
A Lightweight Method for Evaluating In Situ Workflow Efficiency
Tu Mai Anh Doa,∗, Loïc Pottiera, Silvina Caíno-Loresb, Rafael Ferreira da Silvaa,
Michel A. Cuendetc, Harel Weinsteinc, Trilce Estradad, Michela Tauferb and Ewa Deelmana

aInformation Sciences Institute, University of Southern California, Marina del Rey, CA, USA
bUniversity of Tennessee at Knoxville, Knoxville, TN, USA
cWeill Cornell Medicine, Cornell University, New York, NY, USA
dUniversity of New Mexico, Albuquerque, NM, USA

ART ICLE INFO
Keywords:
scientific workflow
in situ model
molecular dynamics
high-performance computing

ABSTRACT
Performance evaluation is crucial to understanding the behavior of scientific workflows. In this study,
we target an emerging type of workflow, called in situ workflows. These workflows tightly couple
components such as simulation and analysis to improve overall workflow performance. To understand
the tradeoffs of various configurable parameters for coupling these heterogeneous tasks, namely
simulation stride, and component placement, separately monitoring each component is insufficient to
gain insights into the entire workflow behavior. Through an analysis of the state-of-the-art research, we
propose a lightweight metric, derived from a defined in situ step, for assessing resource usage efficiency
of an in situworkflow execution. By applying thismetric to a synthetic workflow, which is parameterized
to emulate behaviors of a molecular dynamics simulation, we explore two possible scenarios (Idle
Simulation and Idle Analyzer) for the characterization of in situ workflow execution. In addition to
preliminary results from a recently published study [11], we further exploit the proposed metric to
evaluate a practical in situ workflow with a real molecular dynamics application, i.e. GROMACS.
Experimental results show that the in transit placement (analytics on dedicated nodes) sustains a
higher frequency for performing in situ analysis compared to the helper-core configuration (analytics
co-allocated with simulation).

1. Introduction
High performance computing (HPC) is mainstream for

enabling the execution of scientific workflows which are com-
posed of complex executions of computational tasks and the
constantly growing data movements between those tasks [30].
Traditionally, a workflow describes multiple computational
tasks and represents data and control flow dependencies.
Moreover, the data produced by the scientific simulation are
stored in persistent storage and visualizations or analytics are
performed post hoc. This approach is not scalable, mainly
due to the fact that scientific workflows are becoming in-
creasingly compute- and data-intensive at extreme-scale [28].
Storage bandwidth has also failed to keep pace with the rapid
computational growth of modern processors due to the stag-
nancy of I/O advancements [33, 15]. This asymmetry in
I/O and computing technologies, which is being observed
in contemporary and emerging computing platforms, pre-
vents post hoc processing from handling large volumes of
data generated by large-scale simulations [4]. Therefore, stor-
ing the entire output of scientific simulations on disk causes
major bottlenecks in workflow performance. From a hard-
ware perspective, moving data consumes more energy than
performing the computing operation on the same amount of
data [33]. Although computational capacity keeps increasing

∗Corresponding address: USC Information Sciences Institute, 4676
Admi-ralty Way Suite 1001, Marina del Rey, CA, USA, 90292

Email addresses: tudo@isi.edu (Tu Mai Anh Do); lpottier@isi.edu (
Loïc Pottier); scainolo@utk.edu (Silvina Caíno-Lores); rafsilva@isi.edu (
Rafael Ferreira da Silva); mac2109@med.cornell.edu (Michel A. Cuendet);
haw2002@med.cornell.edu (Harel Weinstein); estrada@cs.unm.edu (
Trilce Estrada); mtaufer@utk.edu (Michela Taufer); deelman@isi.edu (
Ewa Deelman)

along with chip technologies, this growth only exacerbates
the imbalance between the I/O and the computation portions
in applications. To reduce this disparity, several new high-
performance memory systems that reside closer to the com-
putation units have been developed (e.g., burst buffers [29],
high-bandwidth memory [34], non-volatile memory [14],
etc.). These systems create opportunities to overcome the ex-
pensive cost of I/O thanks to the low-latency access capability
of those advanced storage technologies. Simultaneously,
scientists have moved towards a new paradigm for scientific
simulations called in situ, in which data is visualized and/or
analyzed as it is generated [4]. This accelerates simulation
I/O by bypassing the file system, pipelining the analysis, and
improving the overall workflow performance [9].

An in situ workflow describes a scientific workflow with
multiple components (simulations with different parameters,
visualization, analytics, etc.) running concurrently [33, 9],
potentially coordinating their executions using the same allo-
cated resources to minimize the cost of data movement [4].
Data periodically produced by the main simulation are pro-
cessed, analyzed, and visualized at runtime rather than post-
processed on dedicated nodes. This approach offers many
advantages for processing large volumes of simulated data
and efficiently utilizing computing resources. By co-locating
the simulation and the analysis kernels, in situ solutions re-
duce the global I/O pressure and the data footprint in the
system [15]. To fully benefit from these solutions, the sim-
ulation and the analysis components have to be effectively
managed so that they do not slow each other down. There-
fore, in this paper we study and characterize two specific
categories of in situ workflows, namely helper-core and in
transit workflows [4]. Specifically, in the helper-core work-

Do et al.: Preprint submitted to Elsevier Page 1 of 15

A Lightweight Method for Evaluating In Situ Workflow Efficiency

flow, the analysis component is placed on the same node as the
simulation; while in the in transit workflow, simulation data
is staged to a dedicated node where the analysis is allocated.
Workflows are required to capture the individual behavior
of multiple coupled workflow components (i.e., concurrent
executions of overlapped steps with inter-component data de-
pendency). Through the use of a theoretical framework, this
paper aims to provide guidelines for the evaluation and char-
acterization of in situ workflows. We target a widely-used
class of workflows, namely large-scale molecular dynamics
(MD) simulations. We argue that the proposed solutions
and the lessons learned from the proposed synthetic in situ
workflows can be directly translated into production in situ
workflows. We further deploy a practical workflow using a
medium-scale all-atom MD simulation run with a popular
MD engine to study the impact of the aforementioned compo-
nent placements on the in situ coupling in a realistic setting.
To this end, the insights gained from the practical workflow
are beneficial for scaling up to ensemble workflow, which is
a set of different simulation-analysis workflows exploring a
combination of scenarios. Our contribution is five-fold:

1. We discuss practical challenges in evaluating next-
generation workflows, such as in situ. Most of current
HPC monitoring tools are not specifically designed for
these workflows. Thus, utilizing these tools to eval-
uate in situ workflows is not straightforward. In this
work, we generalize in situ systems to bring to light
the unique characteristics of in situ workflows from an
evaluation standpoint.

2. We define a non-exhaustive list of imperative metrics
that need to be monitored for aiding the characteriza-
tion of in situworkflows. By reviewing the state-of-the-
art in profiling tools that are able to collect the metrics,
we confirm the feasibility of leveraging this set of met-
rics in the in situ workflow context. Additionally, we
highlight our novel approach of measuring idle time
for quantifying the efficiency of an in situ run.

3. We propose a framework to formalize in situ workflow
executions based on their iterative patterns. Under
the framework’s constraints, we develop a lightweight
approach that is beneficial when comparing the perfor-
mance of configuration variations in an in situ system.
The aim is to provide a lightweight approach that is
able to run concurrently with the in situ workflow and
possibly enable its adaptation at runtime.

4. We provide insights into the behaviors of in situ work-
flows by applying the proposed metric to characterize
an MD synthetic workflow. Leveraging the use of
limited computing resources for emulating simulation
behavior at large scales, we use this synthetic workflow
to prove the precision of the proposed metric and iden-
tify the in situ behavior in a wide range of simulation
systems.

5. We further examine the significance of in situ place-
ments on coupling performance through employing
the proposed metric in a practical workflow using a
real high-performance MD application. We claim that

our findings are valuable for designing an ensemble
of workflows, where multiple independent in situ cou-
plings are running at the same time.

2. Background and Related Work
In situ workflows monitoring. Many monitoring and perfor-
mance profiling tools for HPC applications have been devel-
oped over the past decade such as TAU [27], CrayPat [10], or
HPCTOOLKIT [1]. With the advent of in situ workflows [5],
new monitoring and profiling approaches targeting tightly-
coupled workflows have been studied. LDMS [2] is a loosely-
integrated scalable monitoring infrastructure that targets gen-
eral large-scale applications and delivers a low-overhead dis-
tributed solution, in contrast to TAU [27], which provides
a deeper understanding of the application at a higher com-
putational cost. SOS [36] provides a distributed monitoring
platform, conceptually similar to LDMS but specifically de-
signed for online in situ characterization of HPC applications.
An SOS daemon running on each compute node intercepts
events and registers them into a database; the monitored ap-
plication may fetch data from that database to get feedback.
TAU, in association with ML techniques, has been used to
tune the parameters of in situ simulations and optimize the
execution at runtime [39]. ADIOS [20], the next-generation
IO-stack, is built on top of many in situ data transport lay-
ers, e.g. DataSpaces [12] or DIMES [38]. Savannah [15], a
workflow orchestrator, has been leveraged to bundle a cou-
pled simulation with two main simulations, multiple analysis
kernels, and a visualization service [9]. The performance and
monitoring service was provided via SOS and the I/O mid-
dleware via ADIOS. These works focus mainly on providing
monitoring schemes for in situ workflows. Here we propose,
instead, a novel method to extract useful knowledge from the
captured performance data.
In situ data management. FlexAnalytics [40] optimizes the
performance of coupling simulations with in situ analytics
by evaluating data compression and query over different I/O
paths: memory-to-memory and memory-to-storage. A large-
scale data staging implementation [37] over MPI-IO opera-
tions describes a way to couple with in situ analysis using a
non-intrusive approach. The analytics accesses data staged to
the local persistent storage of compute nodes to enhance data
locality. Decaf [13] provides a message-driven dataflow mid-
dleware that supports both tight and loose coupling of in situ
tasks. Our work mainly focuses on in-memory staging and
comprehensively characterizes memory-to-memory transfer
using RDMA for both within a compute node (helper-core)
and across nodes (in transit). Smart [35] provides in situ
MapReduce-like interfaces for scientific analytics—a break-
through in being able to access in-memory simulated data,
though an intrusive approach. Our use case prototype has a
non-intrusive approach to employ in situ analytics through
two abstract components called the ingester and the retriever,
described in the next section.

