Measuring the Impact of Burst Buffers on Data-Intensive Scientific Workflows

Rafael Ferreira da Silva®*, Scott Callaghanb, Tu Mai Anh Do?, George Papadimitriou?, Ewa Deelman?

“University of Southern California, Information Sciences Institute, Marina del Rey, CA, USA
b University of Southern California, Southern California Earthquake Center, Los Angeles, CA, USA

Abstract

Science applications frequently produce and consume large volumes of data, but delivering this data to and from compute resources
can be challenging, as parallel file system performance is not keeping up with compute and memory performance. To mitigate
this I/O bottleneck, some systems have deployed burst buffers, but their impact on performance for real-world scientific workflow
applications is still not clear. In this paper, we examine the impact of burst buffers through the remote-shared, allocatable burst
buffers on the Cori system at NERSC. By running two data-intensive workflows, a high-throughput genome analysis workflow,
and a subset of the SCEC high-performance CyberShake workflow, a production seismic hazard analysis workflow, we find that
using burst buffers offers read and write improvements of an order of magnitude, and these improvements lead to increased job

performance, and thereby increased overall workflow performance, even for long-running CPU-bound jobs.
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1. Introduction

Today’s computational and data science applications process
and produce vast amounts of data (from remote sensors, instru-
ments, etc.) for conducting large-scale modeling, simulations,
and data analytics. These applications may comprise thousands
of computational tasks and process large datasets, which are
often distributed and stored on heterogeneous resources. Sci-
entific workflows are a mainstream solution to perform large-
scale, complex computations on large datasets efficiently. As a
result, they have supported breakthrough research across many
domains of science [1, 2].

Typically, scientific workflows are described as a directed-
acyclic graph (DAG), whose nodes represent workflow tasks
that are linked via dataflow or control edges, thus prescrib-
ing serial or parallel execution of nodes. In this paradigm, a
task is executed once all its parent tasks (dependencies) have
successfully completed. Although some workflow portions are
CPU-intensive, many workflows include post-processing I/O-
intensive analysis and/or in transit visualization tasks that of-
ten process large volumes of data [2]. Traditionally, workflows
have used the file system to communicate data between tasks.
However, to cope with increasing application demands on I/O
operations, solutions targeting in situ and in transit processing
have become mainstream approaches to attenuate I/O perfor-
mance bottlenecks [3, 4]. While in situ is well adapted for
computations that conform with the data distribution imposed
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by simulations, in transit processing targets applications where
intensive data transfers are required [4].

By increasing data volumes and processing times, the advent
of Big Data and extreme-scale applications have posed novel
challenges to the high-performance computing (HPC) commu-
nity. Users and solution providers (e.g., workflow management
software developers, cyberinfrastructure providers, and hard-
ware manufacturers) have to rethink their approach to data man-
agement within HPC systems. In order to meet the comput-
ing challenges posed by current and upcoming scientific work-
flow applications, the next-generation of exascale supercom-
puters will increase the processing capabilities to over 10'®
Flop/s [S]—memory and disk capacity will also be signifi-
cantly increased, and new solutions to manage power consump-
tion will be explored. However, the 1/O performance of the
parallel file system (PFS) is not expected to improve much.
For example, the PFS I/O peak performance for the upcom-
ing Summit [6] (Oak Ridge National Laboratory, ORNL) and
Aurora [7] (Argonne National Laboratory, ANL) supercomput-
ers does not outperform Titan’s (ORNL) performance, despite
being six years newer [3].

Burst Buffers (BB) [8, 9, 10] have emerged as a non-volatile
storage solution that is positioned between the processors’
memory and the PFS, buffering the large volume of data pro-
duced by the application at a higher rate than the PFS, while
seamlessly and asynchronously draining the data to the PFS.
Advantages and limitations of the use of BB for improving I/O
performance of single application executions (e.g., a regular job
submitted to a batch queue system) have been an active topic
of discussion in the past few years [11, 12, 13, 10, 14]. How-
ever, there has been little analysis on the use of BB for scientific
workflows [15, 16, 17]. In a recent survey study [18], we char-
acterized workflow management systems with regard to their
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ability to handle extreme-scale applications. Although several
systems orchestrate the execution of large-scale workflows effi-
ciently, the optimization of I/O throughput is still a challenge.

In this paper, we propose a generic architectural model for
enabling the use of BB for scientific workflows. More specif-
ically, we discuss practical issues and limitations in support-
ing an implementation of a BB available on the Cori system
at the National Energy Research Scientific Computing Center
(NERSC) facility [19]. Using the Pegasus [20] workflow man-
agement system, we evaluate the performance gain of two real-
world data-intensive workflows: (1) a high-throughput multi-
threaded workflow that constantly performs I/O read and write
operations from/to the BB; and (2) a high-performance work-
flow that produces/consumes over 550 GB of data when its in-
termediate data is stagged in/out to/from the BB. Experimental
results show that the use of a burst buffer may significantly im-
prove the average I/O performance for both read and write op-
erations. However, parallel efficiency should be carefully con-
sidered when deciding whether to manage all the workflow’s
data and intermediate data via a BB. In addition, improvements
in I/O bandwidth may be limited by the frequency of I/O oper-
ations; i.e., draining the data to the PFS may become the bottle-
neck.

In [21], we have presented an evaluation of NERSC’s BB im-
plementation for running a subset of a large-scale HPC work-
flow. This paper extends the prior work by: (1) providing a
more detailed discussion of the architectural model and its ini-
tial implementation; (2) conducting a performance comparison
(using benchmark) between a BB implementation and a parallel
file system; and (3) evaluating the impact of I/O read and write
operations from/to the burst buffer for processing 1/0 bound
jobs from a high-throughput genomics workflow.

This paper is structured as follows. Section 2 provides back-
ground on data-intensive scientific workflows, and an overview
of burst buffer architectures. Section 3 presents challenges and
an overview of an architectural model for using BB for scien-
tific workflow executions. The experimental evaluation of using
BB for running scientific I/O-intensive applications with two
real world data-intensive workflows using a large HPC system
is presented in Section 4. Section 5 discusses related work,
and underlines the contributions of this paper with regard to the
state-of-the-art. Section 6 concludes the paper, and identifies
directions for future research.

