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Abstract: In this paper we describe issues related to the execution of scientific workflows on clouds, giving particular 
emphasis to the challenges faced by scientists when using grids and clouds for workflows. We also mention 
some existing solutions and identify areas requiring additional work.  

1 INTRODUCTION 

Over the past decade grid computing has been 
put forward as a platform for conducting science. 
We have seen both tightly and loosely coupled 
parallel applications making use of national and 
international infrastructures such as the Open 
Science Grid (OSG) [1], TeraGrid [2], EGI [3], and 
others. These applications have been developed for 
domains such as astronomy [4], bioinformatics [5], 
earthquake science [6], physics [7], and others.  

The broad spectrum of distributed computing 
provides unique opportunities for large-scale, 
complex scientific applications in terms of resource 
selection, performance optimization, reliability, etc.  
However many issues of usability, reliability, 
performance, and efficient computation remain 
challenges in the area of grid computing.  Over time 
the architecture of the underlying clusters used for 
scientific computation has been changing, from 
commodity-type architectures connected by high-
performance networks to more complex 
architectures and deployments such as those of the 
Cray XT5 [8] or IBM Blue Gene [9]. As the 
computing architectures have changed, so has the 
software used to access these machines across the 
network. For example, the Globus Toolkit [10] has 
undergone many revisions and architectural changes 
over the past decade. 

Although the various hardware and software 
systems have been changing, users have been 
dealing with the same issues when executing 
applications on these distributed systems. One of 
these issues is usability. Much of the software that is 

deployed today is very complex and often geared 
towards high-end users that have already invested a 
large amount of time and effort to learn the ins-and-
outs of the cyberinfrastructure. An average scientist 
who is ready to scale up his or her computations to 
the large-scale infrastructure is faced with learning 
new software components that will move the data to 
the computations, schedule the jobs, and bring the 
results back. Although these functions seem 
relatively small, they involve relying on a stack of 
software that includes services (e.g. Condor [11] 
/GRAM [12] /PBS [13] /local OS) for scheduling 
jobs and a data transfer service (e.g. GridFTP [14]) 
that is interacting with a parallel file system (e.g. 
Lustre [15], PVFS, etc.) deployed on the resource. 
The software stack can be unreliable and prone to 
user, system, and software errors. If an error occurs 
in that software stack, then it is very hard for the 
user to discover the source of the problem. Currently 
there are no debugging tools available to enable the 
tracing of the problem. Tuning the system for 
performance is an additional concern. Each of the 
system components has their own controls, and 
exposes only some of them to the users. As a result, 
obtaining performance from an application can be 
difficult. 

In addition to the large-scale cyberinfrastructure, 
applications can target campus clusters, or utility 
computing platforms such as commercial [16, 17] 
and academic clouds [18, 19]. However, these 
opportunities also bring with them many challenges. 
It is hard to decide which resources to use and how 
long they will be needed. It is hard to determine 
what the cost/benefit trade-offs are when running in 
a particular environment. It is also difficult to 
achieve good performance and reliability for an 
application on a given system. 



 

In the paper, we describe an approach to 
managing scientific applications, in particular 
scientific workflows, on cloud resources. We use 
this example as an illustration of the challenges 
faced by such applications on clouds, and postulate 
that although cloud computing is, in some ways, an 
improvement in distributed computing capabilities, 
many issues still need to be addressed. 

2 APPLICATION CHALLENGES 

Scientific workflows are being used today in a 
number of disciplines. They stitch together 
computational tasks so that they can be executed 
automatically and reliably on behalf of the 
researcher. For example, in astronomy, researchers 
use workflows to generate science-grade mosaics of 
the sky [20, 21]. These workflows are composed of a 
number of image processing applications that 
discover the geometry of the input images on the 
sky, calculate the geometry of the output mosaic on 
the sky, re-project the flux in the input images to 
conform to the geometry of the output mosaic, 
model the background radiation in the input images 
to achieve common flux scales and background 
levels across the mosaic, and rectify the background 
that makes all constituent images conform to a 
common background level. Finally these normalized 
images are added together to form the final mosaic. 