Do et al.: Preprint submitted to Elsevier Page 2 of 15

A Lightweight Method for Evaluating In Situ Workflow Efficiency

3. General in situ workflow architecture
In this section, we describe the architecture of an in situ

workflow that underlies our study. We also define and moti-
vate a set of non-exhaustive metrics that need to be captured
for in situ workflow performance characterization.

.IjgQIpIg
¥�[�jg<[hQj¦

�<j<�
0g<[hd]gj�

 <sIg

�[OIhjIg �[<YsvIg/QZkY<jQ][

�[�ZIZ]gs�
/j<OQ[O��gI<

.IjgQIpIg
¥�IYdIg�E]gI¦

 QOPjqIQOPj�
�[<YsvIg

Figure 1: A general in situ workflow software architecture.

In situ architecture. In this work, we propose an in situ
architecture that enables a variety of in situ placements to
characterize the behavior of in situ couplings. Although we
focus on a particular type of in situ workflows (composed of
simulation and data analytics), our approach is broader and
applicable to a variety of in situ components. For example,
in situ components could consist of an ensemble of inde-
pendent simulations coupled together. The in situ workflow
architecture (Figure 1) features three main components:

• A simulation component that performs computations
and periodically generates a snapshot of scientific data.

• A data transport layer (DTL) that is responsible for
efficient data transfer.

• An analyzer component that applies several analysis
kernels to the data received periodically from the sim-
ulation component via the DTL.

In general, the data transport layer (DTL) may be imple-
mented using different technologies to enable data delivery
between workflow components, e.g. the use of Burst Buffers
for in transit processing [29], or complex memory hierar-
chies for in situ processing of small volumes of data and
a large number of computing jobs [17]. In this paper, we
leverage DataSpaces [12] as DTL implementation to enable
efficient and scalable in memory data staging among coupled
components, but our approach is agnostic from the DTL used.

On the data path “simulation-to-analyzer” depicted on Fig-
ure 1: (1) the ingester ingests data from a certain data source
and stores them in the DTL and the (2) retriever, in a reverse
way, gets data from the DTL to perform further operations.
These two entry points allow us to abstract and detach com-
plex I/O management from the application code. This ap-
proach enables more control in terms of in situ coupling and
is less intrusive than many current approaches. The ingester
synchronously inputs data from the simulation by sequentially
taking turns with the simulation using the same resource. The
ingester is useful to attach simple tasks to pre-process data
(e.g., data reduction, data compression). The architecture
allows in situ execution with various placements of the re-
triever. A helper-core retriever co-locates with the ingester
on a subset of cores where the simulation is running—it asyn-
chronously gets data from the DTL to perform an analysis. As
the retriever is using the helper-core placement, the analysis
should be lightweight to prevent simulation slowdown. An

Table 1
Selected metrics for in situ workflows characterization

Name Definition Unit

Makespan Total workflow execution time s
TimeSimulation Total time spent in the simulation s
TimeAnalytics Total time spent in the analysis s
TimeDTL Total time spent in data transfers s
TimeSimulationIdle Idle time during simulation s
TimeAnalyticsIdle Idle time during analysis s

Table 2
State-of-the-art tools used for profiling in situ applications.

TAU HPCToolkit CrayPat WOWMON SOS

Makespan [16] [26] [21] [39]
TimeSimulation [39, 16, 21] [26] [21] [39]
TimeAnalytics [39, 16, 21] [26] [21] [39]
TimeDTL [39, 16, 25] [26] [39] [25]

in transit retriever runs on dedicated resources (e.g., staging
I/O nodes [40]), receives data from the DTL and performs
compute-intensive analysis tasks. We compare helper-core
and in transit retrievers in detail in Section 6.
In situ workflow metrics. To characterize in situ workflows,
we have defined a foundational set of metrics (Table 1). As a
first metric, it is natural to consider the makespan, which is
defined as three metrics corresponding to time spent in each
component: the simulation, the analyzer, and the DTL. The
periodic pattern enacted by in situ workflows may impose
data dependencies between steps of coupled components, e.g.
the analyzer may have to wait for data sent by the simulation
to become available in the DTL for reading. Thus, wemonitor
the idle time of each individual component.

Most current HPC monitoring tools, such as TAU [27],
HPCToolkit [1], or CrayPat [10] aim to capture the perfor-
mance profile of standalone applications and, thus their de-
sign is inadequate for in situ workflows. Table 2 provides an
overview of whether these tools can be used to capture the
different metrics defined in Table 1. This literature search
further underlines the novelty of our utilization of the idle
time during the execution to characterize in situ workflows
because, to the best of our knowledge, no study used this
approach. Moreover, in this work, we use TAU for monitor-
ing purposes, mainly due to its versatility, as demonstrated
by Table 2.

Recent works (e.g., LDMS [2], SOS [36], and WOW-
MON [39]) have proposed general-purpose distributed ap-
proaches to provide global workflow performance informa-
tion by aggregating data from each component. Thanks to
those advanced frameworks, extracting meaningful profiling
data from in situ workflows is efficient. However, in situ
evaluation is still challenging due to the lack of thorough
guidelines for using these data to extract meaningful insights
on in situ workflows. Only a few studies [9, 18] have ad-
dressed this challenging problem. In this work, we focus on
how to use profiling data to characterize the in situworkflows.
The motivation behind this study is to address the lack of
characterization studies for in situ workflows.

Do et al.: Preprint submitted to Elsevier Page 3 of 15

A Lightweight Method for Evaluating In Situ Workflow Efficiency

4. In situ execution model
In this work, we propose a novel method to estimate

and characterize in situ workflows behaviors from collected
performance data. To this end, we develop a theoretical
framework of in situ executions. In this study, we consider
a dedicated failure-free platform without any interferences
(caches, I/O, network etc) from other applications.
4.1. Framework

In traditional workflows, the simulation and the post-
processing analyzer are typical components, in which the
post-processing follows the simulation in a sequential manner.
Let a stage be a part of a given component. We can identify
two main stages for each component (see Figure 2):

• Simulation component: (S) is the computational step
that produces the scientific data and (W) is the I/O (or
DTL) stage that writes the produced data.

• Analytics component: (R) is the DTL stage that reads
the data previously written and (A) is the analysis stage.

S W R A

Simulation Analytics

Figure 2: Classic workflow design featuring two components
and four stages.

However, in situ workflows exhibit a periodic behavior:
S,W ,R, andA follow the same sequential order but, instead
of operating on all the data, they operate only on a subset of
it iteratively. Here, this subset of data is called a frame and
can be seen as a snapshot of the simulation at a given time
t. Let Si,Wi, Ri, and Ai be respectively, the simulation, the
write, the read and the analysis stage at step i, respectively. In
other words, Si produces the frame i,Wi writes the producedframe i into a buffer, Ri reads the frame i, and Ai analyzesthe frame i. Note that, an actual simulation computes for a
given number of steps, but only a subset of these steps are
outputted as frames and analyzed [31]. The frequency of
simulation steps to be analyzed is defined by the stride. Let n
be the total number of simulation steps, s the stride, andm the
number of steps actually analyzed and outputted as frames.
We have m = n

S . However, we model the in situ workflow
itself and not only the simulation time (i.e., execution times
of Si,Wi, Ri, and Ai are known beforehand), thus the value
of the stride does not impact our model. We set s = 1 (or
m = n), so every step always analyzes a frame.
Execution constraints. To ensure work conservation we de-
fine the following constraint: ∑m

i=0 Si = S (m is the number
of produced frames). Obviously, we have identical constraints
forRi, Ai, andWi. Similarly to the classic approach, we have
the following precedence constraints for all i with 0 ≤ i ≤ m:

Si → Wi → Ri → Ai. (1)

6�:�:� 6�

5�

:�

$� 5�

6�

$�

6� :� 6�

5� $� 5� $�

:� 6�

5�

:�

$� 5�

6�

$�

6� :� :�6�

5�

:�6�

$� 5�

6�

$�

,6�

,$�

QRQ�RYHUODSSHG

RYHUODSSHG

RYHUODSSHG

QRQ�RYHUODSSHG

%XIIHU�
FRQVWUDLQW

([HFXWLRQ�
FRQVWUDLQW

5� $�

:� 6�

,Q�VLWX�VWHS

,Q�VLWX�VWHS

:�

5�

6�

$�

,Q�VLWX�VWHS

,Q�VLWX�VWHS
7LPH

,6�

,$�

(a) Idle Simulation scenario when S∗ +W∗ < R∗ + A∗

6�:�:� 6�

5�

:�

$� 5�

6�

$�

6� :� 6�

5� $� 5� $�

:� 6�

5�

:�

$� 5�

6�

$�

6� :� :�6�

5�

:�6�

$� 5�

6�

$�

,6�

,$�

QRQ�RYHUODSSHG

RYHUODSSHG

RYHUODSSHG

QRQ�RYHUODSSHG

%XIIHU�
FRQVWUDLQW

([HFXWLRQ�
FRQVWUDLQW

5� $�

:� 6�

,Q�VLWX�VWHS

,Q�VLWX�VWHS

:�

5�

6�

$�

,Q�VLWX�VWHS

,Q�VLWX�VWHS
7LPH

,6�

,$�

(b) Idle Analyzer scenario when S∗ +W∗ > R∗ + A∗

Figure 3: Two different execution scenarios for in situ workflow
execution.

