Enabling Data Analytics Workflows using Node-Local Storage

Tu Mai Anh Do!, Ming Jiang?, Brian Gallagher?, Albert Chu?, Cyrus Harrison?

Karan Vahi!

, Ewa Deelman'

'USC Information Sciences Institute, Marina Del Rey, California
2Lawrence Livermore National Lab, Livermore, California

{tudo,vahi,deelman}@isi.edu,{jiang4,bgallagher,chul1,cyrush}@llnl.gov

ABSTRACT

The convergence of high-performance computing (HPC) and Big
Data is a necessity with the push towards extreme-scale computing.
As HPC simulations become more complex, the analytics need to
process larger amounts of data, which poses significant challenges
for coupling HPC simulations with Big Data analytics. This poster
presents a novel node-local approach that uses a workflow manage-
ment system (WMS) to enable the coupling between the simulations
and the analytics in scientific workflows by leveraging node-local
non-volatile random-access memory (NVRAM).

KEYWORDS

scientific workflows, Big Data analytics, node-local storage

1 INTRODUCTION

Modern scientific simulation applications are becoming more com-
plex in terms of scale and the amount of data that needs to be
analyzed over time. Scientists are now exploring the use of data an-
alytics frameworks, such as Apache Spark, for analyzing data from
large-scale simulations. As we approach the era of extreme-scale
computing, it has become imperative that we manage the result-
ing data in an effective fashion. Advances in high-performance
computing (HPC) allow simulations to run at ever increasing scale,
while the use of Big Data frameworks allow large datasets to be an-
alyzed efficiently. Currently, scientists employ the use of scientific
workflows to manage and automate the large-scale simulation and
associated analysis of the output datasets.

In trying to combine HPC with Big Data, scientists often run into
issues resulting from a mismatch in data representation between
traditional HPC and the Big Data ecosystem, such as Apache Spark.
This poses challenges in coupling between the two environments, as
simulation outputs need to be written out to disk, usually the shared
parallel file system, and then ingested by Spark for post-processing.
This writing out to disk and then ingesting back increases the time
it takes to run the complete end-to-end workflow encompassing
both simulation and analysis of the data products.

In this work, we propose a node-local approach that leverages
non-volatile random-access memory (NVRAM) to enable data an-
alytics workflows. More specifically, the approach supports the
coupling between the HPC simulations and the Big Data analytics,
which focuses on two factors: (1) better write performance of gen-
erating data to node-local storage compared to global parallel file
systems; and (2) the analytic tasks to compute on node-local data
stored on the NVRAM to improve the efficiency of local processing
data. We evaluate our approach by comparing it to the setup on the
Lustre file system in which data is stored and accessed globally.

N1 N2 N3
N1 N2 N3
L ! Simulation J- .[' Simulation J
T submit
Ascent Globally ; / Ascent Globally
| | | 2

gg;g a5
\pegdsy, \
; : N

DFS i
copy 1 trigger 1
S event

NVM-backed HDFS Globa//y

/

m' —

Globally
Lustre File System

I . / | I&\
1 , deploy 13
[Analysis} {Ana[ysls]. 1Analys|s y A -[Analysls] [m] Analysis
4| Magpie |-
Spari Globally Spark Globally
N2 N1 N3
______ Workflow Event
Coordmaton Triggers Deploy mmmm) Data Flow Node-local

Figure 1: Enabling data analytics workflows on HPC system

In our current approach, the data analysis only starts after the
simulation has completed (post-processing). In order to reduce
the expensive storage needs for storing large datasets collected
over multiple time-steps, the analytics is performed on partial data
generated by a few iterations. We plan to explore the node-local
technique for analyzing generated simulation data in-situ [2] using
event-based triggers [6] for launching workflows as future work.

2 APPROACH

In our proposed node-local approach, instead of storing data to
a global parallel distributed file system (Lustre), we decided to
use node-local NVRAMs as intermediate storages for partial data
generated from the simulation. Instead of writing out to Lustre,
we configured the simulation to write out data to the NVRAMs on
the compute nodes. We also configured a NVRAM-backed Hadoop
Distributed File System (NHDFS) that is built on top of the node-
local NVRAMs on the compute nodes. When the data is written
locally, we can immediately ingest it into NHDFS. This approach
has three advantages:

(1) reduces the latency once data is generated to local NVRAM
of the compute node,

(2) analysis tasks can be assigned to compute nodes that possess
the data; as a result, the analysis can be performed locally to
avoid off-node data transfer, and

(3) NHDFS resolves the data representation mismatch between
the HPC simulations and the Big Data analytics.

The overhead of copying data from node-local NVRAMs to
NHDFS is discussed in Section 3 and evaluated with the setup on
Lustre without HDFS described in Figure 1. The difference between
two setups is data placement: node-local NVRAM or Lustre, which
is accessible across nodes. In case of Lustre deployment, HDFS setup
is not required, as the Spark analysis can ingest data directly from

the shared file system. However, there is an overhead of random
access over Lustre when the Spark analysis reads in the input data.
This node-local approach is designed to be compatible for coupling
the simulation with the analytics in both a post-processing and
in-situ fashion.

