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Abstract Performance evaluation is crucial to understanding the be-
havior of scientific workflows and efficiently utilizing resources on high-
performance computing architectures. In this study, we target an emerg-
ing type of workflow, called in situ workflows. Through an analysis of
the state-of-the-art research on in situ workflows, we model a theoret-
ical framework that helps characterize such workflows. We further pro-
pose a lightweight metric for assessing resource usage efficiency of an
in situ workflow execution. By applying this metric to a simple, yet rep-
resentative, synthetic workflow, we explore two possible scenarios (Idle
Simulation and Idle Analyzer) for the execution of real in situ work-
flows. Experimental results show that there is no substantial difference
in the performance of both the in transit placement (analytics on ded-
icated nodes) and the helper-core configuration (analytics co-allocated
with simulation) on our target system.

Keywords: Scientific workflow · in situ model · molecular dynamics ·
high-performance computing.

1 Introduction

High performance computing (HPC) is mainstream for enabling the execution of
scientific workflows which are composed of complex executions of computational
tasks and the constantly growing data movements between those tasks [14].
Traditionally, a workflow describes multiple computational tasks and represents
data and control flow dependencies. Moreover, the data produced by the scientific
simulation are stored in persistent storage and visualizations or analytics are
performed post hoc. This approach is not scalable, mainly due to the fact that
scientific workflows are becoming increasingly compute- and data-intensive at
extreme-scale [13]. Storage bandwidth has also failed to keep pace with the
rapid computational growth of modern processors due to the stagnancy of I/O
advancements [7,16]. This asymmetry in I/O and computing technologies, which
is being observed in contemporary and emerging computing platforms, prevents
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post hoc processing from handling large volumes of data generated by large-scale
simulations [2]. Therefore, storing the entire output of scientific simulations on
disk causes major bottlenecks in workflow performance. To reduce this disparity,
scientists have moved towards a new paradigm for scientific simulations called
in situ, in which data is visualized and/or analyzed as it is generated [2]. This
accelerates simulation I/O by bypassing the file system, pipelining the analysis,
and improving the overall workflow performance [4].

An in situ workflow describes a scientific workflow with multiple components
(simulations with different parameters, visualization, analytics, etc.) running
concurrently [4, 16], potentially coordinating their executions using the same
allocated resources to minimize the cost of data movement [2]. Data periodi-
cally produced by the main simulation are processed, analyzed, and visualized
at runtime rather than post-processed on dedicated nodes. This approach offers
many advantages for processing large volumes of simulated data and efficiently
utilizing computing resources. By co-locating the simulation and the analysis
kernels, in situ solutions reduce the global I/O pressure and the data footprint
in the system [7]. To fully benefit from these solutions, the simulation and the
analysis components have to be effectively managed so that they do not slow
each other down. Therefore, in this paper we study and characterize two specific
categories of in situ workflows, namely helper-core and in transit workflows [2].
Specifically, in the helper-core workflow, the analysis component is placed on
the same node as the simulation; while in the in transit workflow, simulation
data is staged to a dedicated node where the analysis is allocated. Workflows are
required to capture the individual behavior of multiple coupled workflow compo-
nents (i.e., concurrent executions of overlapped steps with inter-component data
dependency). Throughout the use of a theoretical framework, this paper aims to
provide guidelines for the evaluation and characterization of in situ workflows.
We target a widely-used class of workflows, namely large-scale molecular dy-
namics (MD) simulations. We argue that the proposed solutions and the lessons
learned from the proposed synthetic in situ workflows can be directly translated
into production in situ workflows. This work makes the following contributions:
1. We discuss practical challenges in evaluating next-generation workflows;
2. We define a non-exhaustive list of imperative metrics that need to be mon-

itored for aiding the characterization of in situ workflows. We model a
framework for in situ execution to formalize the iterative patterns in in situ
workflows—we develop a lightweight approach that is beneficial when com-
paring the performance of configuration variations in an in situ system; and

3. We provide insights into the behaviors of in situ workflows by applying the
proposed metric in characterizing an MD workflow.