S1 IS1 W1 R1 A1 IA1

S2 IS2 W2 R2 A2 IA2

S3 IS3 W3 R3 A3 IA3

Execution constraints

Buffer constraints

In situ step �1

Figure 4: Dependency constraints within and across in situ
steps with n = m = 3.

Buffer constraints. The pipeline design of in situ workflows
introduces new constraints. We consider a frame is analyzed
right after it has been computed. This implies that for any
given step i, the stageWi+1 can start if, and only if, the stage
Ri has been completed. Formally, for all i with 0 ≤ i ≤ m:

Ri → Wi+1. (2)
Equation (1) and Equation (2) guarantee that we buffer at
most one frame at a time (Figure 3). Note that, this constraint
can be relaxed such that up to k frames can be buffered at
the same time as follows, Ri → Wi+k, where 0 ≤ i ≤ m and
1 ≤ k ≤ m. In this work, we only consider the case k = 1
(red arrows in Figure 4).
Idle stages. Due to the above constraints, the different stages
are tightly-coupled (i.e, Ri and Ai stages must wait Si and
Wi before starting their executions). Therefore, idle periodscould arise during the execution (i.e., either the simulation
or the analytics must wait for the other component). We can
characterize two different scenarios, Idle Simulation and Idle
Analyzer in which idle time occurs. The former (Figure 3(a))
occurs when analyzing a frame takes longer to complete
compared to a simulation cycle (i.e., Si +Wi > Ri + Ai).The later (Figure 3(b)) occurs when the simulation component
takes longer to execute (i.e., Si +Wi < Ri + Ai). Figure 4provides a detailed overview of the dependencies among
the different stages. Note that, the concept of in situ step is
defined and explained later in the paper.

Intuitively, we want to minimize the idle time on both
Do et al.: Preprint submitted to Elsevier Page 4 of 15

A Lightweight Method for Evaluating In Situ Workflow Efficiency

sides. If the idle time is absent, then it means that we reach
the idle-free scenario: Si + Wi = Ri + Ai. To ease the
characterization of these idle periods, we introduce two idle
stages, one per component. Let ISi and IAi be, respectively,
the idle time occurring in the simulation and in the analysis
component for the step i. These two stages represent the idle
time in both components, therefore the precedence constraint
defined in Equation (1) results in:

Si → ISi → Wi → Ri → Ai → IAi . (3)
4.2. Consistency across steps

This work is supported by the hypothesis that every exe-
cution of in situ workflows under the above constraints will
reach a consistent state after a finite number of warming-up
steps. Thus, the time spent on each stage within an iteration
can be considered constant over iterations. Formally, there
exists j where 0 ≤ j < m such that for all i where j ≤ i ≤ m,
we have Si = Sj . The same holds for each stage,Wi, Ri, Ai,
ISi , and, IAi . This hypothesis is confirmed in Section 5.3, and
in practice, we observe that the cost of these non-consistent
steps is negligible. Our experiments showed that, on average,
j ≤ 3 for one hundred steps (m = 100). Therefore, we ignore
the warming steps and we consider j = 0. For the sake of sim-
plicity, we generalize in situ consistency behavior by denoting
S∗ = Si for all i ≥ j. We also have similar notations for
R∗, A∗, IS∗ , I

A
∗ andW∗. This hypothesis allows us to predict

the performance of a given in situ workflow by monitoring a
subset of steps, instead of the whole workflow. From the two
constraints defined by Equation (3) and Equation (2), and our
hypothesis, we define:

S∗ + IS∗ +W∗ = R∗ + A∗ + IA∗ . (4)
The Idle Simulation scenario is when IA∗ = 0, and IS∗ = 0
for Idle Analyzer scenario. Let I∗ be the total idle time for
an in situ step, using Equation (4) we derive:

I∗ = IS∗ + IA∗ =

{

R∗ + A∗ − S∗ −W∗, if IA∗ = 0
S∗ +W∗ − R∗ − A∗, if IS∗ = 0

(5)
= |

|

S∗ +W∗ − (R∗ + A∗)|| . (6)
Here, we could define the idle time a bit differently by saying
that

I ′∗ = S∗ +W∗ − (R∗ + A∗). (7)
We can keep the sign for this indicator, and then define

I ′∗ > 0 → Idle Analysis, IA∗ = I ′∗
I ′∗ < 0 → Idle Simulation, IS∗ = −I ′∗

An example of these values is plotted in Figure 10, along
with the equilibrium point, which defines the configurable
parameters at which the workflow execution switches from
one scenario to another. The equilibrium point is determined
at the point where I∗ = I ′∗ = 0.

We assume the read/write operations are fast compared
to the simulation and analysis stages, which is confirmed
in Section 5.3, we can write:

I ′∗ ≈ S∗ − A∗ (8)
Now we take the stride s, which defines after how many
simulation steps a frame is outputted to the analytics, into
consideration for further analysis. Assuming we know the
wall-clock time tS for one simulation step (using the output
of running the simulation independently), we have S∗ = stS .The equilibrium point is attained when

stS − A∗ = 0 (9)
from which we can deduce, for example, given some resource
allocation, to minimize the idle time, theoretically, we should
set the stride approximately to

s̄ = A∗∕tS . (10)
In practice, the equilibrium point could slightly change from
this optimal value due to the resource contention of co-located
in situ components, which is discussed in detail in Section 6.

4.3. In situ step
The challenge behind in situ workflows evaluation lies

in collecting global information from multiple components
(in our case, the simulation and the analytics) and use this
information to derivate meaningful characteristics about the
execution. The complexity of such a task is correlated to
the number of steps the workflow is running and the number
of components involved. By leveraging the consistency hy-
pothesis in Equation (4), we propose to alleviate this cost by
proposing a metric that does not require data from all steps.
The keystone of our approach is the concept of in situ step.
Based on Equation (3), the in situ step �i is determined by
the timespan between the beginning of Si and the end of
IAi . The in situ step concept helps us to manipulate all the
stages of a given step as one consistent task executing across
components that can potentially run on different machines.

Different in situ steps overlap each other, so we need to
distinguish the part that is overlapped (�′i) from the other
part (�i). Thus, �i = �i + �′i . For example, in Figure 3(a),
to compute the time elapsed between the start of �4 and theend of �5, we need to sum the two steps and remove the
overlapped execution time �′4. Thus, we obtain �4 + �5 − �′4.This simple example will give us the intuition behind the
makespan computation in Section 4.4.

The consistency hypothesis insures consistency across
in situ steps. We denote �∗ as the consistent in situ step
(i.e, ∀ i, �i = �∗), while �′∗ and �∗ indicate, respectively, theoverlapped and the non-overlapped part of two consecutive
in situ steps. Thus, �∗ = �∗+�′∗. To calculate the makespan,
we want to compute the non-overlapped step �∗. As shownin Figure 3, the non-overlapped period �∗ is the aggregationof all stages belonging to one single component in an in situ

Do et al.: Preprint submitted to Elsevier Page 5 of 15

A Lightweight Method for Evaluating In Situ Workflow Efficiency

step:

�∗ =

{

S∗ + IS∗ +W∗, if IS∗ ≥ 0
R∗ + A∗ + IA∗ , if IA∗ ≥ 0

(11)

We have two scenarios, if IS∗ = 0, IA∗ ≥ 0 (Idle Analyzer)
then �∗ = S∗ +W∗, otherwise �∗ = R∗ + A∗. Hence,

�∗ = max(S∗ +W∗, R∗ + A∗). (12)
4.4. Makespan

A rough estimation of the makespan of such workflow
would be the sum of the execution time for all the stages
(i.e, sum up the m in situ steps �i). But, recall that in situ
steps interleave with each other, so we need to subtract the
overlapped parts:

MAKESPAN = m�∗ − �′∗ (m − 1) = m�∗ + �′∗. (13)
From Equation (13), for m large enough, the term �′∗ be-
comes negligible. Since in situ workflows are executed with
a large number of iterations, then MAKESPAN = m�∗ (recallthat �∗ = �∗ + �′∗). This observation indicates that the non-overlapped part of an in situ step is enough to characterize
a periodic in situ workflow. From Equation (11), minimiz-
ing the makespan is equivalent to reducing the idle time to
zero, which confirms the smallest makespan occurs at the
equilibrium point (i.e., when the idle time is equal to zero).
Therefore, the in situ execution is necessary to be driven to
the equilibrium point. Using our framework and these obser-
vations, we further define a metric to estimate the efficiency
of a workflow.
4.5. In situ efficiency

Based on our in situ execution model, we propose a novel
metric to evaluate resource usage efficiency E of an in situ
workflow. We define efficiency as the time wasted during
execution—i.e., idle times IS∗ and IA∗ . This metric considers
all the components (simulation and the analysis) for evaluat-
ing in situ workflows:

E = 1 −
I∗
�∗

= 1 −
|

|

S∗ +W∗ − (R∗ + A∗)||
max(S∗ +W∗, R∗ + A∗)

. (14)

This efficiency metric allows for performance comparison be-
tween different in situ runs with different configurations. By
examining only one non-overlapped in situ step, we provide a
lightweight approach to observe behavior from multiple com-
ponents running concurrently in an in situ workflow. This
metric can be used as an indicator to determine how far the
in situ execution is from the equilibrium point, where I∗ = 0
orE = 1. We then get an idea of how to adjust the parameters
to approach the equilibrium point, at which the makespan is
minimized (see Section 4.4). Note that, this model and the
efficiency metric can be easily generalized to any number of
components.