2. Background

2.1. Data-Intensive Scientific Workflows

Scientists want to extract the maximum information out of
their data, which are often obtained from scientific instruments
and processed in large-scale, heterogeneous distributed sys-
tems such as campus clusters, clouds, and national cyberin-
frastructures such as the Open Science Grid (OSG) [22] and
XSEDE [23]. In the era of Big Data Science, applications are
producing and consuming ever-growing data sets, and among
other demands (e.g., CPU and memory), I/O throughput has
become a bottleneck for such applications. For instance, the

automated processing of real-time seismic interferometry and
earthquake repeater data, and the 3D waveform modeling for
the calculation of physics-based probabilistic seismic hazard
analysis [24] have enormous demands of CPU, memory, and
I/O—as presented later on in this paper (Section 4.3). That
workflow application consumes/produces over 700GB of data.
In another example, a bioinformatics workflow for identifying
mutational overlaps using data from the 1000 genomes project
consumes/produces over 4.4TB of data, and requires over 24TB
of memory across all the tasks [25, 26].

In arecent survey on the management of data-intensive work-
flows [27], several techniques and strategies, including schedul-
ing and parallel processing are presented about how workflow
systems manage data-intensive workflows. Typical techniques
include the clustering of workflow tasks to reduce the schedul-
ing overhead, or grouping tasks that use the same set of data
thus reducing the number of data movement operations. Data-
aware scheduling techniques also target reducing the number
of data movement operations and have been proven efficient
for high-throughput computing workloads. In the area of HPC,
data-aware techniques have also been explored for in situ pro-
cessing [3, 18]; however, for in transit or post-processing anal-
yses improvement to the I/O throughput is still needed.

2.2. Burst Buffers

A burst buffer (BB) is a fast, intermediate non-volatile stor-
age layer positioned between the front-end computing pro-
cesses and the back-end parallel file system. Although the total
size of the PFS storage is significantly larger than the storage
capability of a burst buffer, the latter has the ability to rapidly
absorb the large volume of data generated by the processors,
while slowly draining the data to the PFS—the bandwidth into
the BB is often much larger than the bandwidth out of it. Con-
versely, a burst buffer can also be used to stage data from the
PFES for data delivery to processors at high speed. The BB con-
cept is not novel; however, it has gained much attention recently
due to the increase in complexity and volume of data from mod-
ern applications, and cost reductions for flash storage.

A burst buffer consists of the combination of rapidly ac-
cessed persistent memory with its own processing power (e.g.,
DRAM), and a block of symmetric multi-processor compute
units accessible through high-bandwidth links (e.g., PCI Ex-
press, or PCle for short). Although the optimal implementation
of burst buffers is still an open question, two main representa-
tive architectures have been deployed: (1) the node-local BB,
and (2) the remote-shared BB [28]. In a node-local configura-
tion, the BB is co-allocated with the compute nodes, while in a
remote-shared configuration, the BB is deployed into I/O nodes
with high-connectivity to compute nodes via a high-speed se-
rial connection. Advantages of the local deployment include
the ability to linearly scale the BB bandwidth with the num-
ber of compute nodes—the drawback of this approach is that
write operations to the PFS may negatively impact the appli-
cation execution due to the required extra computing power to
perform the operation. The remote deployment, on the other
hand, mitigates this effect since the I/O nodes have their own
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Figure 1: Architectural overview of a burst-buffer node on Cori at NERSC.

processing—but this approach may become an impediment un-
der network congestion. Both approaches have already been
widely adopted by current HPC facilities, and in forthcoming
HPC systems.

NERSC Burst Buffer. In this paper, we conduct experiments
using computational resources from the National Energy Re-
search Scientific Computing Center (NERSC). NERSC’s burst
buffer has been deployed on Cori, a petascale HPC system and
#12 on the November 2018 Top500 list [9]. The NERSC BB is
based on Cray DataWarp [29], Cray’s implementation of the BB
concept (Figure 1). A DataWarp node is a Cray XC40 service
node directly connected to the Aries network, with PCle SSD
Cards installed on the node. The burst buffer resides on spe-
cialized nodes that bridge the internal interconnect of the com-
pute system (Aries HSN) and the storage area network (SAN)
fabric of the storage system through the I/O nodes. Each BB
node contains a Xeon processor, 64 GB of DDR3 memory, and
two 3.2 TB NAND flash SSD modules attached over two PCle
gen3 x8 interfaces, which is attached to a Cray Aries network
interconnect over a PCle gen3 x16 interface. Each node pro-
vides approximately 6.4 TB of usable capacity and a peak of
approximately 6.5 GB/sec of sequential read and write band-
width!. NERSC’s burst buffer implementation provides two
models for storing data, via a scratch space or a persistent reser-
vation. Scratch spaces are recommended for temporary storage
of files during job execution (i.e., files will be removed upon
job completion), while in a persistent reservation files that need
to be accessed across jobs will be kept in a reserved space after
job completion (files are removed only once the reservation is
released).

! http://www.nersc.gov/users/computational-systems/cori/burst-
buffer/burst-buffer

3. Model and Design

Typical workflow executions on HPC systems rely on the un-
derlying parallel file system for staging the computational data
to the compute nodes where the workflow tasks are running. As
previously discussed, the increasing complexity of current and
forthcoming workflow applications, in particular the production
and consumption of large volumes of data, poses challenges for
current and upcoming systems, since the performance of the
PFS has not increased to the same extent as computing and
memory capabilities. As a result, technologies such as burst
buffers have emerged as a solution to mitigate this effect, in
particular for in transit and post-processing applications.

A current trend in HPC applications is the shifting of the
application paradigm towards in memory approaches (e.g., in
situ processing). In spite of impressive achievements to date,
non-intrusive approaches are still not available. More specifi-
cally, numerous workflow applications are composed of legacy
codes [1], and thus changing the code to fit modern paradigms
is improbable (in some cases, source codes for well established
legacy applications are no longer available). Therefore, work-
flow management systems should provide mechanisms to im-
prove the execution of such applications by leveraging state-of-
the-art built-in system solutions.