The search for exoplanets is another example, 
The NASA Kepler mission (http://kepler.nasa.gov/) 
uses high-precision photometry to search for 
transiting exoplanets around main sequence stars. In 
May 2009, it began a photometric transit survey of 
170,000 stars that has a nominal mission lifetime of 
3.5 years. By the end of 2010, the Kepler mission 
had released light curves of 210,664 stars; these light 
curves contain measurements made over 229 days, 
with between 500 to 50,000 epochs per light curve. 
Analysing these light curves to identify periodic 
signals, such as those that arise from transiting 
planets and from stellar variability, requires 
calculations of periodograms that reveal periodicities 
in time-series data and estimates of their 
significance. Because periodograms require large 
amounts of computation to produce, workflows are 
being used to coordinate periodogram generation 
across distributed computing infrastructures. 

 Another example is from the earthquake science 
domain, where researchers use workflows to 
generate earthquake hazard maps of the Southern 
California region [22]. These maps show the 
maximum seismic shaking that can be expected to 
happen in a given region over a period of time 
(typically 50 years). Each point is obtained from a 

single hazard curve and each curve is generated by a 
workflow containing ~800,000 to ~1,000,000 
computational tasks [6]. This application requires 
large-scale computing capabilities such as those 
provided by the NSF TeraGrid [2]. 

In order to support such workflows, software 
systems need to 1) adapt the workflows to the 
execution environment (which, by necessity, is often 
heterogeneous and distributed), 2) optimize 
workflows for performance to provide a reasonable 
time to solution, 3) provide reliability so that 
scientists do not have to manage the potentially large 
numbers of failures that may occur, and 4) manage 
data so that it can be easily found and accessed at the 
end of the execution. 

2.3    Cloud Issues 

Having a number of capabilities, clouds can 
provide a variety of different solutions for 
applications. The latter have a choice of either adapt 
themselves to the new computational models 
provided by the cloud (such as MapReduce [23]) or 
adapt the cloud to look like a computational 
environment that the applications have used so far—
a compute cluster. Although new applications, 
especially those in bioinformatics, are willing to 
adopt new programming models, other applications, 
which have been using long time-validated and 
community accepted codes, are not willing to re-
write their applications. 

Virtualization in general opens up a greater 
number of resources to legacy applications. These 
applications are often very brittle and require a very 
specific software environment to execute 
successfully. Today, scientists struggle to make the 
codes that they rely on for weather prediction, ocean 
modelling, and many other computations work on 
different execution sites. No one wants to touch the 
codes that have been designed and validated many 
years ago in fear of breaking their scientific quality.  

Clouds and their use of virtualization 
technologies may make these legacy codes much 
easier to run. With virtualization the environment 
can be customized with a given OS, libraries, 
software packages, etc. The needed directory 
structure can be created to anchor the application in 
its preferred location without interfering with other 
users of the system. The downside is obviously that 
the environment needs to be created and this may 
require more knowledge and effort on the part of the 
scientist than they are willing or able to spend. 

For cluster-friendly applications, clouds can be 
configured (with additional work and tools) to look 
like a remote cluster, presenting interfaces for 
remote job submission and data transfer. As such, 



 

scientists can use existing grid software and tools to 
get their work done.  

Another interesting aspect of the cloud is that, by 
default, it includes resource provisioning as part of 
the usage mode. Unlike the grid, where jobs are 
often executed on a best-effort basis, when running 
on the cloud, a user requests a certain amount of 
resources and has them dedicated for a given 
duration of time. Resource provisioning is 
particularly useful for workflow-based applications, 
where overheads of scheduling individual, inter-
dependent tasks in isolation (as it is done by grid 
clusters) can be very costly. For example, if there are 
two dependent jobs in the workflow, the second job 
will not be released to a local resource manager on 
the cluster until the first job successfully completes. 
Thus the second job will incur additional queuing 
delays.  In the provisioned case, as soon as the first 
job finishes, the second job is released to the local 
resource manager and since the resource is 
dedicated, it can be scheduled right away.  Thus the 
overall workflow can be executed much more 
efficiently. 