5. Molecular dynamics synthetic workflow
MD is one of the most popular scientific applications ex-

ecuting on modern HPC systems. MD simulations reproduce
the time evolution of molecular systems at a given tempera-
ture and pressure by iteratively computing inter-atomic forces
and moving atoms over a short time step. The resulting trajec-
tories allow scientists to understand molecular mechanisms
and conformations. In particular, a trajectory is a series of
frames, i.e. sets of atomic positions saved at fixed intervals of
time. The stride is the number of time steps between frames
considered for storage or further in situ analysis. For example
in our framework, for a simulation with 100 steps and a stride
of 20, only 5 frames will be sent by the simulation to the
analysis component. Since trajectories are high-dimensional
objects and many atomic motions such as high-frequency
thermal fluctuations are usually of no interest, scientists use
well-chosen collective variables (CVs) to capture important
molecular motions. Technically, a CV is defined as a func-
tion of the atomic coordinates in one frame. Reduced to time
series of a small number of such CVs, simulated molecular
processes are much more amenable to interpretation and fur-
ther analysis. A CV can be as simple as the distance between
two atoms, or can involve complex mathematical operations
on a large number of atoms. An example of a complex CV
that we will use in this work is the Largest Eigenvalue of the
Bipartite Matrix (LEBM). Given two amino acid segments
A and B, if dij is the Euclidean distance between C� atoms
i and j, then the symmetric bipartite matrix BAB =

[

bij
] is

defined as follows:

bij =

⎧

⎪

⎨

⎪

⎩

dij , if i ∈ A and j ∈ B
dij , if i ∈ B and j ∈ A
0, otherwise.

(15)

Note that BAB is symmetric and has zeroes in its diagonal.
Johnston et al. [19] showed that the largest eigenvalue ofBABis an efficient proxy to monitor changes in the conformation
of A relative to B.
5.1. Workflow description

In order to study the complex behavior resulting from
coupling a MD simulation and with an analysis component
in the previously discussed parameter space, we have de-
signed a synthetic in situ MD workflow (Figure 5). The
Synthetic Simulation component extracts frames from pre-
viously computed MD trajectories instead of performing an
actual, compute-intensive MD simulation. This synthetic
workflow is an implementation of the general and abstract
software architecture proposed in Section 3.
Synthetic Simulation. The Synthetic Simulation emulates
the process of a real MD simulation by extracting frames
from trajectories generated previously by an MD simula-
tion engine. The Synthetic Simulation enables us to tune
and manage many simulation parameters (discussed in detail
in Section 5.2) including the number of atoms and strides,
which helps the Synthetic Simulation mimic the behavior

Do et al.: Preprint submitted to Elsevier Page 6 of 15

A Lightweight Method for Evaluating In Situ Workflow Efficiency

.IjgQIpIg

/s[jPIjQE�/QZkY<jQ][�[<YsvIg�<j<�0g<[hd]gj� <sIg

�[�ZIZ]gs�
/j<OQ[O��gI<

�rjg<Ej]g

�[OIhj]g�

!��
�[<YsjQEh

6\QWKHWLF�0ROHFXODU�'\QDPLFV�:RUNIORZ

�ZkY<jIG�GIY<s

¥Â¦

¥Ã¦

¥Ä¦

¥Å¦

7UDMHFWRULHV�

¥Æ¦

¥Ç¦

¥È¦

Figure 5: Synthetic Workflow: the Extractor (1) sleeps during
the emulated delay, then (2) extracts a snapshot of atomic
states from existing trajectories and (3) stores it into a synthetic
frame. The Ingestor (4) serializes the frame as a chunk and
stages it in memory, then the Retriever (5) gets the chunk from
the DTL and deserializes it into a frame. Eventually, the MD
Analytics performs certain analysis algorithm on that frame.

of real molecular dynamics simulation. Note that, since the
Synthetic Simulation does not emulate the computation part
of the real MD simulation, it mimics the behavior of the I/O
processes of the simulation. Thus, we define the emulated
simulation delay, which is the period of time corresponding
to the computation time in the real MD simulation. In order
to estimate such delay for emulating the simulation time for
a given stride and number of atoms, we use recent bench-
marking results from the literature obtained by running the
well-known NAMD [22] and Gromacs [24] MD engines. We
considered the benchmarking performance for five practical
system sizes of 81K, 2M, 12M atoms from Gromacs [24] and
21M, 224M atoms from NAMD [22] to interpolate to the
simulation performance with the desired number of atoms
(Figure 6(a)). The interpolated value is thenmultiplied by the
stride to obtain the delay (i.e., a function of both the number
of atoms and the stride).

In Section 5.2, we run the synthetic workflow with 200K,
400K, 800K, 1.6M, 3.2M, and 6.4M protein atoms. Fig-
ure 6(b) shows the emulated simulation delay when varying
the stride for different numbers of atoms. The stride varying
between 4–16K delivers a wide range of emulated simulation
delays, up to 40s.
Data Transport Layer (DTL). The DTL Server leverages
DataSpaces [12] to deploy an in memory staging area for
coupling data between the Synthetic Simulation and the An-
alyzer. DataSpaces follows the publish/subscribe model in
terms of data flow, and the client/server paradigm in terms of
control flow. The workflow system has to manage a DataS-
paces server to manage data requests, keep metadata, and
create in memory data objects.
Analyzer. The Analyzer plays the role of the analytics compo-
nent in the synthetic in situ workflow. More specifically, the
Retriever subscribes to a chunk from the in memory staging
area and deserializes it into a frame. The MD Analytics then
performs a given type of analysis on this frame. Recall that,
in our model, only one frame at a time can be store by the
DTL (see Figure 4). We leverage DataSpaces built-in locks to
ensure that a writing operation to the in memory staging area
can only happen when the reading operation of the previous
step is complete (constraint model by Equation (2)). Thus,
the Analyzer is instructed by DataSpaces to wait for the next

81
K 2M 12

M
21

M
22

4M

Number of atoms

0

50

100

150

200

P
er

fo
rm

an
ce

(n
s/

da
y)

Benchmarked

Estimated

(a) Interpolated MD performance

24 8 16 32 64
Number of atoms ×105

0

10

20

30

E
m

ul
at

ed
de

la
y(

s)

Stride = 1000

Stride = 4000

Stride = 16000

(b) Emulated simulation delay

Figure 6: MD benchmarking results from the literature obtained
by using 512 NVIDIA K20X GPUs. The results are interpolated
to obtain the (a) estimated performance and then combined
with the stride to synthesize the (b) emulated simulation delay.

chunk available in the in memory staging area. Once a chunk
has been received and is being processed, the Synthetic Sim-
ulation can send another chunk to the Analyzer.
5.2. Experimental setups

For our experiments we use Tellico (UTK), an IBMPOWER9
system that includes four 32-core nodes (2 compute nodes)
with 256GB RAM each. Each compute node is connected
through an InfiniBand interconnect network. Since the Syn-
thetic Simulation only emulates the I/O operations of an
MD simulation without replicating the actual computation,
resource contention is not expected to produce the dispar-
ity in execution performance between different component
placements. Moreover, the main contribution of the Syn-
thetic Simulation is its ability of mimicking the actions of
a real simulation engine with fewer resource requirements.
For these reasons, we leverage this synthetic workflow to (i)
validate the accuracy of the proposed in situ metrics; and
(ii) characterize the behavior of coupling a simulation with
a variety of system sizes with an in situ analytics. The Syn-
thetic Simulation runs on one physical core on a single com-
pute node as it mimics the behavior of a real simulation.
On the other hand, the Analyzer and the DataSpaces server
are co-located on another dedicated node. Particularly, the
Analyzer computes bipartite matrices (see Section 5) using
multiple parallel processes, which improves CV calculation
efficiency. After experimenting with different numbers of
Analyzer processes, we fixed that number at 16 processes
(number of cores of an IBM AC922) to reach a good speed

Do et al.: Preprint submitted to Elsevier Page 7 of 15

A Lightweight Method for Evaluating In Situ Workflow Efficiency

Table 3
Parameters used in the experiments

Parameter Description Values used in the experiments

Synthetic simulation

#atoms Number of atoms [2 × 105 , 4 × 105 , 8 × 105 ,
16 × 105 , 32 × 105 , 64 × 105]