We envision a generic I/O management framework for work-
flow systems, in which I/O parameterization is presented in an
abstracted way to the scientists. In such a model, the work-
flow management system should automate the deployment and
configuration of the underlying system to seamlessly enable in
transit or in situ processing (as per user request). For example,
a scientist may instrument their code to enable in memory stor-
age processing (e.g., by using tools such as DataSpaces [30]), or
use burst buffers for improving the workflow I/O throughput—
in particular for scientific workflows where communication be-
tween tasks are based on files. A first practical implementation
similar to the proposed model was presented in [16], in which
the framework coordinates, tracks, and manages the data lifecy-
cle of workflow executions on HPC systems. Here, we expand
this model for transparent in transit data management for scien-
tific workflows.

Figure 2 shows an architectural overview of the proposed
I/O management framework. Typically, data exchange among
workflow jobs/tasks are performed via files that are stored in
the local or parallel filesystem. Our proposed model seeks to
abstract data exchange handling by automating the data trans-
port layer deployment and configuration process. From the
users perspective, in addition to the workflow description and
common configuration details (e.g., computing sites, storage
resources, etc.), information regarding the data transport layer
should also be provided, i.e. whether input, intermediate, and
output files are stored in the local disk, parallel filesystem, or a
burst buffer. Current workflow systems, e.g. Pegasus, already
provide mechanisms to map data from local disks and parallel
filesystems by simply providing a path to the storage mapping
in the system. Therefore, we argue that support for emerging
technologies should follow similar approach.

In order to enable such seamless use of BB within workflow
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Figure 2: Architectural overview of an I/O management framework for workflow systems. The workflow engine needs to be augmented with mechanisms to
automatically deploy and configure the data transport layer according to the user’s specification.

applications, we argue that a workflow system should automate
the following steps:

1. Burst buffer reservations (either persistent or scratch)
should be automatically handled by the workflow manage-
ment system. This operation includes reservation creation
and release, as well as stage in and stage out operations for
transient reservations. For such types of reservations, the
workflow system needs to implement stage in/out opera-
tions at the beginning/end of each job execution. A more
advanced implementation would provide a dynamic solu-
tion where persistent and scratch reservations interleave
throughout the workflow execution, leading to improved
I/O throughput and higher system utlization.

2. Workflow systems should automatically map the work-
flow execution directory (typically known as the execution
scratch directory) to the burst buffer reservation. Hence,
no changes to the application code are necessary (enables
support for legacy applications), and the application job
directly writes its output to the burst buffer reservation.

3. 1/O read operations should be performed directly from the
burst buffer. To this end, the workflow system should
make read and write operations from the BB transparent to
the application. A simple approach to achieve such trans-
parency is to point the execution directory to the BB reser-
vation (see item above), or to automatically create sym-
bolic links to data endpoints into the burst buffer.

In our model (Figure 2), the data transport layer mapping
module of the workflow management system needs to be ex-
tended to augment the executable workflow with auxiliary jobs
for enabling I/O operations to/from the burst buffer. As afore-
mentioned, enabling such support entails extending the ex-
ecutable workflow with additional jobs for setting the burst
buffer reservation, performing the necessary adjustments to files
and directories paths, and releasing the reservation. Since BB
implementation may vary depending on the system and thereby
its configuration and usage, it is critical that the workflow map-
per component (generates an executable workflow based on an

abstract workflow provided by the user or a workflow composi-
tion system) abstracts such complexity to insure the fundamen-
tal notion of portable workflow descriptions. To this end, the
workflow mapper may need implementation-specific software
for handling such heterogeneity. In our practical implementa-
tion, described below and used for the experimental evaluation
presented in Section 4, workflow portability is guaranteed since
BB usage is enacted by the workflow system, thus the workflow
description only has high-level description of file names.

A key challenge for performing efficient and transparent I/O
operations with burst buffers, while boosting its utilization,
is to automate the process of creating and releasing reserva-
tions (either persistent or temporary). Achieving optimal per-
formance in practice requires sophisticated mechanisms (e.g.,
online monitoring feedback loops [31], estimate the size of
the burst buffer based on application characteristics [32], etc.),
which are out of the scope of this paper. Instead, our goal is
to demonstrate that even by using simple mechanisms to lever-
age the capabilities of burst buffers for the execution of in tran-
sit workflows, a significant improvement on fine- and coarse-
grained workflow metrics can be attained (though BB usage
metrics may be unsatisfactory).

3.1. An Initial Practical Implementation

In this paper, we performed a preliminary implementation
of the aforementioned model using a popular, well-established
workflow management system: Pegasus [20]. Pegasus pro-
vides the necessary abstractions for scientists to create work-
flows and allows for transparent execution of these workflows
on a range of compute platforms including campus clusters,
clouds, and across national cyberinfrastructures. Since its in-
ception, Pegasus has become an integral part of the production
scientific computing landscape in several scientific communi-
ties. During execution, Pegasus translates an abstract resource-
independent workflow into an executable workflow, determin-
ing the specific executables, data, and computational resources
required for the execution. Workflow execution with Pegasus
includes data management, monitoring, and failure handling,
and is managed by HTCondor DAGMan [33]. Individual work-



flow tasks are managed by a task scheduler (HTCondor [34]),
which supervises task execution on local and remote resources.

Our model enables burst buffer usage for scientific workflows
via a non-intrusive method, and seeks to abstract configuration
and parameter specificities for using burst buffers. In this pa-
per, we opt for using persistent reservations since stage in/out
operations do not need to be performed for intermediate files
(reducing the number of data movement operations between
the PFS and the BB reservation, and vice-versa), which also
facilitates its deployment and management. It is noteworthy
that persistent reservations mitigate the burden for coordinat-
ing stage in/out data to/from the BB reservation, which may
also impact job execution. On the other hand, for HPC systems
where queueing times are systematically long, the cost of stage
in/out operation may be negligible, and provisioning BB as late
as job start time may yield better overall BB utilization at the
system level.