2 Background and Related Work

In situ workflows monitoring. Many monitoring and performance profiling
tools for HPC applications have been developed over the past decade [5, 12].
With the advent of in situ workflows [3], new monitoring and profiling ap-
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Figure 1. A general in situ workflow software architecture.

proaches targeting tightly-coupled workflows have been studied. LDMS [1] is a
loosely-integrated scalable monitoring infrastructure that targets general large-
scale applications that delivers a low-overhead distributed solution, in contrast
to TAU [12], which provides a deeper understanding of the application at a
higher computational cost. SOS [17] provides a distributed monitoring platform,
conceptually similar to LDMS but specifically designed for online in situ charac-
terization of HPC applications. ADIOS [9], the next-generation IO-stack, is built
on top of many in situ data transport layers, e.g. DataSpaces [6]. Savannah [7],
a workflow orchestrator, has been leveraged to bundle a coupled simulation with
two main simulations, multiple analysis kernels, and a visualization service [4].
These works mainly focus on providing monitoring schemes for in situ workflows.
This paper instead proposes a novel method to extract useful knowledge from
the captured performance data.

In situ data management. FlexAnalytics [19] optimizes the performance of
coupling simulations with in situ analytics by evaluating data compression and
query over different I/O paths: memory-to-memory and memory-to-storage. A
large-scale data staging implementation [18] over MPI-IO operations describes a
way to couple with in situ analysis using a non-intrusive approach. The analytics
accesses data staged to the local persistent storage of compute nodes to enhance
data locality. Our work mainly focuses on in-memory staging and comprehen-
sively characterizes memory-to-memory transfer using RDMA for both within a
compute node (helper-core) and across nodes (in transit).

3 General in situ workflow architecture

In situ architecture. In this work, we propose an in situ architecture that
enables a variety of in situ placements to characterize the behavior of in situ
couplings. Although we focus on a particular type of in situ workflows (composed
of simulation and data analytics), our approach is broader and applicable to a
variety of in situ components, for example, several simulations coupled together.
The in situ workflow architecture (Fig. 1) features three main components:
– A simulation component that performs MD computations and periodically

generates data in the form of atomic coordinates.
– A data transport layer (DTL) that is responsible for efficient data transfer.
– An analyzer component that applies several analysis kernels to the data

received periodically from the simulation component via the DTL.
On the data path “simulation-to-analyzer” (1) the ingester ingests data from

a certain data source and stores them in the Data Transport Layer (DTL) and
the (2) retriever, in a reverse way, gets data from the DTL to perform further
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Table 1. Selected metrics for in situ workflows characterization

Name Definition Unit

Makespan Total workflow execution time s
TimeSimulation Total time spent in the simulation s
TimeAnalytics Total time spent in the analysis s
TimeDTL Total time spent in data transfers s
TimeSimulationIdle Idle time during simulation s
TimeAnalyticsIdle Idle time during analysis s

operations. These two entry points allow us to abstract and detach complex I/O
management from the application code. This approach enables more control in
terms of in situ coupling and is less intrusive than many current approaches. The
ingester synchronously inputs data from the simulation by sequentially taking
turns with the simulation using the same resource. The ingester is useful to attach
simple tasks to preprocess data (e.g., data reduction, data compression). The
architecture allows in situ execution with various placements of the retriever. A
helper-core retriever co-locates with the ingester on a subset of cores where the
simulation is running—it asynchronously gets data from the DTL to perform
an analysis. As the retriever is using the helper-core placement, the analysis
should be lightweight to prevent simulation slowdown. An in transit retriever
runs on dedicated resources (e.g., staging I/O nodes [19]), receives data from
the DTL and performs compute-intensive analysis tasks. We compare helper-
core and in transit retrievers in detail in Section 6.

In situ workflow metrics. To characterize in situ workflows, we have defined
a foundational set of metrics (Table 1). As a first metric, it is natural to consider
the makespan, which is defined as three metrics corresponding to time spent
in each component: the simulation, the analyzer, and the DTL. The periodic
pattern enacted by in situ workflows may impose data dependencies between
steps of coupled components, e.g. the analyzer may have to wait for data sent
by the simulation to become available in the DTL for reading. Thus, we monitor
the idle time of each individual component. In this work, we use TAU to capture
this information and we focus on how to use these data to characterize the in situ
workflows.

4 In situ execution model

4.1 Framework

In traditional workflows, the simulation and the post-processing analyzer are
typical components, in which the post-processing follows the simulation in a
sequential manner. Let a stage be a part of a given component. The simulation
component (S) is the computational step that produces the data and (W ) is the
I/O stage that writes the produced data; The analytics component (R) is the
DTL stage that reads the data previously written and (A) is the analysis stage.