#strides Stride [1000, 4000, 16000]
#frames Number of frames 100

Data transport layer

SM Staging method DATASPACES

Analyzer

CV Collective variable LEBM
lsegment Length of segment pairs 16

24 8 16 32 64
#atoms ×105

0

100

T
im

e(
s)

Figure 7: Execution time of LEBM on 16 cores, and using a
segment length of 16. The fraction of alpha-amino acids in the
entire system is equal to 0.00469.

up and to fit the entire Analyzer within one compute node.
Parameter space. Table 3 describes the parameters used in
the experiments. For the Synthetic Simulation, we study the
impact of the number of atoms (the size of the system) and
the stride (the frequency at which the Synthetic Simulation
component sends a frame to the Analyzer through the DTL).
We consider a constant number of 100 frames to be analyzed
due to the time constraint and the consistency in the behav-
ior between in situ steps. For the DTL, we use the staging
method DATASPACES for all the experiments, in which the
staging area is in the main memory of the node assigned
to the DataSpaces server. For the Analyzer, we choose to
calculate a compute-intensive set of CVs (LEBM, Section 5)
for each possible pair of non-overlapping segments of length
16. If there are n amino acids (alpha amino acids) in the sys-
tem, there are N = f loor(n∕16) segments, which amounts
toN(N − 1)∕2 LEBM calculations ((n2)). To fairly inter-
pret the complexity of this analysis algorithm related to the
system size, we manipulate the number of amino acids to be
proportional to the number of atoms. For example, the sys-
tem of 400K atoms yields 2 fold larger number of segments
compared to the system of 200K atoms. Figure 7 illustrates
the LEBM’s runtime with respect to the number of atoms.

We leverage user-defined events to collect the proposed
metrics using TAU [27] (Section 3). We focus on two differ-
ent levels of information, the workflow level and the in situ
step level (the time taken by the workflow to compute and
analyze one frame). At the in situ step level, each value is
averaged over three runs for each step. At the workflow level,
each value is averaged over all in situ steps at steady-sate

0 20 40 60 80 100
Step

0

10

20

T
im

e(
m

s)

Synthetic Simulation stages

0 20 40 60 80 100
Step

0

10

20
Analyzer stages

Si

ISi
Wi

Ri

Ai

IAi

(a) stride = 1000 with 8 × 105 atoms

0 20 40 60 80 100
Step

0

10

20

T
im

e(
m

s)

Synthetic Simulation stages

0 20 40 60 80 100
Step

0

10

20

Analyzer stages

(b) stride = 4000 with 8 × 105 atoms
Figure 8: Execution time per step for each component. The
Synthetic Simulation stages are on the left and the Analyzer
stages are on the right (lower is better).

and then averaged over the three runs. We also depict the
standard deviation to assess the statistical significance of the
results. There are two levels of statistical error: for averages
across the 3 trials at the in situ step level, and for averages
over 94 in situ steps (excluding the three first steps and the
three last steps) in each run at the workflow level.
5.3. In situ step characterization

We study the correlation of individual stages in each
in situ step. Due to lack of space, the discussion is limited
to a subset of the parameter space as the representative of
two characterized idle-based scenarios. Figure 8 shows the
execution time per step for each component with stride values
of 1000 and 4000 steps. Confirming the consistency hypoth-
esis across steps discussed in Section 4.2, we observe that
the execution time per step is nearly constant, except for a
few warm-up and wrap-up steps. Figure 8(a) falls under the
Idle Simulation (IS) scenario, as the ISi stage only appears
in the Synthetic Simulation step. Similarly in Figure 8(b),
we observe the Idle Analyzer (IA) scenario because of the
presence of IAi . These findings verify the existence of the twoidle-based scenarios discussed in Section 4.1. Since both the
Synthetic Simulation and Analyzer are nearly synchronized,
we also underline that the execution time of a single step
for each component is equal to each other. This information
confirms the property of in situ workflows in Equation (4).
Overall, we can observe that the I/O stages (Wi and Ri) take

Do et al.: Preprint submitted to Elsevier Page 8 of 15

A Lightweight Method for Evaluating In Situ Workflow Efficiency

24 8 16 32 64
#atoms ×105

50

100

T
im

e(
s)

0.6

0.8

1.0

1.2

1.4

R
at

io

Estimated I∗
Measured I∗
Estimated I∗ / Measured I∗

Figure 9: Left y-axis: total idle time I∗ using an helper-core
placement at stride 16000 (the lower the better). Estimated
I∗ is estimated from |

|

S∗ +W∗ − (R∗ + A∗)||, and Measured I∗
is measured from IS∗ + IA∗ . Right y-axis: ratio Estimated I∗ /
Measured I∗ (the closest to 1 the better).

an insignificant portion of time compared to the full step.
This negligible overhead verifies the advantage of leveraging
in-memory staging for exchanging frames between coupled
components.
5.4. Idle time observation

By examining the total idle time, we study the impact of
the number of atoms, stride on the performance of the entire
workflow and each component for different scenarios.
Accuracy of estimated idle time. For different system sizes,
Figure 9 demonstrates the similarity betweenMeasured I∗that is the measured idle time in one in situ step and Estimated
I∗, which is the idle time estimation computed using Equa-
tion (5). The ratio between Estimated and Measured idle
time is close to 1, confirming the accuracy of Equation (5)
to estimate the idle time I∗ for each in situ step, which allowsus to apply this relationship to identify the execution scenario
that the workflow is following.
Execution scenarios. Figure 10 shows that the workflow
execution follows our model (Figure 3). The blue regions
in Figure 10 represent the Idle Simulation scenario when
S∗ +W∗ < R∗ + A∗, and the yellow area indicates the Idle
Analyzer scenario when S∗ +W∗ > R∗ +A∗. While increas-
ing the number of atoms, which increases the simulation time
and the chunk size, the total idle time I∗ decreases in the
Idle Simulation scenario, and increases in the Idle Analyzer
scenario. Every in situ step exhibits a similar pattern in which
at a certain system size the workflow execution switches from
one scenario to another. We notice that with larger stride,
the equilibrium point occurs at larger system sizes. As the
stride increases, the Synthetic Simulation sends frames to the
Analyzer less often. Therefore, increasing the stride reduces
the gap between S∗ +W∗ and R∗ + A∗, which also leads to
a equilibrium point reached with a smaller number of atoms.
With a stride of 4000, the equilibrium point occurs at #atoms
= 8 × 105 , but it occurs at #atoms = 16 × 105 with a stride
of 16000. At a stride of 1000, the execution follows the Idle
Simulation scenario for all observed number of atoms and the
equilibrium point cannot be reached in this range of system
size.

5.5. Estimated makespan
The goal is to verify the assertion made by Equation (13)

stating the MAKESPAN of an in situ workflow can simply
be expressed as the product of the number of steps and the
time of one step m�∗. A typical MD simulation can easily
feature > 107 number of in situ steps, thus a metric requir-
ing only a few steps to be accurate is interesting. Figure 11
demonstrates the strength of our approach to estimate the
MAKESPAN (maximum error ∼ 5%) using our definition of
in situ steps, in addition to the accuracy of our model. In
in situ workflows run with a larger number of steps, monitor-
ing the entire system increases the pressure and slows down
the execution. Thus, without failures and external loads, only
looking at a single non-overlapped step results in a scalable,
accurate, and lightweight approach.
5.6. Resource usage efficiency

We utilize the efficiency metricE given by Equation (14),
to evaluate an in situ configuration within the objective to
propose a metric that allows users to characterize in situ
workflows. Figure 12 shows that the efficiency E increases
and reach a maximum in the Idle Simulation scenario, and
decreases after this maximum in the Idle Analyzer scenario.
Thus, an in situ run is most efficient at the equilibrium point,
where E ≈ 1. If a run is less efficient and classified as the
Idle Analyzer scenario, it has more freedom to perform other
analyses or increase the analysis algorithm’s complexity. In
the Idle Simulation scenario, the simulation is affordable to
emulate the motions of a larger number of atoms to more
efficiently use the resource sitting idle.

6. Molecular dynamics realistic workflow
In this section, in order to observe performance interfer-

ence between applications running in situ, we replace the
Synthetic Simulation by a high-performance molecular dy-
namics simulation engine. We use this realistic workflow
to study the effect of different component placements on
workflow execution characterization.
6.1. Workflow Description

The simulation component in this practical workflow per-
forms MD computation instead of sitting idle as the Syn-
thetic Simulation does, thus it consumes memory that con-
tends with the co-located Analyzer executing on the same
resource.
Practical Simulation. The Practical Simulation (see Fig-
ure 13) utilizes the MD software package GROMACS [24]
to simulate biomolecular processes. GROMACS enables
diverse levels of parallelism, i.e. multithreading and pro-
cess communication via message passing. However, this
MD engine does not explicitly allow us to extract in-memory
frames during the course of the run without manually in-
truding the source code. To offer a non-intrusive approach,
we use Plumed [32] that intercepts function calls done by
GROMACS periodically to get a snapshot of the system state
in memory. An additional layer implemented by Plumed is

Do et al.: Preprint submitted to Elsevier Page 9 of 15

A Lightweight Method for Evaluating In Situ Workflow Efficiency

2 4 8 16 32 64
#atoms ×105

0

50

100

150

T
im

e(
s)

Idle Analyzer

Idle Simulation
Idle time I∗

(a) Stride = 1000

2 4 8 16 32 64
#atoms ×105

0

50

100

150
Equilibrium Point

Idle Analyzer

Idle Simulation
Idle time I∗

(b) Stride = 4000

2 4 8 16 32 64
#atoms ×105

0

50

100

150
Equilibrium Point

Idle Analyzer

Idle Simulation
Idle time I∗

(c) Stride = 16000

Figure 10: Detailed idle time I∗ for three component placements at different strides when
varying the number of atoms (lower is better).