At NERSC, in order to create a BB reservation, one needs
to submit a regular standalone job to the batch system, which
includes the set of directives to spawn a new BB reservation
(either as scratch or persistent). Although the burst buffer reser-
vation creation process is performed upon job scheduling?, the
job remains in the queue until its execution (as any regular batch
job). In an idealized implementation (Figure 3), a compute job
would only start to run once the bb_setup job is completed. A
drawback of such approach is that the BB reservation may have
been already up and running for many hours. This may nega-
tively impact the workflow makespan and it may result in idle
cycles for the BB. To alleviate this issue, in our implementa-
tion with Pegasus we have leveraged DAGMan’s PRE script
concept, which allows jobs to specify processing that will be
done before the job submission. We removed the control de-
pendencies between BB creation and the first computing jobs,
and defined a PRE script for each of these first computing jobs
that checks the state of the BB reservation creation using the
scontrol command. Once the reservation is up and running,
DAGMan proceeds with the job submission to HTCondor—
note that the bb_setup job will still be in the queue when the
workflow jobs are released for submission. In this approach, the
control dependency (dashed green edge between the bb_setup
and the first job in Figure 3) is represented by the verification
step of the PRE script, which triggers the job submission. As a
result, the first set of jobs is submitted as soon as the BB reser-
vation is enabled. An alternative approach to reduce the times-
pan between reservation creation and actual computing job start
would be to submit the computing job to the queue, and upon
job start the workflow system would submit the bb_setup job
(the PRE script would ensure the computing job would not start
running until the BB reservation has been enabled).

For the experiments presented in the next section, we have
modified the application’s configuration files (by adding the BB
reservation environment variable to the files paths) to write and

2As soon as the scheduler reads the job, the Burst Buffer re-
source is scheduled, even though the job has not yet executed
(http://www.nersc.gov/users/computational-systems/cori/burst-buffer/example-
batch-scripts).
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Figure 3: Illustrative example of how burst buffer reservations are cre-
ated/removed during workflow execution. In an ideal implementation, a setup
(resp. delete) job would be added to the beginning (resp. end) of the work-
flow. In the actual implementation the job control dependency between the BB
setup and job execution is performed via a script mechanism to optimize the
workflow execution.

read in/output files from/to the burst buffer. A full-fledged refer-
ence implementation of the proposed model will be performed
in the near future, and will be made available as part of the Pe-
gasus software. Such implementation will provide automated
support for the generation of symbolic links based on the pres-
ence of input files in the BB reservation, and the mapping of the
working directory to the burst buffer.

4. Experimental Evaluation

Experiments are conducted with Cori, a Cray XC40 system
at NERSC. Cori consists of two partitions, one with Intel Xeon
Haswell processors (Phase I, peak performance of 2.3 PFlops)
and another with Intel Xeon Phi Knights Landing (KNL) pro-
cessors (Phase II, peak performance of 29.1 PFlops). For this
work, we used the Haswell partition, where each node is com-
posed of 32 cores per node on two 16-core Haswell processors
(total of 2,388 cores). Cori also features a 1.8 PB Cray Data
Warp Burst Buffer with 1/O operating at 1.7 TB/sec.

Our experimental evaluation is twofold. First, we conduct a
simple evaluation benchmark of the NESRC’s BB implementa-
tion to highlight its performance gain with regard to the parallel
file system. Then, we conduct two sets of experiments with real
world, large-scale workflows. The first investigates whether
NERSC’s Cray Data Warp BB implementation may improve
the execution performance of a high-throughput data-intensive
workflow from the bioinformatics domain; and the second ex-
amines whether burst buffers may be used to improve interme-
diate data handling for a data-intensive high-performance work-
flow.

4.1. Overall Evaluation of Burst Buffers Performance

Evaluation and performance modeling of Burst Buffers have
been conducted extensively by the community, such as in [8,
9, 10, 12, 13]. In this work, we conduct a simple benchmark



evaluation of the NERSC’s BB implementation aiming a per-
formance comparison analysis between the burst buffer and
the parallel file system—in this case a remote-shared persistent
reservation in the burst buffer and the Lustre parallel distributed
file system deployed at NERSC.

The conclusions of the experimental evaluation discussed in
this paper are derived from I/O performance behavior gathered
with Darshan [35]. Darshan is an HPC lightweight I/O profil-
ing tool that captures data for each file opened by the applica-
tion, including I/O operation counts, common I/O access sizes,
cumulative timers, etc. I/O behavior is captured for POSIX IO,
MPI-IO, HDFS5, and Parallel netCDF data interface layers. Dar-
shan can instrument I/O functions in both statically and dynam-
ically linked executables. Darshan is part of the default soft-
ware stack on Cori, and is enabled by default.

We have developed a synthetic parallel application that
writes/reads blocks of data to/from multiple processes running
concurrently. For each block size (i.e., 64, 128, 256, 512,
and 1024 MB), we have run the application with 2" processes
(where n € [2,7]), i.e., a total of 30 experimental scenarios.
Note that the execution of a scenario using, for example, a block
size of 128MB and 8 processes, will produce/consume 1 GB of
data in total. NERSC’s Cori system provides nodes with 32
cores (up to 64 processes can run concurrently within a sin-
gle node via hyper-threading technology), thus runs performed
with 128 processes use 2 nodes. For each experimental sce-
nario, we performed several runs of the application to obtain
measurements within standard errors below 5%.

4.1.1. Results and Discussion

Figure 4 shows a performance comparison (measured in
MiB/s) for write operations to the BB (Figure 4-fop), or the
Lustre PFS (Figure 4-bottom). Not surprisingly, the BB im-
plementation outperforms the PFS for I/O write operations by
a factor of 4. The Lustre PFS yields a nearly constant perfor-
mance, although a slightly deterioration on the performance is
observed for 32 and 64 processes. On the other hand, the BB
yields slightly increasing performance as the number of pro-
cesses and the data block size increase—although the perfor-
mance is nearly constant for larger block sizes. For 128 pro-
cesses (i.e., 2 nodes), a considerable spike in the performance
is observed. This indicates that for larger block sizes and num-
ber of processes there is a saturation on the Aries link between
the compute node and the BB node. Similarly to I/O write op-
erations, I/O read operations (Figure 5) performed via BB (Fig-
ure 5-fop) outperforms the PFS (Figure 5-bottom) by a factor
of 2. In contrast, I/O read operations on the PFS yields simi-
lar increasing performance behavior as for the BB, thus a lower
performance improvement is observed. It is important to notice
that a similar saturation is also observed for I/O read operations
on the burst buffer. This preliminary evaluation allows us to
ensure the I/O performance of our target large scale (O(100) of
processes) workflow applications (presented below) will not be
limited by the computational infrastructure.
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Figure 4: I/O Write: performance comparison of write operations with burst-
buffers (top) and the PFS (bottom) at NERSC.
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Figure 5: I/O Read: performance comparison of read operations with burst-
buffers (top) and the PFS (bottom) at NERSC.
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Figure 6: Overview of the 1000 genome sequencing analysis workflow.