3 EVALUATION

In this section, we evaluate the node-local approach with a complete
post-processing pipeline. The pipeline comprises of two jobs in
which an HPC simulation job is followed by a representative Spark
analysis job. We use Ascent [4], a framework that provides an API
to interfere the simulation data at a certain frequency of cycles. We
chose Cloverleaf3D [5], a 3D Lagrangian-Eulerian hydrodynamics
benchmark, which is a proxy application integrated into Ascent for
our experiments. Apache Spark is a well-known framework for Big
Data. We opted to use the Random Forest implementation in Spark
MLIib as a representative analysis on Big Data to couple with the
Cloverleaf3D simulation on HPC platforms. Output generated from
the simulation is used to train the model in Random Forests. Spark
is used to distribute data to workers for concurrent analysis.

Cloverleaf3D deploys the simulation across multiple nodes via
the Message Passing Interface (MPI) and enables OpenMP for multi-
threading inside nodes. The Ascent custom Python interface allows
each compute node to run a Python script at a certain frequency to
write out data to local NVRAM and then copy it to NHDFS. In this
experiment, Cloverleaf3D generates data every 20 cycles.

For Lustre setup, Cloverleaf3D outputs data to Lustre as a shared
file system instead. Spark then assigns tasks to workers, which are
distributed over nodes in Spark clusters. For the NHDFS setup, we
configured Cloverleaf3D to output directly to NHDFS.

We modeled the pipeline as a workflow in Pegasus [3], which
is a popular workflow management system (WMS) for executing
scientific pipelines. Additionally, we use Magpie to setup a multi-
node cluster with NHDFS and Spark for our experiments. Magpie [1]
comprises of batch scripts developed at LLNL to run Big Data
frameworks on HPC platforms.

We deployed and tested our approach on the Catalyst system at
LLNL. Catalyst is a 150 teraFLOP/s system with 324 nodes, each
with 128 gigabytes of dynamic random access memory, and 800
gigabytes of NVRAM per compute node. It is designed specifically
for experimentation with HPC and Big Data analytics applications.

Cloverleaf is configured to run on 8 nodes of Catalyst with
OpenMP for multi-threading of 24 threads per node to make use of
physical cores available on the node. Similarly, the Spark cluster
contains 8 executors and the executor on every single node is con-
figured with 24 cores. We ran the experiment with two setups: the
node-local approach on NVRAM and the traditional approach that
uses Lustre for data sharing. Data are generated from the simulation
and then ingested by the analytics at the size of 6GB, 60GB, and
600GB. For each run, we measure the runtime of the simulation,
the analytic and the entire pipeline.

3.1 Experimental Results

Our experimental results indicate that there are improvement gains
especially for the Spark analysis with our proposed NVRAM-based

Catalyst Experiments using 8 Nodes

—8— Total_lustre
4000 4 Total_nvm
—e— Simulation_lustre
30004 ~* Slmula.tloninvm
& —8— Analysis_lustre '
o —e— Analysis_nvm !
c
£ 2000 4 H
= 1
1
1
1000 !
. I |
| L *
o{ " i
6 60 100 200 300 400 500 600
Data Size (GB)

Figure 2: Data placement impact on pipeline performance

node-local approach. Figure 2, shows the improvement of approxi-
mately 28% achieved by executing the Spark analysis on NVRAM
over Lustre for 600GB input data generated from Cloverleaf3D. The
total time of entire pipelines on NVRAM, therefore, improves 19%
compared to Lustre.

We can observe the overhead of NHDFS copying from the timing
of the simulation. The simulation suffers 34% slowdown for copying
data from local NVRAMs to NHDFS in node-local approach whereas
Spark can access data from Lustre without the help of HDFS in
Lustre setup. For the total time, this overhead is expected to be
hidden by the greater random-access performance of NVRAM.

Our experiments confirm that it is worthwhile to incur an extra
cost of copying data twice (first to local NVRAM and then ingesting
it into NHDEFS) in order to achieve better performance both for
Spark analysis and overall pipeline, especially at large data sizes.

4 CONCLUSIONS

In this poster, we described a novel node-local approach that uses
NVRAM to achieve performance gains for a pipeline consisting of an
HPC simulation job followed by a Big Data analytics job. We tested
the approach on an HPC system (Catalyst) with the simulation
proxy application Cloverleaf3D in Ascent and the representative
Random Forest machine learning algorithm in Spark MLIib. The
benefits of the approach are confirmed with the improvement of
total time approximately 19% over Lustre.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344 (LLNL-ABS-755833), with funding
provided by LDRD 16-ERD-036. This work was also partially funded
by the National Science Foundation under grant #1741040.

REFERENCES

[1] LLNL-CODE-644248. Magpie. http://github.com/LLNL/magpie

[2] J. Bennett et al. 2012. Combining In-situ and In-transit Processing to Enable
Extreme-scale Scientific Analysis. In SC ’12. 49:1-49:9.

[3] E.Deelman et al. 2015. Pegasus, a Workflow Management System for Science
Automation. Future Gener. Comput. Syst. 46, C (2015), 17-35.

[4] M. Larsen et al. 2017. The ALPINE In Situ Infrastructure: Ascending from the
Ashes of Strawman. In ISAV ’17. 42-46.

[5] A.Mallinson et al. 2014. Experiences at Scale with PGAS Versions of a Hydrody-
namics Application. In PGAS ’14. 9:1-9:11.

[6] S. Pandey et al. 2018. Event-Based Triggering and Management of Scientific
Workflow Ensembles. HPC Asia 2018.

http://github.com/LLNL/magpie

	Abstract
	1 Introduction
	2 Approach
	3 Evaluation
	3.1 Experimental Results

	4 Conclusions
	Acknowledgments
	References