However, in situ workflows exhibit a periodic behavior: S, W , R, and A follow
the same sequential order but, instead of operating on all the data, they operate
only on a subset of it iteratively. Here, this subset of data is called a frame and
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can be seen as a snapshot of the simulation at a given time t. Let Si, Wi, Ri,
and Ai be respectively, the simulation, the write, the read and the analysis stage
at step i, respectively. In other words, Si produces the frame i, Wi writes the
produced frame i into a buffer, Ri reads the frame i, and Ai analyzes the frame i.
Note that, an actual simulation computes for a given number of steps, but only a
subset of these steps are outputted as frames and analyzed [15]. The frequency of
simulation steps to be analyzed is defined by stride. Let n be the total number of
simulation steps, S the stride, and m the number of steps actually analyzed and
outputted as frames. We have m = n

S . However, we model the in situ workflow
itself and not only the simulation time (i.e., execution times of Si, Wi, Ri, and Ai
are known beforehand), thus the value of the stride does not impact our model.
We set S = 1 (or m = n), so every step always produces a frame.

Execution constraints. To ensure work conservation we define the following
constraint:

∑m
i=0 Si = S (m is the number of produced frames). Obviously, we

have identical constraints for Ri, Ai, and Wi. Similarly to the classic approach,
we have the following precedence constraints for all i with 0 ≤ i ≤ m:

Si →Wi → Ri → Ai. (1)

Buffer constraints. The pipeline design of in situ workflows introduces new
constraints. We consider a frame is analyzed right after it has been computed.
This implies that for any given step i, the stage Wi+1 can start if, and only if,
the stage Ri has been completed. Formally, for all i with 0 ≤ i ≤ m:

Ri →Wi+1. (2)

Eqs. 1 and 2 guarantee that we buffer at most one frame at a time (Fig. 2). Note
that, this constraint can be relaxed such that up to k frames can be buffered at
the same time as follows, Ri → Wi+k, where 0 ≤ i ≤ m and 1 ≤ k ≤ m. In this
work, we only consider the case k = 1 (red arrows in Fig. 3).

Idle stages. Due to the above constraints, the different stages are tightly-
coupled (i.e, Ri and Ai stages must wait Si and Wi before starting their ex-
ecutions). Therefore, idle periods could arise during the execution (i.e., either
the simulation or the analytics must wait for the other component). We can
characterize two different scenarios, Idle Simulation and Idle Analysis in which
idle time occurs. The former (Fig. 2(a)) occurs when analyzing a frame takes
longer to complete compared to a simulation cycle (i.e., Si+Wi > Ri+Ai). The
later (Fig. 2(b)) occurs when the simulation component takes longer to execute
(i.e., Si+Wi < Ri+Ai). Fig. 3 provides a detailed overview of the dependencies
among the different stages. Note that, the concept of in situ step is defined and
explained later in the paper.

Intuitively, we want to minimize the idle time on both sides. If the idle time
is absent, then it means that we reach the idle-free scenario: Si +Wi = Ri +Ai.
To ease the characterization of these idle periods, we introduce two idle stages,
one per component. Let ISi and IAi be, respectively, the idle time occurring in
the simulation and in the analysis component for the step i. These two stages
represent the idle time in both components, therefore the precedence constraint
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(a) Idle Simulation scenario when S∗ +W∗ < R∗ +A∗

(b) Idle Analyzer scenario when S∗ +W∗ > R∗ +A∗

Figure 2. Two different execution scenarios for in situ workflow execution.

S1 IS1 W1 R1 A1 IA1

S2 IS2 W2 R2 A2 IA2

S3 IS3 W3 R3 A3 IA3

Execution constraints

Buffer constraints

In situ step σ1

Figure 3. Dependency Constraints within and across in situ steps.

defined in Eq. 1 results in:

Si → ISi →Wi → Ri → Ai → IAi . (3)

4.2 Consistency across steps

This work is supported by the hypothesis that every execution of in situ work-
flows under the above constraints will reach a consistent state after a finite
number of warming-up steps. Thus, the time spent on each stage within an iter-
ation can be considered constant over iterations. Formally, there exists j where
0 ≤ j < m such that for all i where j ≤ i ≤ m, we have Si = Sj . The same holds
for each stage, Wi, Ri, Ai, I

S
i , and, IAi . This hypothesis is confirmed in Sec-

tion 6, and in practice, we observe that the cost of these non-consistent steps
is negligible. Our experiments showed that, on average, j ≤ 3 for one hundred
steps (m = 100). Therefore, we ignore the warming steps and we consider j = 0.
For the sake of simplicity, we generalize in situ consistency behavior by denoting
S∗ = Si for all i ≥ j. We also have similar notations for R∗, A∗, I

S
∗ , I

A
∗ and W∗.