24 8 16 32 64
#atoms ×105

5000

10000

15000

20000

T
im

e(
s)

0.0

0.5

1.0

1.5

2.0

R
at

io

Measured Makespan

Estimated Makespan

Estimated Makespan / Measured Makespan

Figure 11: Makespan is estimated from 100 �∗ with stride
16000, the yellow region represents the error. Ratio of Esti-
mated Makespan to Measured Makespan uses the second
y-axes on the right (close to 1 is better).

2 4 8 16 32 64
#atoms ×105

0

25

50

75

100

R
es

ou
rc

e
U

sa
ge

E
ffi

ci
en

cy
(%

)

Stride = 1000

Stride = 4000

Stride = 16000

Figure 12: Resource usage efficiency (higher is better)

placed on top of the corresponding simulation as an external
library. Therefore, this Plumed kernel approach to obtaining
in-memory frames is not restrictive to a specific simulation
engine, but applicable to a variety of MD codes as long as
Plumed provides support for being incorporated in such MD
applications. In particular, a Plumed kernel function is called
in every interval of time, which is determined by the stride,
to collect atomic coordinates at the corresponding simulation
step. Molecular positions are then serialized into an abstract
chunk to be compatible with the data abstraction conducted
by the interface of the Ingestor. Since the chunk is reach-

.IjgQIpIg

/QZkY<jQ][�[<YsvIg�<j<�0g<[hd]gj� <sIg

�[�ZIZ]gs�
/j<OQ[O��gI<

�.$!�/

�[OIhj]g�

]YYIEjQpI�
p<gQ<DYI�

E<YEkY<jQ][¥Ä¦

+YkZIG

¥Â¦

¥Ã¦ ¥Å¦

¥Æ¦

¥Ç¦*OW3K

Figure 13: Practical Workflow: GROMACS (1) simulates the
motion of the atomic system in steps, where Plumed (2) inter-
feres with every stride to update and gather new coordinates
and store it into a frame. The Ingestor (3) serializes the frame
as a chunk and stages it in memory, then the Retriever (5)
gets the chunk from the DTL and deserializes it into a frame.
Eventually, the MD Analytics performs the same analysis algo-
rithm of CV calculation on that frame compared to Synthetic
Workflow.

able by the Ingestor, the dataflow then acts similarly to the
Synthetic Workflow.
Data Transport Layer and Analyzer. In this workflow, the
DTL and the Analyzer remain the same at the synthetic work-
flow discussed in Section 5.
6.2. Experimental setups

In this experiment, we study two component placements:
(i) helper-core—where the Synthetic Simulation, the DataS-
paces server, and the Analyzer are co-located on the same
compute node; and (ii) in transit where the Analyzer and
the DataSpaces server are co-located on one node, and the
Synthetic Simulation runs on a dedicated node. We use the
same machine, Tellico, which is described in Section 5.2.
The experimental plan is designed to yield baseline insights
on a simulation coupled with an in situ analysis task in the
context of ensemble workflows. An ensemble workflow is
comprised of many small-scale simulations [23] that run in-
dependently of each other. Hence, insights from a single
simulation-analysis integration will scale up to the entire
workflow.

On the simulation side, we conduct a GROMACS run
on 24 cores of a compute node, while the remaining cores
of the node are assigned to the Analyzer and the DataSpaces
server in the helper-core placement. Specifically, we run

Do et al.: Preprint submitted to Elsevier Page 10 of 15

A Lightweight Method for Evaluating In Situ Workflow Efficiency

Table 4
Parameters used in the experiments

Parameter Description Values used

Practical simulation- Gltph system

#atoms Number of atoms 268552
#strides Stride [1000, 2000, 3000,

4000, 5000]
#steps Number of simulation steps 45000
#frames Number of frames #steps / #strides

Data transport layer

SM Staging method DATASPACES

Analyzer

CV Collective variable LEBM
lsegment Length of segment pairs 2
#threads Number of threads 4
#repetitions Number of times computing CV 10

the analytics on 4 physical cores and set 1 core to execute a
DataSpaces server. In contrast to the helper-core placement,
the Analyzer and the DTL server reside in a separate node in
the in transit placement. We keep the resources assigned for
each component comparable in both placements to demon-
strate the impact of such the component placement on the
execution of an in situ workflow. The details of the parameter
space used in this experiment are specified in Table 4.

For the Practical Simulation, we selected a medium-scale
all-atom system that we used in a previous publication[3] on
the molecular mechanism of active neurotransmitter trans-
port across the cellular membrane. That study focused on the
GltPh transporter protein, which is an archaeal homolog of
the human excitatory amino acid transporter (EAAT) family
of proteins which are implicated in many neurological disor-
ders and are responsible for permanent neurological damage
after strokes. The 268552-atom model system contains the
GltPh transporter protein (three identical chains of 605 amino
acids, X-ray structure from PDB entry 2NWX[8]) embedded
in a lipid bilayer and surrounded by water molecules and
a physiological concentration of Na+ and Cl- ions. Molec-
ular interactions are parameterized with the CHARMM36
forcefield[6] implemented in GROMACS[7], with standard
simulation settings and a time steps of 2 fs.

To test our analysis workflow with GltPh, we explore
different strides of 1000, 2000, 3000, 4000, 5000 time steps,
at which Plumed generates in-memory frames for later pro-
cessing. Thus for each #strides, the number of generated
frames on the simulation side, which is also equivalent to the
number of analyzed frames on the analysis side, is calculated
as #steps

#strides . In this experimental setup, we vary the stride as a
configurable parameter to find the equilibrium point. How-
ever, this parameter is not only restricted to the stride, we are
always able to set the equilibrium point to different param-
eters. On the Analyzer side, the analysis kernel computes
a set of 10 LEBM collective variables (Section 5) for each
possible pair of non-overlapping segments of length 2. The
complexity of this CV computation with respect to the pre-
defined segment length is discussed in Section 5.2. For the
DTL, the memory staging method DATASPACES is used for

all subsequent experiments in this section, and data resides in
the memory of the node where the DataSpaces server runs.

Due to the difficulty of linking TAU to Plumed, in this
experiment, we manually inserted timers to collect perfor-
mance data that is necessary for the proposed in situ metrics.
Similar statistical methods (Section 5.2) are applied, so we
can accumulate experimental error across both trials and
in situ steps at the same time. We still eliminate the first three
in situ steps and the last in situ step to assure in situ metrics
are collected in the steady state where consistent behavior is
observed across in situ steps.
6.3. In situ step characterization over component

placements
We examine each in situ step over different placements

of in situ tasks. Figure 14 illustrates the time spent in each
stage on both the simulation and the analysis side at stride
1000. Since the practical workflow satisfies dependency con-
straints within an in situ step and across the aforementioned
stages, the behavior is observed to be approximately stable
as expected in the steady state regime. The results are shown
at stride 1000 only due to lack of space, but we note that
the consistency is present for every given stride. This ex-
periment confirms the applicability of our proposed in situ
metrics. In addition, the in transit scheme appears to result
in less bursty behavior in terms of execution compared to
the helper-core scenario. The fluctuations observed when
using helper-core are due to resource contentions between
co-located applications.
6.4. Makespan with different component

placements
In Section 5.5, we have confirmed the assumption of

consistency across steps and thus, our in situ metric, for the
synthetic scenario and for one component placement. Here,
we further estimate the MAKESPAN from the non-overlapped
step �∗ based on Equation (13) using different component
placements. In terms of execution scenarios, an in situ run
is classified by the Idle Simulation and the Idle Analyzer in
Section 4.1. In this experiment, we are able to determine
which range of strides leads to which scenario as shown in
Figure 15. We define the equilibrium point as the inflexion
point where the transition from Idle Simulation to Idle An-
alyzer happens (i.e., the equilibrium point corresponds to a
perfect execution with zero idle time).

Figure 15 compares the MAKESPAN between the helper-
core and in transit placement. At first glance, the estimated
MAKESPAN is close to the measured MAKESPAN in both
scenarios. The equilibrium point happens at stride 2000 to
stride 3000 in the in transit scheme, whereas the equilibrium
point of the helper-core placement occurs at larger stride
(from stride 3000 to stride 4000). This finding confirms that
the in transit configuration allows executing more frequent
analyses at better efficiency than the helper-core does. In the
Idle Analyzer case, there is no big difference in MAKESPAN
between the helper-core and the in transit case. Another way
to state this is that component placement hasmore importance

Do et al.: Preprint submitted to Elsevier Page 11 of 15

A Lightweight Method for Evaluating In Situ Workflow Efficiency

0 5 10 15 20 25 30 35 40 45
Step

0

50

100

150

200

T
im

e(
s)

Simulation + plumed stages

0 5 10 15 20 25 30 35 40 45
Step

0

50

100

150

200
Analyzer stages

Si

ISi
Wi

Ri

Ai

IAi

(a) stride = 1000 with helper-core placement

0 5 10 15 20 25 30 35 40 45
Step

0

50

100

150

200

T
im

e(
s)

Simulation + plumed stages

0 5 10 15 20 25 30 35 40 45
Step

0

50

100

150

200
Analyzer stages

(b) stride = 1000 with in transit placement

Figure 14: Execution time per in situ step for each component
with the helper-core and in transit placement. The Practi-
cal Simulation stages are on the left and the Analyzer stages
are on the right (lower is better).