4.2. Burst Buffers for High-Throughput Workflows

The goal of this experimental evaluation is to measure the im-
pact of I/O read and write operations from/to the burst buffer for
processing I/O bound jobs of a high-throughput data-intensive
bioinformatics workflow.

The 1000 genomes project provides a reference for human
variation, having reconstructed the genomes of 2,504 individ-
uals across 26 different populations [36]. The test case used
in this paper identifies mutational overlaps using data from the
1000 genomes project in order to provide a null distribution for
rigorous statistical evaluation of potential disease-related mu-
tations. This test case (Figure 6) has been implemented as a
Pegasus workflow [25], and is composed of five different tasks:
(1) individuals — This task fetches and parses the Phase 3 data
from the 1000 genomes project per chromosome; (2) popula-
tions — The populations task fetches and parses five super pop-
ulations (African, Mixed American, East Asian, European, and
South Asian), and a set of all individuals; (3) sifting — This
task computes the SIFT scoresl of all of the SNPs (single nu-
cleotide polymorphisms) variants, as computed by the Variant
Effect Predictor; (4) pair overlap mutations — This task mea-
sures the overlap in mutations (SNPs) among pairs of individu-
als; and (5) frequency overlap mutations — This task calculates
the frequency of overlapping mutations across subsamples of
certain individuals.

The total data footprint for a typical run of the genomics
workflow is about 4.4 TB, and requires over 400 GB of RAM
(for the largest tasks: individuals). A detailed characteri-
zation of this workflow is available in [25]. In order to fit an
instance of the workflow execution into NERSC’s debug queue
(see description below), we have pruned the original datasets
to process about 10% of the original data (about 11GB per in-
dividual dataset, which contains 80,000 records each), and the
processing of 2 chromosomes. For this experiment, each work-
flow is composed of 20 individuals jobs (10 per chromosome),
2 sifting jobs, 14 frequency overlap mutations jobs, and 14 pair
overlap mutations jobs.

4.2.1. Experiment Conditions
As described in [25], the turnaround time for comput-
ing all jobs from the 1000 genome workflow (i.e., work-

flow makespan) is dominated by the time to compute the
individuals jobs—about 98% of the workflow computing
processes and I/O operations are performed by these jobs. The
individual jobs list all of the Single nucleotide polymorphisms
(SNPs) variants in the Phase 3 data [36] from the 1000 genome
project per chromosome associating them to individuals. An
individuals job creates output files for each individual of
rs numbers, where individuals have mutations in at least one
of the two alleles. This task is extremely I/O-intensive, where
I/O read operations are continuously performed in an individ-
ual dataset, while I/O write operations are performed for each
identified mutation.

Since the individuals jobs are embarrassingly parallel
tasks, I/O performance behavior cannot be captured with tra-
ditional HPC I/O profiling tools. Therefore, we use the Kick-
start [37] profiling tool to gather the job turnaround time and
its I/O footprint (i.e., number of bytes read and written). To
improve system utilization, for each individuals job we split
the dataset into smaller chunks of data (10 per job, i.e., 8,000
records per job) to be processed in parallel—we leverage the job
clustering capability from the Pegasus [20] workflow manage-
ment system, a wrapper tool that takes a set of jobs and execute
them sequentially or in parallel (via threads) on a single node.
For each experiment scenario, we performed several runs of
the individuals jobs to obtain averaged measurements within
standard errors below 2%. The experiments conducted in this
section used a persistent BB reservation of 50 GB.

4.2.2. Results and Discussion

Figure 7 shows the average job turnaround time (makespan)
and I/O wait for the individuals jobs performing I/O read
and write operations on the parallel file system (red triangles)
and on the burst buffer (black squares). Overall, runs using
the BB implementation speed up the individuals jobs up to a
factor of 2 (Figure 7-fop). Note that although the individuals
jobs read from the same two individual dataset, the amount of
I/O operations (mostly read operations) may vary per job—thus
the variation on the x-axis values. Although the datasets are
divided into smaller data blocks (each individuals job only
reads the necessary amount of data for processing), the same
data block may be read multiple times—in particular for very
large datasets. For instance, an actual execution of a complete
version of an individuals job of the 1000 genome workflow
may process files larger than 300 GB. During execution, an out-
put file is generated for each mutation observed in at least one
of the two alleles. A typical execution of this job may gener-
ate O(1000) output files. Figure 7-bottom shows the averaged
I/O wait measurements in seconds for I/O read and write op-
erations for the individuals jobs. Although there is a slight
variation in the time waiting for I/O operations (i.e., makespan
is also impacted by the job’s computing tasks), a significant per-
formance improvement is seen when using the burst buffer. In
summary, burst buffers not only improve I/O performance of
read and write operations, but also mitigates the cost of han-
dling a very large number of files.
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Figure 7: Average makespan (top) and I/O wait (bottom) in seconds for each
individuals job performing I/O operations on the PFS (red triangles) or the
BB (black squares).

4.3. Burst Buffers for High-Performance Workflows

The goal of this experimental evaluation is to measure the
impact of I/O write and read operations to/from the burst buffer
for staging in/out intermediate data during the execution of a
large-scale high-performance workflow.

4.3.1. The CyberShake Workflow

As part of its research program of earthquake system sci-
ence, the Southern California Earthquake Center (SCEC) [38]
has developed CyberShake [39], a high performance computing
software platform that uses 3D waveform modeling to compute
physics-based probabilistic seismic hazard analysis (PSHA) es-
timates for California. CyberShake performs PSHA by first
generating a velocity mesh populated with material properties,
then using this mesh as input to an anelastic wave propaga-
tion code, AWP-ODC-SGT, which generates Strain Green Ten-
sors (SGTs). This is followed by post-processing, in which
the SGTs are convolved with slip time histories for each of
about 500,000 different earthquakes to generate synthetic seis-
mograms for each event. The seismograms are further pro-
cessed to obtain intensity measures, such as peak spectral accel-
eration, which are combined with the probability of each earth-
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Figure 8: CyberShake hazard map for Southern California, showing the spectral
accelerations at a 2-second period exceeded with a probability of 2% in 50
years.

quake, obtained from the UCERF2 earthquake rupture fore-
cast [40], to obtain a hazard curve relating ground motion inten-
sities to probability of exceedance. Hazard curves from many
(200—400) geographically dispersed locations can be interpo-
lated to produce a hazard map, communicating regional hazard
(Figure 8).