This hypothesis allows us to predict the performance of a given in situ workflow
by monitoring a subset of steps, instead of the whole workflow. From the two
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constraints defined by Eq. 3 and Eq. 2, and our hypothesis, we define:

S∗ + IS∗ +W∗ = R∗ +A∗ + IA∗ . (4)

The Idle Simulation scenario is when IA∗ = 0, and IS∗ = 0 for Idle Analyzer
scenario. Let I∗ be the total idle time for an in situ step, using Eq. 4 we derive:

I∗ = IS∗ + IA∗ =

{
R∗ +A∗ − S∗ −W∗, if IA∗ = 0

S∗ +W∗ −R∗ −A∗, if IS∗ = 0
= |S∗ +W∗ − (R∗ +A∗)| .

(5)

4.3 In situ step

The challenge behind in situ workflows evaluation lies in collecting global infor-
mation from multiple components (in our case, the simulation and the analytics)
and use this information to derivate meaningful characteristics about the exe-
cution. The complexity of such a task is correlated to the number of steps the
workflow is running and the number of components involved. By leveraging the
consistency hypothesis in Eq. 4, we propose to alleviate this cost by proposing a
metric that does not require data from all steps. The keystone of our approach
is the concept of in situ step. Based on Eq. 3, the in situ step σi is determined
by the timespan between the beginning of Si and the end of IAi . The in situ step
concept helps us to manipulate all the stages of a given step as one consistent
task executing across components that can potentially run on different machines.

Different in situ steps overlap each other, so we need to distinguish the part
that is overlapped (σ′i) from the other part (σi). Thus, σi = σi+σ

′
i. For example,

in Fig. 2(a), to compute the time elapsed between the start of σ4 and the end
of σ5, we need to sum the two steps and remove the overlapped execution time
σ′4. Thus, we obtain σ4 + σ5− σ′4. This simple example will give us the intuition
behind the makespan computation in Section 4.4.

The consistency hypothesis insures consistency across in situ steps. We de-
note σ∗ as the consistent in situ step (i.e, ∀ i, σi = σ∗), while σ′∗ and σ∗ indicate,
respectively, the overlapped and the non-overlapped part of two consecutive
in situ steps. Thus, σ∗ = σ∗ + σ′∗. To calculate the makespan, we want to com-
pute the non-overlapped step σ∗. As shown in Fig. 2, the non-overlapped period
σ∗ is the aggregation of all stages belonging to one single component in an in situ
step: S∗+IS∗ +W∗ and R∗+A∗+IA∗ . Thus, we have two scenarios, if IS∗ = 0 then
σ∗ = S∗ +W∗, otherwise σ∗ = R∗ +A∗. Hence, σ∗ = max(S∗ +W∗, R∗ +A∗).

4.4 Makespan

A rough estimation of the makespan of such workflow would be the sum of
the execution time for all the stages (i.e, sum up the m in situ steps σi). But,
recall that in situ steps interleave with each other, so we need to subtract the
overlapped parts:

Makespan = mσ∗ − σ′∗ (m− 1) = mσ∗ + σ′∗. (6)



8 Do et al.

From Eq. 6, for m large enough, the term σ′∗ becomes negligible. Since in situ
workflows are executed with a large number of iterations, then Makespan =
mσ∗. This observation indicates that the non-overlapped part of an in situ step
is enough to characterize a periodic in situ workflow. Using our framework and
these observations, we define a metric to estimate the efficiency of a workflow.