1000 2000 3000 4000 5000
Stride

0

2000

4000

6000

T
im

e(
s)

Helper-core Equilibrium Point

In transit Equilibrium Point

Helper-core Measured Makespan

Helper-core Estimated Makespan

In transit Measured Makespan

In transit Estimated Makespan

Figure 15: Makespan is estimated from Equation (13) over
the helper-core and in transit component placement, the yellow
region represents the error of the Estimated Makespan from
the Measured Makespan.

in the Idle Simulation scenario, which corresponds to the case
when the analytics are performed at high frequency. Although

1000 2000 3000 4000 5000
Stride

0

20

40

60

80

100

R
es

ou
rc

e
U

sa
ge

E
ffi

ci
en

cy
(%

)

Helper-core Equilibrium Point

In transit Equilibrium Point

Helper-core

In transit

Figure 16: Resource usage efficiency of the practical workflow
over a variety of strides (higher is better)

the experiment is conducted on a single simulation coupled
with an in situ analysis task, the trend observed here sets the
foundation for scaling up to many simulations in the context
of ensembles workflows.
6.5. Resource usage efficiency over component

placements
As discussed in Section 5.4, evaluating the coupling per-

formance of different component placements using the idle
time in an in situ step is challenging due to the involvement
of multiple concurrent tasks competing for computing re-
sources and due to the large parameter space for each com-
ponent. In this section, we leverage the efficiency metric E,
Equation (14), to determine how efficient an in situ run is
with respect to a given configuration. Figure 16 shows this
efficiency value with different strides and over the helper-
core and in transit placements. The comparison between two
given in situ runs becomes straightforward using E as the
indicator. The higher the E value is, the more efficient the
in situ execution is, in terms of resource usage. The helper-
core case has the best resource usage efficiency (∼ 100%) at
larger stride, or lower frequency of the Analyzer compared to
the in transit case. Resource contention between co-located
applications in the helper-core placement results in the ef-
ficiency degradation when performing the analytics at high
frequency. This finding introduces a trade-off between com-
puting resource cost and the analysis frequency in designing
an in situ system. Finally, as expected, a run with a stride
close to the equilibrium point gives a better resource usage
efficiency.

7. Conclusions
In this study, we explored the challenges of evaluating

next-generation in situ workflows. We have provided an anal-
ysis of in situ workflows by identifying a set of metrics that
should be monitored to assess the performance of these work-

Do et al.: Preprint submitted to Elsevier Page 12 of 15

A Lightweight Method for Evaluating In Situ Workflow Efficiency

flows on HPC architectures. We have designed lightweight
metric for the makespan and the computational efficiency of
the workflow, based on behavior consistency across in situ
steps under our constrained in situ execution model. We have
validated the usefulness of these proposed metrics with a set
of experiments using an in situMD synthetic workflow. By
using a realistic MD practical workflow, we have compared
two different placements for the workflow components, a
helper-core placement and an in transit placement in which
the DTL server is co-located with different components. Un-
der no resource constraint, by allocating dedicated nodes for
the in transit analytics, the in situ coupling is allowed to per-
form the analysis more frequently. On the other hand, running
the helper-core placement at the equilibrium point is targeted
as the ideal scenario for optimizing resource utilization if
those are limited.

Future work will study different models where the con-
straints are relaxed, for example where the workflow allows
to buffer multiple frames in memory instead of one cur-
rently. We also plan to generalize the proposed framework’s
constraints to support more communication protocols, i.e.
message-driven dataflow, multiple data transport paths, or
another data transport layer. Another promising research line
is to extend our theoretical framework to take into account
multiple analysis methods, which is often the case for MD
trajectory data. In this case, the time taken by the analysis
could vary depending on the method used. Finally, arising
from the necessity of more complex workflows to serve var-
ious in situ analysis requirements, performance evaluation
of in situ workflows should be analyzed in the setting of an
ensemble of workflows.

Acknowledgments
This work is funded byNSF contracts #1741040, #1740990

and #1741057; and DOE contract #DE-SC0012636. We are
grateful to IBM for the Shared University Research Award
that supported the purchase of IBM Power9 system used in
this paper. Extensive MD simulations for establishing condi-
tions and the CV parameters utilized the resources (BIP109)
of the Oak Ridge Leadership Computing Facility, which
is a DOE Office of Science User Facility supported under
Contract #DE-AC05-00OR22725. We would like to thank
Sameer Shende, Nicholas Chaimov, Wyatt Spear from the
TAU team and Melissa Romanus Abdelbaky, Philip Davis
from the DataSpaces team for their help.

CRediT authorship contribution statement
TuMai Anh Do: Conceptualization, Methodology, Soft-

ware, Validation, Formal analysis, Investigation, Data Cura-
tion, Writing - Original Draft, Visualization. Loïc Pottier:
Conceptualization, Methodology, Validation, Formal analy-
sis, Investigation, Writing - Original Draft. Silvina Caíno-
Lores: Review & Editing. Rafael Ferreira da Silva: Writ-
ing - Review&Editing, Funding acquisition. Michel A.Cuen-
det: Writing - Review&Editing, Funding acquisition. HarelWe-
instein: Review&Editing, Funding acquisition. Trilce Estrada:

Funding acquisition. Michela Taufer: Review & Editing,
Funding acquisition. Ewa Deelman: Review & Editing, Su-
pervision, Funding acquisition.

References
[1] Adhianto, L., et al., 2010. Hpctoolkit: tools for performance analysis of

optimized parallel programs. Concurrency and Computation: Practice
and Experience 22.

[2] Agelastos, A., et al., 2014. LDMS: A scalable infrastructure for con-
tinuous monitoring of large scale computing systems and applications,
in: SC’14.

[3] Akyuz, N., et al., 2015. Transport domain unlocking sets the uptake
rate of an aspartate transporter. Nature 518, 68–73.

[4] ascr-isdm-2019, 2019. ASCR Workshop on In Situ Data Management.
[5] Bauer, A.C., et al., 2016. In situ methods, infrastructures, and ap-

plications on high performance computing platforms, in: Computer
Graphics Forum.

[6] Best, R.B., et al., 2012. Optimization of the additive charmm all-
atom protein force field targeting improved sampling of the backbone
φ, ψand side-chain χ1 and χ2 dihedral angles. Journal of Chemical
Theory and Computation 8, 3257–3273.

[7] Bjelkmar, P., et al., 2010. Implementation of the CHARMM Force
Field in GROMACS: Analysis of Protein Stability Effects from Cor-
rection Maps, Virtual Interaction Sites, and Water Models. J. Chem.
Theory Comput. 6, 459–466.

[8] Boudker, O., et al., 2007. Coupling substrate and ion binding to
extracellular gate of a sodium-dependent aspartate transporter. Nature
445, 387–393.

[9] Choi, J.Y., et al., 2018. Coupling exascale multiphysics applications:
Methods and lessons learned. 2018 IEEE 14th International Confer-
ence on e-Science (e-Science) .

[10] DeRose, L., et al., 2008. Cray performance analysis tools, in: Tools
for High Performance Computing. Springer, pp. 191–199.

[11] Do, T.M.A., et al., 2020. A novel metric to evaluate in situ work-
flows, in: Computational Science – ICCS 2020, Springer International
Publishing, Cham. pp. 538–553.

[12] Docan, C., et al., 2012. Dataspaces: an interaction and coordination
framework for coupled simulation workflows. Cluster Computing .

[13] Dreher, M., et al., 2017. Decaf: Decoupled dataflows for in situ
high-performance workflows doi:10.2172/1372113.

[14] Fernando, P., et al., 2018. Nvstream: Accelerating hpc workflows
with nvram-based transport for streaming objects, in: Proceedings of
the 27th International Symposium on High-Performance Parallel and
Distributed Computing, ACM, New York, NY, USA. pp. 231–242.

[15] Foster, I., et al., 2017. Computing just what you need: Online data
analysis and reduction at extreme scales, in: European Conference on
Parallel Processing, Springer.

[16] Fu, Y., et al., 2018. Performance analysis and optimization of in-situ
integration of simulation with data analysis: Zipping applications
up, in: Proceedings of the 27th International Symposium on High-
Performance Parallel and Distributed Computing, ACM, New York,
NY, USA. pp. 192–205.

[17] Ghoshal, D., Ramakrishnan, L., 2017. Madats: Managing data on
tiered storage for scientific workflows, in: Proceedings of the 26th In-
ternational Symposium on High-Performance Parallel and Distributed
Computing, ACM. pp. 41–52.

[18] Izadpanah, R., et al., 2018. Integrating low-latency analysis into
HPC system monitoring, in: Proceedings of the 47th International
Conference on Parallel Processing (ICPP), ACM, New York, NY,
USA.