For the purposes of exploring burst buffer performance and
impact, we focused primarily on the two CyberShake job types
which together account for 97% of the compute time: the wave
propagation code AWP-ODC-SGT, and the post-processing
code DirectSynth which synthesizes seismograms and produces
intensity measures. Although the DirectSynth post-processing
could theoretically be performed in situ, in practice these two
codes are often run on different computational systems depend-
ing on node type. They were also written and are maintained by
different developers, making it undesirable to combine the two
jobs to enable in situ processing:

o AWP-ODC-SGT: The AWP-ODC-SGT code is a modified
version of AWP-ODC, an anelastic wave propagation MPI
CPU code developed within the SCEC community and
has demonstrated excellent scalability at large core counts
(over 10,000 cores) [41]. It takes as input a velocity mesh
of about 10 billion points, as well as some small param-
eter files. For this experiment, we selected a representa-
tive simulation, which requires about an hour on 313 Cori
nodes, and produces ~ 275 GB of output. Two of these
simulations, one for each horizontal component, must be
run in order to produce the pair of SGTs needed for Cyber-
Shake post-processing (i.e., fx.sgt and fy.sgt, a total of
~ 550 GB) for a single geographic site.

e DirectSynth: The DirectSynth code is an MPI code, which



performs seismic reciprocity calculations. It takes as input
a list of fault ruptures and the SGTs generated by AWP-
ODC-SGT. From each rupture 10-600 individual earth-
quakes, which vary in slip and hypocenter location are
created, and the slip time history for each earthquake is
convolved with the SGTs to produce a two-component
seismogram. DirectSynth code follows the master-worker
paradigm, in which a task manager reads in the list of rup-
tures, creates a queue of seismogram synthesis tasks, and
then communicates the tasks to the workers via MPI. Pro-
cesses within the DirectSynth job, the SGT handlers, each
read in part of the SGT files, accounting for the majority of
data read. Worker processes request and receive the SGTs
needed for the convolution from the SGT handlers over
MPI. Output data is forwarded to an aggregator, which in
total writes 4 files per rupture totaling about 4 MB. For this
paper, we selected a CyberShake site with about 5,700 rup-
tures, resulting in about 23,000 files totaling about 22 GB.
Running on 64 Cori nodes, this job takes about 8 hours to
complete and produces the outputs CyberShake requires
for a single geographic site.

4.3.2. Workflow Implementation

SCEC has used Pegasus to create, plan, and run Cyber-
Shake workflows for over a decade. Since the complete end-
to-end execution of the workflow requires tens of thousands of
CPU hours, we have implemented a smaller version which in-
cludes the two CyberShake jobs we are using in our test®. Fig-
ure 9 shows a graphical representation of the workflow jobs
with data and control dependencies. The workflow is com-
posed of two tightly-coupled parallel jobs (SGT_generator,
i.e. AWP-ODC-SGT; and direct_synth), and two system jobs
(bb_setup and bb_delete). The computational jobs operate
as described in the previous section. For runs utilizing the BB,
the SGT_generator job writes to the BB (instead of directly
to the disk), while the direct_synth job reads from it. The
system jobs are standalone jobs used to perform management
operations in the burst buffe—for this experiment the first job
creates a persistent reservation, and the second releases it.

Following our workflow model described in Section 3.1 (Fig-
ure 3), the SGT_generator job would only start to run once
the bb_setup job has created the BB reservation. By using
DAGMan’s PRE script concept, we removed the control de-
pendency between BB creation and the SGT_generator job,
which has a PRE script that checks whether the BB reservation
is up and running.

4.3.3. Experiment Conditions

For the experiments conducted in this section, the bb_setup
job creates a persistent BB reservation of 700GB. Due to our
limited allocation of computing cycles at NERSC, and since
a single execution of de facto SGT_generator (AWP-ODC-
SGT) job would consume up to 30% of our current allocation,

3 Available online at https://github.com/rafaelfsilva/bb-workflow
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Figure 9: A general representation of the CyberShake test workflow.
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we developed a synthetic version of the generator job that mim-
ics its I/O behavior for write operations for the SGT files, but
significantly reduces the number of CPU cycles needed. The
direct_synth job remains the same.

As in our model we create a single BB persistent reservation
per workflow run, it is crucial that the I/O throughput obtained
with the BB overcomes the application I/O bottleneck. We per-
formed several runs of the CyberShake test workflow (Figure 9)
with different numbers of computational nodes (1-313), and
with different numbers of rupture files (1-5,734) processed by
DirectSynth. The former investigates the ability of the burst
buffer to scale with the application’s parallel efficiency. The
latter studies the impact on the application’s makespan when
the application becomes more CPU-bound—in our case this is
achieved by augmenting the number of rupture files. Although
the number of 1/O operations also increases in this scenario, the
complexity of the computation is significantly augmented as the
number of rupture files increases (i.e., the increase in the time
spent performing operations in the user space is proportionally
larger than the time spent on system operations). For each ex-
periment, we performed several runs of the workflow to obtain
measurements within standard errors below 3% (averaged from
10 workflow runs).