4.5 In situ efficiency

Based on our in situ execution model, we propose a novel metric to evaluate
resource usage efficiency E of an in situ workflow. We define efficiency as the
time wasted during execution—i.e., idle times IS∗ and IA∗ . This metric considers
all the components (simulation and the analysis) for evaluating in situ workflows:

E = 1− I∗
σ∗

= 1− |S∗ +W∗ − (R∗ +A∗)|
max(S∗ +W∗, R∗ +A∗)

. (7)

This efficiency metric allows for performance comparison between different in situ
runs with different configurations. By examining only one non-overlapped in situ
step, we provide a lightweight approach to observe behavior from multiple com-
ponents running concurrently in an in situ workflow. Note that, this model and
the efficiency metric can be easily generalized to any number of components.

5 Molecular dynamics synthetic workflow

MD is one of the most popular scientific applications executing on modern HPC
systems. MD simulations reproduce the time evolution of molecular systems at a
given temperature and pressure by iteratively computing inter-atomic forces and
moving atoms over a short time step. The resulting trajectories allow scientists
to understand molecular mechanisms and conformations. In particular, a trajec-
tory is a series of frames, i.e. sets of atomic positions saved at fixed intervals of
time. The stride is the number of time steps between frames considered for stor-
age or further in situ analysis. For example in our framework, for a simulation
with 100 steps and a stride of 20, only 5 frames will be sent by the simulation to
the analysis component. Since trajectories are high-dimensional objects, scien-
tists use well-chosen collective variables (CVs) to capture important molecular
motions. Technically, a CV is defined as a function of the atomic coordinates
in one frame. An example of a complex CV that we will use in this work is
the Largest Eigenvalue of the Bipartite Matrix (LEBM). Given two amino acid
segments A and B, if dij is the Euclidean distance between Cα atoms i and
j, then the symmetric bipartite matrix BAB = [bij ] is defined by bij = dij if
i ∈ A, j ∈ B or i ∈ B, j ∈ A and 0 otherwise. Johnston et al. [8] showed that
the largest eigenvalue of BAB is an efficient proxy to monitor changes in the
conformation of A relative to B. To study complex behavior of coupling be-
tween the MD simulation and the analysis component in exhaustively discussed
parameter space, we have designed a synthetic in situ MD workflow (Fig. 4).
The Synthetic Simulation component extracts frames from previously computed
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Figure 4. Synthetic Workflow: the Extractor (1) sleeps during the emulated delay,
then (2) extracts a snapshot of atomic states from existing trajectories and (3) stores
it into a synthetic frame. The Ingestor (4) serializes the frame as a chunk and stages
it in memory, then the Retriever (5) gets the chunk from the DTL and deserializes it
into a frame.

MD trajectories instead of performing an actual, compute-intensive MD simula-
tion. This synthetic workflow is an implementation of the general and abstract
software architecture proposed in Section 3.

Synthetic Simulation. The Synthetic Simulation emulates the process of a
real MD simulation by extracting frames from trajectories generated previously
by an MD simulation engine. The Synthetic Simulation enables us to tune and
manage many simulation parameters (discussed in detail in Section 6) including
the number of atoms and strides, which helps the Synthetic Simulation mimic
the behavior of real molecular dynamics simulation. Note that, since the Syn-
thetic Simulation does not emulate the computation part of the real MD simu-
lation, it mimics the behavior of the I/O processes of the simulation. Thus, we
define the emulated simulation delay, which is the period of time correspond-
ing to the computation time in the real MD simulation. In order to estimate
such delay for emulating the simulation time for a given stride and number of
atoms, we use recent benchmarking results from the literature obtained by run-
ning the well-known NAMD [10] and Gromacs [11] MD engines. We considered
the benchmarking performance for five practical system sizes of 81K, 2M, 12M
atoms from Gromacs [11] and 21M, 224M atoms from NAMD [10] to interpolate
to the simulation performance with the desired number of atoms (Fig. 5(a)).
The interpolated value is then multiplied by the stride to obtain the delay (i.e.,
a function of both the number of atoms and the stride).

In Section 6, we run the synthetic workflow with 200K, 400K, 800K, 1.6M,
3.2M, and 6.4M protein atoms. Fig. 5(b) shows the emulated simulation de-
lay when varying the stride for different numbers of atoms. The stride varying
between 4–16K delivers a wide range of emulated simulation delay, up to 40s.

Data Transport Layer (DTL). The DTL Server leverages DataSpaces [6] to
deploy an in memory staging area for coupling data between the Synthetic Sim-
ulation and the Analyzer. DataSpaces follows the publish/subscribe model in
terms of data flow, and the client/server paradigm in terms of control flow. The
workflow system has to manage a DataSpaces server to manage data requests,
keep metadata, and create in memory data objects.

