, pp. 1067-1100, Aug.
2006.

[20] G. B. Berriman, E. Deelman, J. C. Good, J. C. Jacob,
D. S. Katz, C. Kesselman, A. C. Laity, T. A. Prince,
G. Singh, and M.-H. Su, “Montage: a grid-enabled
engine for delivering custom science-grade mosaics on
demand,” vol. 5493, pp. 221-232, 2004.

[21] H.-P. Kriegel, P. Kréger, J. Sander, and A. Zimek,
“Density-based clustering,” Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery,
vol. 1, no. 3, pp. 231-240, 2011.

[22]

24

[25]

[29]

[30]

M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A
density-based algorithm for discovering clusters in
large spatial databases with noise,” in Second
International Conference on Knowledge Discovery and
Data Mining, 1996, pp. 226-231.

R. Ferreira da Silva, T. Glatard, and F. Desprez,
“Self-healing of workflow activity incidents on
distributed computing infrastructures,” Future
Generation Computer Systems, p. in press, 2013.
Parallel workloads archive. [Online]. Available:
www.cs.huji.ac.il/labs/parallel/workload/

A. Tosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu,

L. Wolters, and D. H. J. Epema, “The grid workloads
archive,” Future Gener. Comput. Syst., vol. 24, no. 7,
pp. 672-686, 2008.

C. Germain-Renaud, A. Cady, P. Gauron, M. Jouvin,
C. Loomis, J. Martyniak, J. Nauroy, G. Philippon,
and M. Sebag, “The grid observatory,” IEEE
International Symposium on Cluster Computing and
the Grid, pp. 114-123, 2011.

Workflow gallery. [Online]. Available:
http://pegasus.isi.edu/workflow_gallery

R. Ferreira da Silva and T. Glatard, “A
science-gateway workload archive to study pilot jobs,
user activity, bag of tasks, task sub-steps, and
workflow executions,” in Euro-Par 2012: Parallel
Processing Workshops, ser. Lecture Notes in
Computer Science, I. Caragiannis, M. Alexander,

R. Badia, M. Cannataro, A. Costan, M. Danelutto,
F. Desprez, B. Krammer, J. Sahuquillo, S. Scott, and
J. Weidendorfer, Eds. Springer Berlin Heidelberg,
2013, vol. 7640, pp. 79-88.

Workflow generator. [Online]. Available:
http://confluence.pegasus.isi.edu/display/pegasus/
Workflow(Generator

L. Ramakrishnan and D. Gannon, “A survey of
distributed workflow characteristics and resource
requirements,” Indiana University, 2008.

S. Ostermann, R. Prodan, T. Fahringer, A. Iosup, and
D. Epema, “On the characteristics of grid workflows,”
in CoreGRID Symposium - Euro-Par 2008, 2008.
——, “A trace-based investigation of the
characteristics of grid workflows,” in From Grids to
Service and Pervasive Computing, T. Priol and

M. Vanneschi, Eds. Springer US, 2008, pp. 191-203.
A. Tosup and D. Epema, “Grid computing workloads,”
Internet Computing, IEEE, vol. 15, no. 2, pp. 19-26,
2011.

D. L. Hart, “Measuring teragrid: workload
characterization for a high-performance computing
federation,” International Journal of High
Performance Computing Applications, vol. 25, no. 4,
pp. 451-465, 2011.

Z. Ren, X. Xu, J. Wan, W. Shi, and M. Zhou,
“Workload characterization on a production hadoop
cluster: A case study on taobao,” in Workload
Characterization (IISWC), 2012 IEEE International
Symposium on, 2012, pp. 3-13.

S. Mahambre, P. Kulkarni, U. Bellur, G. Chafle, and
D. Deshpande, “Workload characterization for
capacity planning and performance management in
iaas cloud,” in Cloud Computing in Emerging Markets

(37]

(38]

(39]

(40]

[41]

42]

(43]

(CCEM), 2012 IEEE International Conference on,
2012, pp. 1-7.

S. Madougou, S. Shahand, M. Santcroos, B. van
Schaik, A. Benabdelkader, A. van Kampen, and

S. Olabarriaga, “Characterizing workflow-based
activity on a production e-infrastructure using
provenance data,” Future Generation Computer
Systems, vol. 29, no. 8, pp. 1931 — 1942, 2013.

S. Pacheco-Sanchez, G. Casale, B. Scotney,

S. McClean, G. Parr, and S. Dawson, “Markovian
workload characterization for qos prediction in the
cloud,” in Cloud Computing (CLOUD), 2011 IEEE
International Conference on, 2011, pp. 147-154.

A. Khan, X. Yan, S. Tao, and N. Anerousis,
“Workload characterization and prediction in the
cloud: A multiple time series approach,” in Network
Operations and Management Symposium (NOMS),
2012 IEEE, 2012, pp. 1287-1294.

R. Duan, F. Nadeem, J. Wang, Y. Zhang, R. Prodan,
and T. Fahringer, “A hybrid intelligent method for
performance modeling and prediction of workflow
activities in grids,” in Proceedings of the 2009 9th
IEEE/ACM International Symposium on Cluster
Computing and the Grid, ser. CCGRID ’09.
Washington, DC, USA: IEEE Computer Society, 2009,
pp- 339-347.

E.-K. Byun, Y.-S. Kee, E. Deelman, K. Vahi,

G. Mehta, and J.-S. Kim, “Estimating resource needs
for time-constrained workflows,” in eScience, 2008.
eScience '08. IEEE Fourth International Conference
on, 2008, pp. 31-38.

R. Huang, H. Casanova, and A. A. Chien, “Automatic
resource specification generation for resource
selection,” in Proceedings of the 2007 ACM/IEEE
conference on Supercomputing, ser. SC ’07. New
York, NY, USA: ACM, 2007, pp. 11:1-11:11.

F. Nadeem and T. Fahringer, “Using templates to
predict execution time of scientific workflow
applications in the grid,” in Proceedings of the 2009
9th IEEE/ACM International Symposium on Cluster
Computing and the Grid, ser. CCGRID ’09.
Washington, DC, USA: IEEE Computer Society, 2009,
pp. 316-323.

www.cs.huji.ac.il/labs/parallel/workload/
http://pegasus.isi.edu/workflow_gallery
http://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
http://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

	Introduction
	Scientific workflows
	Workflow characterization
	Workflow execution profiling
	Automatic workflow execution characterization

	Task estimation process
	Experiment and evaluation
	Experiment conditions
	Results and discussion

	Related Work
	Conclusion
	References

