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I. INTRODUCTION

Green computing has received significant attention in the
past few years. Although some research has addressed cooling
and energy usage reduction in large data-centers [1]], they do
not control how resources are used by applications. Scien-
tific workflows are a useful representation for managing the
execution of large-scale computations on high performance
computing (HPC) and high throughput computing (HTC) plat-
forms [2]. In scientific workflow applications, resource provi-
sioning and utilization optimizations have been investigated to
reduce energy consumption on Cloud infrastructures [3]], [4].
However, existing research is largely limited to the measure-
ment of energy usage according to resource utilization when
running a program on an execution node. Furthermore, most
existing optimization techniques for workflows are limited to
single objectives (e.g. makespan), and some can deal with
only two objectives. There does not exist an approach that
deals with an arbitrary number of objectives and no scheduling
technique explored tradeoffs among makespan, energy con-
sumption, and reliability.

We recently proposed [3] an energy consumption model for
analyzing and profiling energy usage that addresses resource
utilization, data movement, and I/O operations. Although our
model assembles several models (computing, networking and
storage systems) validated in a real execution environment, it
still makes strong assumptions on the resource characteristics
(e.g. single core homogeneous virtual machines), and ignores
external loads.

In this work, we propose 1) an extension of our energy
consumption model to address real large-scale infrastructure
conditions (e.g. heterogeneity, resource unavailability, external
loads); 2) the validation of the model in a fully instrumented
platform able to measure the actual temperature and energy
consumed by computing, networking, and storage systems; and
3) a multi-objective optimization approach to explore tradeoffs
among makespan, energy consumption, and reliability for
multi-objective workflow scheduling.

II. MODELING

Scientific workflows allow users to easily express multi-
step computational tasks, for example retrieve data from an
instrument or a database, reformat the data, and run an
analysis. Scientific workflows are often modeled as a directed
acyclic graph (DAG), where the nodes in the graph represent

computational tasks and the edges represent data or control
dependencies. In this model, tasks are typically command-
line programs (a.k.a. transformations) that read one or more
input files and produce one or more output files, and data
dependencies are a result of output files from one program
becoming input files for another program. Workflow interpre-
tation and execution are handled by a workflow management
system (WMS) that manages the execution of the application
on the distributed computing infrastructure.

The execution system is modeled as an Infrastructure as a
Service architecture where a submit host (client) interacts with
a distributed system to store data and execute computations.
Figure [I] illustrates this system model. A WMS running on
submit host H sets up the application and manages workflow
execution on the resources. Application setup includes provid-
ing a set of parameters for the execution, and uploading all
input data to a storage server S (step 1). Workflow execution
consists of provisioning virtual machines (VMs), scheduling
workflow tasks according to data dependencies, and executing
tasks on VMs (step 2). Task execution may transfer data using
message passing or a shared file system. If the data cannot be
transferred through the communication network, it is stored
on the storage server (step 3). At the end of the workflow
execution, any output data required by the user is downloaded
from the storage server to the submit host (step 4).

Optimization parameters such as runtime and reliability are
modeled from workflow execution traces. We have developed
profiling tools [6]], [7] to collect and summarize performance
metrics for workflow applications. These tools capture profil-
ing data such as process I/O, runtime, memory usage, and CPU
utilization. This profile data is then used to build distributions
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of workflow applications. Parameters such as temperature and
energy consumed are modeled, however, using measurements
acquired on a fully instrumented platform.