4.3.4. Results and Discussion

Overall Write Operations. Figure 10-top shows the average
I/O performance measurement for write operations for the syn-
thetic AWP-ODC-SGT (SGT_generator) job for varying num-
bers of compute nodes on Cori. Note that each node is com-
posed of 32 cores, thus a complete execution (313 nodes) of
this job uses 10,016 cores. Performance gain values (Figure 10-
bottom) represent the average runtime gain for “I/O write” op-
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Figure 10: Average I/O performance estimate for write operations at the
MPI-IO layer (top), and average I/O write performance gain (bottom) for the
SGT_generator job.

erations (not the task runtime itself) w.r.t. the one-node execu-
tion performance. Overall, write operations to the PFS (No-BB)
have nearly constant I/O performance; we measured around 900
MiB/s regardless of the number of nodes used. Likely, the PFS
automatically balances the I/O bandwidth in order to provide
an adequate QoS for all users. Due to slight variations in the
measured I/O bandwidth, performance gain values present neg-
ligible variations (between 0.95 to 1.0). Workflow runs with the
BB, on the other hand, significantly surpass the PFS 1/O band-
width for write operations. Base values obtained for the BB
executions (1 node, 32 cores) are over 4,600 MiB/s, and peak
values scale up to ~ 8,200 MiB/s for 32 nodes (1,024 cores).
When we increase the number of nodes (> 64), we observe a
slight drop in the I/O performance due to the large number of
concurrent write operations. Although this may be seen as a
limitation of the burst buffers, the performance degradation is
below 10% and the job runtime significantly benefits from the
high degree of parallelism.

Overall Read Operations. Figure 11-top shows the aver-
age I/O performance estimate for read operations for the
direct_synth job, which consumes the SGT files generated
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Figure 11: I/O performance estimate for read operations at the MPI-IO layer
(top), and average I/O write performance gain (bottom) for the direct_synth
job.

by the SGT_generator job. Typically, CyberShake runs of
this job are set to 64 nodes (optimal runtime/parallel efficiency
balance). For this experiment, we ran this job with different
numbers of nodes (1 to 128) in order to measure the impact on
I/O performance for read operations at different levels of par-
allelism. Similarly to write operations, read operations from
the PFS yield similar performance regardless of the number of
nodes used, while the I/O performance varies for reads from
the BB—single-node performance of 4,000 MiB/s, peak val-
ues up to about 8,000 MiB/s, and then a small dropoff as node
counts increase. Although the measured I/O read performance
is slightly lower than that for write operations (about 5%), we
argue that read and write operations achieve similar levels of
performance. Notice that I/O read performance gain values
(Figure 11-bottom) are marginally higher. This result is due
to the lower performance in the 1-node execution. Again, we
observe a similar small drop in the performance for runs using
64 nodes or above, which may indicate an I/O bottleneck when
draining the data to/from the underlying parallel file system.
Since queuing time between jobs within a workflow scheduled
on Cori may be several hours, a fraction of the files transferred
to the BB reservation might be temporarily removed from the
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per process for the direct_synth job.

BB to improve the efficiency of other users’ jobs on the sys-
tem. Therefore, if the queuing time between two subsequent
jobs could be decreased, the observed drop in the performance
may be shifted upwards, i.e. I/O contention may occur when
using a larger number of nodes.

1/O Performance per Process. Figures 12 and 13 show the aver-
age time of I/O read operations per process for POSIX and MPI-
10 for each horizontal component file (fx.sgt and fy.sgt),
respectively. POSIX operations (Figure 12) represent buffer-
ing and synchronization operations with the system. Thus, al-
though there is a visible difference in the average time spent
in I/O read operations per process between the BB and PFS,
these values are negligible when compared to the job’s total
runtime (approximately 8 hours for 64 nodes). Figure 13 shows
the average effective time spent per process performing MPI-
10 operations. As expected, the average time spent in I/O read
operations decreases as more process are used. Note that for
larger configurations (> 32 node), the average time is nearly
the same as when running with 16 nodes for the No-BB config-
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uration. This behavior is consistent with the I/O performance
decline observed in Figure 11. Workflow executions using the
BB accelerate I/O read operations up to 10 times in average.
These averaged values (for up to thousands of cores) may mask
slower processes, which may by themselves delay the appli-
cation execution. In some cases, e.g. 64 nodes, slowest time
consumed in I/O read operations can slowdown the application
up to 12 times the averaged value. Therefore, we also investi-
gate the distribution of cumulative times for I/O operations and
processing in user space.

Cumulative CPU time. Figure 14 shows the ratio between the
time spent in the user (utime) and kernel (stime) spaces—
handling I/O-related interruptions, etc. The use of burst buffers
leads the application to a more CPU-intensive pattern. Al-
though executions with 32 nodes yielded the best I/O perfor-
mance, performance at 64 nodes is similar, suggesting gains in
application parallel efficiency would outweigh a slight I/O per-
formance hit at 64 nodes and lead to decreased overall runtime.



Avg. Makespan (h)

Job PFS BB
AWP-ODC-SGT 1.09 0.95
direct_synth 8.13 6.97

Table 1: Average job turnaround time in hours (makespan) for the
AWP-0DC-SGT and direct_synth jobs performing I/O operations to the PFS
or the BB. AWP-0DC-SGT runs used 313 nodes, while direct_synth runs used
64 nodes.

Rupture Files. As described in the beginning of Section 4.3,
a typical execution of the CyberShake workflow for a selected
site in our experiment processes about 5,700 rupture files. Since
the number of rupture files may vary for different executions of
the workflow, we evaluated the impact on the use of a burst
buffer on the application’s CPU-boundedness. Figure 15 shows
the ratio between the time consumed in the user and kernel
spaces for the direct_synth job (results for workflow runs
with 64 nodes). The processing of rupture files drives most
of the CPU (user space) activities for the direct_synth job.
Not surprisingly, the more rupture files are used the more CPU-
bound the job becomes, yet burst buffers still positively impact
the application execution—for our real world workflow, the use
of a BB attenuates (about 15%) the I/O processing time of the
workflow jobs, for both read and write operations.

Table 1 summarizes the average makespan for both the
AWP-0DC-SGT (313 nodes) and direct _synth jobs (64 nodes).
For the first job, the use of BB improves the job execution time
by about 11%, and for the second job by about 15%. Overall,
the absolute workflow makespan (i.e., queuing time is ignored)
is improved of about 13% in average.