[19] Johnston, T., et al., 2017. In situ data analytics and indexing of protein
trajectories. Journal of Computational Chemistry .

[20] Lofstead, J.F., et al., 2008. Flexible io and integration for scientific
codes through the adaptable io system (adios), in: 6th international
workshop on Challenges of large applications in distributed environ-
ments.

[21] Malakar, P., et al., 2017. Scalable in situ analysis of molecular dy-

Do et al.: Preprint submitted to Elsevier Page 13 of 15

http://dx.doi.org/10.2172/1372113

A Lightweight Method for Evaluating In Situ Workflow Efficiency

namics simulations, in: Proceedings of the In Situ Infrastructures on
Enabling Extreme-Scale Analysis and Visualization, ACM, New York,
NY, USA. pp. 1–6.

[22] namd-perf, . NAMD Performance. https://www.ks.uiuc.edu/

Research/namd/benchmarks/.
[23] Ossyra, J., et al., 2019. Porting adaptive ensemble molecular dynam-

ics workflows to the summit supercomputer, in: High Performance
Computing, Springer International Publishing.

[24] Páll, S., et al., 2015. Tackling exascale software challenges in molecu-
lar dynamics simulations with gromacs, in: Solving Software Chal-
lenges for Exascale, Springer International Publishing, Cham.

[25] Pouchard, L., et al., 2018. Prescriptive provenance for streaming
analysis of workflows at scale, in: New York Scientific Data Summit.

[26] Rogers, D., et al., 2013. Data co-processing for extreme scale analysis
level II ASC milestone (4745). Technical Report. Sandia National
Lab.(SNL-NM), Albuquerque, NM (United States).

[27] Shende, S.S., Malony, A.D., 2006. The Tau parallel performance
system. The International Journal of High Performance Computing
Applications 20, 287–311.

[28] Ferreira da Silva, R., et al., 2017a. A characterization of workflowman-
agement systems for extreme-scale applications. Future Generation
Computer Systems 75.

[29] Ferreira da Silva, R., et al., 2017b. On the use of burst buffers for
accelerating data-intensive scientific workflows, in: 12th Workshop
on Workflows in Support of Large-Scale Science (WORKS’17).

[30] Taylor, I.J., et al., 2007. Workflows for e-Science: scientific workflows
for grids. volume 1. Springer.

[31] Thomas, S., et al., 2019. Characterizing in situ and in transit analytics
of molecular dynamics simulations for next-generation supercomput-
ers, in: 15th eScience.

[32] Tribello, G.A., et al., 2014. Plumed 2: New feathers for an old bird.
Computer Physics Communications 185, 604 – 613.

[33] Vetter, J.S., et al., 2018. Extreme Heterogeneity 2018 - Productive
Computational Science in the Era of Extreme Heterogeneity: Report
for DOE ASCR Workshop on Extreme Heterogeneity. Technical
Report. LBNL, Berkeley, CA (United States).

[34] Vladimirov, A., Asai, R., 2016. MCDRAMasHigh-BandwithMemory
(HBM) in Knights Landing Processors: Developer’s Guide. Technical
Report. Colfax International.

[35] Wang, Y., et al., 2015. Smart: a mapreduce-like framework for in-situ
scientific analytics, in: SC’15.

[36] Wood, C., et al., 2016. A scalable observation system for introspec-
tion and in situ analytics, in: 2016 5th Workshop on Extreme-Scale
Programming Tools (ESPT).

[37] Wozniak, J.M., et al., 2014. Big data staging with mpi-io for interactive
x-ray science, in: 2014 IEEE/ACM International Symposium on Big
Data Computing.

[38] Zhang, F., et al., 2017. In-memory staging and data-centric task
placement for coupled scientific simulation workflows. CCPE 29.

[39] Zhang, X., et al., 2016. Wowmon: A machine learning-based profiler
for self-adaptive instrumentation of scientific workflows. Procedia
Computer Science 80.

[40] Zou, H., et al., 2014. Flexanalytics: A flexible data analytics framework
for big data applications with i/o performance improvement. Big Data
Research 1, 4 – 13.

Tu Mai Anh Do is a Computer Science Ph.D. stu-
dent at the University of Southern California, and a
Graduate ResearchAssistant in the ScienceAutoma-
tion Technologies group at the USC Information
Sciences Institute. His research covers several areas
in Data Analytics and High Performance Comput-
ing. He received his B.E. in Computer Engineering
from the Ho Chi Minh City University of Technol-
ogy, Vietnam National University.

Loïc Pottier is a Computer Scientist at the USC In-
formation Sciences Institute. He received his Ph.D.
from École Normale Supérieure de Lyon (ENS
Lyon), France, in 2018 where he worked on con-
current scheduling for High-Performance Comput-
ers (HPC). He was a postdoctoral researcher at the
USC Information Sciences Institute in 2019 where
he worked on scientific workflows optimization at
scale. His recent research interests include schedul-
ing techniques and algorithms for parallel systems
and I/O management of large-scale scientific appli-
cations.

Silvina Caíno-Lores is a Post-Doctoral Research
Associate in the University of Tennessee-Knoxville,
as a member of the Global Computing Laboratory.
She obtained her PhD in Computer Science and
Technology in 2019 at the Carlos III University
of Madrid (Spain). Her research interests include
cloud computing, in-memory computing and stor-
age, HPC scientific simulations, and data-centric
paradigms. Her recent works and active collabo-
rations focus on the area of convergence between
HPC and Big Data analytics at the application and
platform layers.

Rafael Ferreira da Silva is a Research Assistant Pro-
fessor in the Department of Computer Science at
University of Southern California, and a Research
Lead at the USC Information Sciences Institute.
His research focuses on the efficient execution of
scientific workflows on heterogeneous distributed
systems (including HPC and HTC), and modeling
and simulation of parallel and distributed comput-
ing systems. Dr. Ferreira da Silva received his Ph.D.
in Computer Science from INSA-Lyon, France, in
2013 (https://rafaelsilva.com).

Michel A. Cuendet is a Group Leader at the Pre-
cision Oncology Center of the Lausanne Univer-
sity Hospital in Switzerland, a Senior Scientist at
the Swiss Institute of Bioinformatics, and a Vis-
iting Research Assistant Professor in the Depart-
ment of Physiology and Biophysics at Weill Cor-
nell Medicine, New York, USA. Physicist by, train-
ing, Michel A. Cuendet is conducting research in
areas including methodological developments for
molecular dynamics simulations, modeling of large
cellular receptors and transporter proteins, as well
as data-centered and machine learning approaches
for Precision Oncology.

Do et al.: Preprint submitted to Elsevier Page 14 of 15

https://www.ks.uiuc.edu/Research/namd/benchmarks/
https://www.ks.uiuc.edu/Research/namd/benchmarks/
https://rafaelsilva.com

A Lightweight Method for Evaluating In Situ Workflow Efficiency

Harel Weinstein, D.Sc. is the Maxwell Upson Pro-
fessor of Physiology and Biophysics and Chairman
of the Department of Physiology and Biophysics,
and Founding Director of the Institute for Com-
putational Biomedicine (ICB), a pioneering aca-
demic and research unit responsible for quantita-
tive understandings of physiological function and
disease, at Weill Cornell Medical College. A Tri-
Institutional Professor, he holds appointments at
Rockefeller University, Sloan-Kettering Institute
and Cornell University. The Weinstein lab stud-
ies complex biomolecular systems with methods of
molecular and computational biophysics, bioinfor-
matics and mathematical modeling to learn about
structural and dynamic mechanisms of cellular com-
ponents. Biomedical end points include neurotrans-
mission in health and disease, drug abuse mecha-
nisms, and cancer.

Trilce Estrada is an associate professor of Computer
Science at the University of New Mexico. Her re-
search interests span the intersection of Machine
Learning, Distributed Systems, Big Data, and their
applications to interdisciplinary problems. She ob-
tained her Ph.D. in computer science from Univer-
sity of Delaware, masters degree from the National
Institute of Astrophysics Optics and Electronics
(INAOE), and her undergraduate degree in Infor-
matics from The University of Guadalajara, Mex-
ico.

Michela Taufer (Senior Member, IEEE) is an ACM
Distinguished Scientist and holds the Jack Dongarra
professorship in high performance computing with
theDepartment of ElectricalEngineering and Com-
puter Science, University of Tennessee Knoxville.
Her research interests include high-performance
computing, volunteer computing, scientific appli-
cations, scheduling and reproducibility challenges,
and in situ data analytics. Dr. Taufer received her
Ph.D. in Computer Science from the Swiss Federal
Institute of Technology (ETH) in 2002.

Ewa Deelman is a Research Professor at the USC
Computer Science Department and a Research Di-
rector at the USC Information Sciences Institute.
Dr. Deelman’s research interests include the de-
sign and exploration of collaborative, distributed
scientific environments, with particular emphasis
on workflow management as well as the manage-
ment of large amounts of data and metadata. At
ISI, Dr. Deelman is leading the Pegasus project,
which designs and implements workflow mapping
techniques for large-scale applications running in
distributed environments. Pegasus is being used
today in a number of scientific disciplines, enabling
researches to formulate complex computations in
a declarative way. Dr. Deelman received her Ph.D.
in Computer Science from the RPI in 1997.

Do et al.: Preprint submitted to Elsevier Page 15 of 15