Analyzer. The Analyzer plays the role of the analytics component in the syn-
thetic in situ workflow. More specifically, the Retriever subscribes to a chunk
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Figure 5. MD benchmarking results from the literature obtained by using 512 NVIDIA
K20X GPUs. The results are interpolated to obtain the (a) estimated performance and
then combined with the stride to synthesize the (b) emulated simulation delay.

from the in memory staging area and deserializes it into a frame. The MD An-
alytics then performs a given type of analysis on this frame. Recall that, in our
model, only one frame at a time can be store by the DTL (see Fig. 3). We leverage
DataSpaces built-in locks to ensure that a writing operation to the in memory
staging area can only happen when the reading operation of the previous step
is complete (constraint model by Eq. 2). Thus, the Analyzer is instructed by
DataSpaces to wait for the next chunk available in the in memory staging area.
Once a chunk has been received and is being processed, the Synthetic Simulation
can send another chunk to the Analyzer.

6 Experiments and Discussions

For our experiments we use Tellico (UTK), an IBM POWER9 system that in-
cludes four 32-core nodes (2 compute nodes) with 256GB RAM each. Each com-
pute node is connected through an InfiniBand interconnect network. We target
three component placements: (1) helper-core—where the Synthetic Simulation,
the DataSpaces server, and the Analyzer are co-located on the same compute
node; (2) in transit S-S where the Synthetic Simulation and the DataSpaces
server are co-located on one node, and the Analyzer runs on another node; and
(3) in transit A-S where the Analyzer and the DataSpaces server are co-located
on one node, and the Synthetic Simulation runs on a dedicated node. Note that
the Synthetic Simulation only runs on one physical core as it mimics the be-
havior of a real simulation. On the other hand, the Analyzer assigns bipartite
matrices (see Section 5) to multiple processes, so the CV calculation is improved
by parallel processing. Since we experimented to designate different numbers of
Analyzer processes, we fix that number at 16 processes (number of cores of an
IBM AC922) to attain good speed up and to fit the entire Analyzer in a compute
node.

Table 2 describes the parameters used in the experiments. For the Syn-
thetic Simulation, we study the impact of the number of atoms (the size of
the system) and the stride (the frequency at which the Synthetic Simulation
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Table 2. Parameters used in the experiments

Parameter Description Values used in the experiments

Synthetic #atoms Number of atoms [2× 105 , 4× 105 , 8× 105 ,
simulation 16× 105 , 32× 105 , 64× 105 ]

#strides Stride [1000, 4000, 16000]
#frames Number of frames 100

Data transport layer SM Staging method DATASPACES

Analyzer CV Collective variable LEBM
lsegment Length of segment pairs 16

component sends a frame to the Analyzer through the DTL). We consider a
constant number of 100 frames to be analyzed due to the time constraint and
the consistency in the behavior between in situ steps. For the DTL, we use the
staging method DATASPACES for all the experiments. For the Analyzer, we
choose to calculate a compute-intensive set of CVs (LEBM, Section 5) for each
possible pair of non-overlapping segments of length 16. If there are n amino acids
(alpha amino acids) in the system, there are N = floor(n/16) segments, which
amounts to N(N−1)/2 LEBM calculations (O(n2)). To fairly interpret the com-
plexity of this analysis algorithm related to the system size, we manipulate the
number of amino acids to be proportional to the number of atoms.

We leverage user-defined events to collect the proposed metrics using TAU [12]
(Section 3). We focus on two different levels of information, the workflow level
and the in situ step level (the time taken by the workflow to compute and an-
alyze one frame). At the in situ step level, each value is averaged over three
runs for each step. At the workflow level, each value is averaged over all in situ
steps at steady-sate and then averaged over the three runs. We also depict the
standard deviation to assess the statistical significance of the results. There are
two levels of statistical error: for averages across the 3 trials at the in situ step
level, and for averages over 94 in situ steps (excluding the three first steps and
the three last steps) in each run at the workflow level.