III. MULTI-OBJECTIVE OPTIMIZATION

Most existing workflow development environments focus on
a single optimization goal when improving the execution of
scientific workflows. For example, many workflows deal with
complex, time and memory intensive scientific simulations.
Thus, execution time is an important goal. Due to the increased
costs of energy and cooling of compute infrastructures such as
Clouds and high performance computers, energy efficiency [,
[9l, [1O] is becoming increasingly important as well. In addi-
tion, many researchers [11]], [12] have emphasized the signifi-
cance of fault tolerance that deals with software and hardware
failures in particular for large scale compute infrastructures.
Today, other objectives such as resource usage, economic costs,
memory footprint may be equally important, and require to be
optimized. In many cases, some of these criteria are in conflict,
meaning that improving one metric implies deteriorating at
least another one. Optimizing scientific workflow execution
becomes then a multi-objective optimization problem. The
main characteristic of this kind of problem is that there does
not exist a single solution that is optimal with respect to all
objectives. Instead, a set of tradeoff solutions known as Pareto
front should be derived. Solutions within this set cannot be
further improved in any of the objectives without causing the
degradation of at least another problem’s objective. Once the
Pareto front is computed, an automatic or manual procedure
selects the most viable/preferred solution out of this set.

IV. RESEARCH DIMENSIONS

In this work, we propose a process to attain multi-objective
optimization of energy consumption, makespan, and relia-
bility for scientific workflows on large-scale computing in-
frastructures. Figure [2] describes the interaction between the
components involved in the process. Workflow executions are
constantly monitored to collect fine-grained information about
task executions (e.g. CPU utilization, runtime, memory usage,
I/O, and errors). This data has been collected as part of the
DOE dV/dt project (ER26110) [13] using the profiling tools
described in Section [} and is freely available online for the
community. This monitoring acts at the application execution
level, and is often performed by the workflow management
system, which in our case is the Pegasus WMS [14]]. Currently,
our profiling tools work at mostly large-scale infrastructures,
but for some HPC platforms such as the IBM Blue Gene, fine-
grained monitoring still remains a challenge due to the system
design (e.g. process forking is not allowed).

The monitoring of temperature and energy consumption,
however, requires access to fully instrumented infrastructures,
and involves monitoring at the infrastructure level. There
are several studies that examined the energy consumption
of applications on HPC systems [15], [L6], but there is no
study on the energy-aware profiling of scientific workflow
executions on such platforms. Therefore, we plan to run
scientific workflow experiments on these infrastructures to
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Figure 2. Multi-objective optimization process.

collect temperature and energy consumption data and build
energy-aware profiles. We then plan to use these profiles to
validate our energy consumption model [5], and at the same
time extend it to accommodate real infrastructure conditions
such as heterogeneity of resources and external loads. These
models can then be used to drive multi-objective workflow
scheduling optimizations in future workflow executions.

Finding the optimal mapping of tasks onto specific proces-
sors or compute nodes is known to be an NP-Hard problem
in the case of optimizing for a single goal. Computing such
a schedule to optimize several criteria is a problem of the
same complexity class. We model the multi-objective opti-
mization problem as a DAG representing the workflow. Tasks
and edges of this DAG are annotated with models for the
makespan, energy consumption, and reliability. In addition,
prior to schedule a workflow DAG, it may be transformed by
means of transformations and strategies that explore clustering,
data chunk sizes, etc, that may highly impact one or more
criteria. Multi-objective scientific workflow optimization is
then confronted with a large search space of possible workflow
executions. Every point of this search space consists in a
transformed version of the workflow and a mapping of tasks
onto processors or compute node. Finding these executions
that are on the Pareto front with as little effort (reduced search
space based on heuristics) as possible, is one important goal of
this research. A solution out of the Pareto front is then selected
to improve the workflow execution. Note that this optimization
process may be dynamic, i.e. profiling data collected during
the workflow execution are used to update the models, which
may affect the Pareto front solutions if the execution behaves
differently from the models.

As part of this research challenge, we plan to extend the
MOHEFT (Multi-Objective HEFT) [[17] method—a list based-
heuristic for multi-objective optimization workflow scheduling
based on the HEFT [18] method—with the energy consump-
tion, makespan, and reliability models, and conduct experi-
mental evaluation through simulations. The execution profiles
will also be used to develop realistic simulation scenarios.
This approach could be potentially extended to general parallel
programs. The concept of parallel tasks occurs in numerous
programming paradigms such as OpenMP, Intel Thread Build-
ing Blocks, OpenCL, etc.
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