5. Related Work

Efficient workflow execution and scheduling are an exten-
sively researched topic within the field of scientific workflows.
A plethora of studies have targeted the design and development
of cost- and energy-efficient scheduling techniques, while oth-
ers have focused on the data management aspect of the prob-
lem, such as file placement strategies and data-aware schedul-
ing. Numerous survey studies have captured and analyzed the
essence of those techniques [42, 27, 43, 44]. Although these
solutions may improve workflow execution efficiency, hard-
ware and system limitations may impose severe barriers, e.g.,
the workflow execution may be extremely delayed due to I/O
contention. An alternative approach is to enable configura-
tion refinement (e.g., change platform conditions). In previous
work [45], we investigated scheduling techniques in networked
clouds to predict dynamic resource needs using a workflow in-
trospection technique to actuate resource adaptation in response
to dynamic workflow needs. The technique focused on data
flow and network adaptation. However, such approaches are
not applicable to HPC systems.

Burst buffer performance has been thoroughly evaluated in
diverse contexts, and its ability to improve I/O throughput
for running single parallel applications has been well estab-
lished [11, 12, 10]. For instance, in [12] an empirical evalu-

12

ation of a BB implementation with an I/O-bound benchmark
application resulted in a speedup factor of 20 when compared
to the PFS only solution (in this case GPFS). Their conclu-
sions support the experimental results obtained in this paper, but
since they focus on pure I/O-bound applications the impact on
the parallel efficiency is neglected. Point solutions at a higher
layer of abstraction have also been the target of some studies.
BurstMem [8] is a high-performance burst buffer system on top
of Memcached [46], which uses a log-structured data organi-
zation with indexing for fast I/O absorption and low-latency,
semantic-rich data retrieval, coordinated data shuffling for ef-
ficient data flushing, and CCI-based communication for high-
speed data transfer. BurstFS [10] is a file system solution for
node-local burst buffers that provides scalable metadata index-
ing, co-located I/O delegation, and server-side read clustering
and pipelining. Although these systems present solid evaluation
and promising results, they are not production-ready. Addition-
ally, NERSC’s BB follows a remote-shared pattern, making it
incompatible with the use of BurstFS.

In the area of workflow scheduling, Herbein et al. [11]
proposed an I/O-aware scheduling technique that consumes a
model of links between all levels in the storage hierarchy, and
uses this model at schedule time to avoid I/O contention. Ex-
perimental results show that their technique mitigates all I/O
contention on the system, regardless of the level of underprovi-
sioning. Unfortunately, the evaluation is limited to an emulated
environment for an FCFS scheduler with support for EASY
backfill, which is not production-ready and could not be used
to run our real-world data-intensive application. Use of BB for
improving I/O throughput in a workflow is presented in [17].
The runtime of the post-processing step of the scripted work-
flow is improved up to a factor of 4. A limitation of the work is
that changes to the application code were necessary.

The pioneer work on workflow performance characterization
using burst buffers was presented in [15], where two work-
flow applications from LBNL running on Cori were evaluated.
The work was a first step towards the efficient use of BB for
scientific workflows using a methodology composed of work-
loads, resources, performance tools, and workload configura-
tion. Our contributions in this paper advances this previous
work in the following ways: (1) we evaluate two large data-
intensive real-world workflows (consumes/generates over 550
GB of data)—a high-throughput multi-threaded workflow, and
a high-performance workflow; (2) we compare the performance
gain for using a BB and identify its limitations for the evalu-
ated applications; and (3) we measure the impact of BB at dif-
ferent levels of application parallelism. Although both papers
target optimizing the use of BB for scientific workflows, we fo-
cus on the mechanisms to enable the seamless use of BB for
the execution of scientific workflows—in particular when run-
ning legacy applications. The MaDaT$S [16] framework pro-
vides full-fledged management of the data lifecycle for work-
flow execution on HPC systems. Similarly to this work, scien-
tific worklfow applications (both real and synthetic) are evalu-
ated on Cori. While this related work targets scientific appli-
cations that handle small volumes of data and large number of
compute jobs, our work targets workflows composed by a small



number of computing jobs (though parallel applications requir-
ing many cores) producing/consuming large volumes of data.
We therefore argue that the findings and conclusions previously
drawn by the community and the ones presented in this paper
constitute a solid basis knowledge from enabling the efficient
support of burst buffers in workflow systems.

6. Conclusions

In this paper, we explored the impact of burst buffers on the
performance of two real-world large-scale data-intensive sci-
entific workflow applications the 1000 genome workflow, and
SCEC CyberShake. Using a software stack including Pegasus-
WMS and HTCondor, we ran the workflows on the Cori system
at NERSC. The workflows included provisioning and releas-
ing remote-shared BB nodes. We found that for our genomics
high-throughput multi-threaded application, which read about
11 GB per job and wrote to O(1000) files, overall workflow
makespan was improved by a factor of 2. For our Earth science
high-performance application, which wrote and read about 550
GB of data, the I/O write performance was improved by a fac-
tor of 9, and the I/O read performance by a factor of 15 when
burst buffers were used. Performance decreased slightly at node
counts above 64, indicating a potential I/O ceiling, which sug-
gests that I/O performance must be balanced with parallel ef-
ficiency when using burst buffers with highly parallel applica-
tions.

To conduct the above experiment, we have presented an ar-
chitectural model for seamlessly enabling burst buffers support
in workflow management systems, in particular for legacy ap-
plications. We have also described our initial implementation
of the proposed model with Pegasus-WMS. Our approach used
a persistent BB reservation for staging workflow files during
execution, however typical queue latency in HPC systems may
lead to poor performance. Therefore, we plan to investigate
hybrid scheduling approaches where persistent and temporary
reservations are used interchangeably throughout the workflow
execution.

We acknowledge that I/O contention may limit the broad ap-
plicability of burst buffers for all workflow applications. How-
ever, solutions such as I/O-aware scheduling or in situ process-
ing may also not fulfill all application requirements. Therefore,
we intend to investigate the use of combined in situ and in tran-
sit analysis [3, 4], as well as consider more intrusive approaches
for changing workflow applications and systems to optimize for
burst buffer usage. Future work also includes a full-fledged ref-
erence implementation of a production solution for workflow
systems, in particular Pegasus, to include all the functionality
outlined in Section 3, abstract the configuration steps for us-
ing burst buffers, and simplify burst buffer use for workflow
users. We also intend to characterize the 1000 genome and Cy-
berShake workflows (and additional applications) on forthcom-
ing HPC systems that will support an optimized version of the
node-local pattern.
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