6.1 Experimental results

In situ step characterization. We study the correlation of individual stages
in each in situ step. Due to lack of space, the discussion is limited to a subset of
the parameter space as the representative of two characterized idle-based scenar-
ios. Fig. 6 shows the execution time per step for each component while varying
the stride. Confirming the consistency hypothesis across steps discussed in Sec-
tion 4.2, we observe that the execution time per step is nearly constant, except
for a few warm-up and wrap-up steps. Fig. 6(a) falls under the Idle Simulation
(IS) scenario, as the ISi stage only appears in the Synthetic Simulation step.
Similarly in Fig. 6(b), we observe the Idle Analyzer (IA) scenario because of the
presence of IAi . These findings verify the existence of two idle-based scenarios
discussed in Section 4.1. Since both the Synthetic Simulation and Analyzer are
nearly synchronized, we also underline that the execution time of a single step
for each component is equal to each other. This information confirms the prop-
erty of in situ workflow in Eq. 4. Overall, we can observe that the I/O stages
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Figure 7. Detailed idle time I∗ for three component placements at different strides
when varying the number of atoms (lower is better).

(Wi and Ri) take an insignificant portion of time compared to the full step. This
negligible overhead verifies the advantage of leveraging in-memory staging for
exchanging frames between coupled components.

Execution scenarios. We study the impact of the number of atoms, stride,
and components placement on the performance of the entire workflow and each
component for different scenarios. Fig. 7 shows that the workflow execution
follows our model (Fig. 2). While increasing the number of atoms, which increases
the simulation time and the chunk size, the total idle time I∗ decreases in the IS
scenario, and increases in the IA scenario. Every in situ step exhibits a similar
pattern in which at a certain system size the workflow execution switches from
one scenario to another. We denote this point as the equilibrium point. We
notice that with larger stride, the equilibrium point occurs at larger system
sizes. The equilibrium point of the stride 4, 000 occurs at #atoms = 8× 105 ,
but at #atoms = 16× 105 with the stride of 16, 000. In terms of component
placement comparison, at first glance, there is no big difference in total idle time
of the three placements (see Section 6.1).

Estimated makespan. The goal is to verify the assertion made by Eq. 6 stating
the makespan of an in situ workflow can simply be expressed as the product of
the number of steps and the time of one step mσ∗. A typical MD simulation
can easily feature > 107 number of in situ steps, thus a metric requiring only a
few steps to be accurate is interesting. Fig. 8 demonstrates the strength of our
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Figure 8. Left: Makespan is estimated from 100σ∗ using the helper-core component
placement with stride 16000, the yellow region represents the error. Ratio of Esti-
mated Makespan to Measured Makespan uses the second y-axes on the right (close
to 1 is better). Right: Resource usage efficiency (higher is better).

approach to estimate the Makespan (maximum error ∼ 5%) using in situ steps
and the accuracy of our model. In situ workflows run with a larger number of
steps, monitoring the entire system increases the pressure and slows down the
execution. Thus, without failures and external loads, only looking at a single
non-overlapped step results in a scalable, accurate, and lightweight approach.

Resource usage efficiency. We utilize the efficiency metric E given by Eq. 7,
to evaluate an in situ configuration within the objective to propose a metric
that allows users to characterize in situ workflows. Fig. 8-right shows that com-
ponent placements have a small variation in resource efficiency. We infer that
the placement of components is not a decisive factor in coupling performance.
This result is consistent with the previous finding in Section 6.1. The efficiency
E increases and reach a maximum in the IS scenario, and decreases after this
maximum in the IA scenario. Thus, an in situ run is most efficient at the equi-
librium point, where E ≈ 1. If a run is less efficient and classified as the IA
scenario, it has more freedom to perform other analyses or increase the analysis
algorithm’s complexity. In the IS scenario, the simulation is affordable to larger
system size.

7 Conclusions

In this study, we explored the challenges of evaluating next-generation in situ
workflows. We have provided an analysis of in situ workflows by identifying
a set of metrics that should be monitored to assess the performance of these
workflows on HPC architectures. We have designed a lightweight metric based
on behavior consistency across in situ steps under constrained in situ execution
model. We have validated the usefulness of this proposed metric with a set of
experiments using an in situ MD synthetic workflow. We have compared three
different placements for the workflow components, a helper-core placement and
two in transit placements in which the DTL server co-locates with different
components. Future work will study different models where the constraints are
relaxed, for example where the workflow allows to buffer multiple frames in
memory instead of one currently. Another promising research line is to extend
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our theoretical framework to take into account multiple analysis methods. In
this case, the time taken by the analysis could vary regarding the method used.
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