3 MANAGING WORK ON 
CLOUDS 

3.1 Application Management 

One approach to managing workflow-based 
applications in grid or cloud environments is to use 
the Pegasus Workflow Management System [24]. 
Pegasus runs scientific workflows on desktops, 
private clusters, campus clusters, the Open Science 
Grid [1], the TeraGrid [2], and academic and 
commercial clouds [16, 18]. Pegasus can be used to 
run workflows ranging from just a few 
computational tasks up to millions. When errors 
occur, Pegasus tries to recover when possible by 
retrying tasks, by retrying the entire workflow, by 
providing workflow-level check-pointing, by re-
mapping portions of the workflow, by trying 
alternative data sources for staging data, and, when 
all else fails, by providing a rescue workflow 
containing a description of only the work that 
remains to be done so that the user can resubmit it 
later when the problem is resolved [25]. Pegasus 
cleans up storage as the workflow is executed so that 
data-intensive workflows have enough space to 
execute on storage-constrained resources [26, 27].  
Pegasus keeps track of what has been done 
(provenance) including the locations of data used 
and produced, and which software was used with 
which parameters [28-30].  

Pegasus assumes that the workflow management 
system and the workflow description live on a 
submit host, which is under the user’s control. 
Pegasus launches jobs from the submit host to the 
execution sites (either local or remote). The notion 
of a submit host and execution environment lends 
itself well to the Infrastructure as a Service (IaaS) 
model of cloud computing [31].   

Although Pegasus controls workflow execution 
through both static workflow restructuring and 
dynamic tuning of the job execution, it does not 
control the resources where the jobs are executing. 
However, managing resources is important in grids 
when trying to optimize workflow performance and 
is critical in clouds where the resources are not 
necessarily preconfigured for the workflow. As a 
result, we advocate the approach of building virtual 
clusters on the cloud and configuring them in a way 
similar to the clusters encountered by grid 
applications. 

3.2  Building Virtual Clusters 

Deploying applications in the cloud is not a 
trivial task. It is usually not sufficient to simply 
develop a virtual machine (VM) image that runs the 
appropriate services when the virtual machine starts 
up, and then just deploy the image on several VMs 
in the cloud. Often, the configuration of distributed 
services requires information about the nodes in the 
deployment that is not available until after nodes are 
provisioned (such as IP addresses, host names, etc.) 
as well as parameters specified by the user. In 
addition, nodes often form a complex hierarchy of 
interdependent services that must be configured in 
the correct order. Although users can manually 
configure such complex deployments, doing so is 
time consuming and error prone, especially for 
deployments with a large number of nodes. Instead, 
we advocate an approach where the user is able to 
specify the layout of their application declaratively, 
and use a service to automatically provision, 
configure, and monitor the application deployment. 
The service should allow for the dynamic 
configuration of the deployment, so that a variety of 
services can be deployed based on the needs of the 
user. It should also be resilient to failures that occur 
during the provisioning process and allow for the 
dynamic addition and removal of nodes. 

The Wrangler system [32, 33] allows users to 
send a simple XML description of the desired 
deployment to a web service that manages the 
provisioning of virtual machines and the installation 
and configuration of software and services. It is 



 

capable of interfacing with many different resource 
providers in order to deploy applications across 
clouds, supports plugins that enable users to define 
custom behaviors for their application, and allows 
dependencies to be specified between nodes. 
Complex deployments can be created by composing 
several plugins that set up services, install and 
configure application software, download data, and 
monitor services on several interdependent nodes. 

The components of the system are shown in 
Figure 1. They include: clients, a coordinator, and 
agents. 

• Clients run on each user’s machine and send 
requests to the coordinator to launch, query, 
and terminate, deployments. Clients have 
the option of using a command-line tool, a 
Python API, or XML-RPC to interact with 
the coordinator. 

• The coordinator is a web service that 
manages application deployments. It accepts 
requests from clients, provisions nodes from 
cloud providers, collects information about 
the state of a deployment, and acts as an 
information broker to aid application 
configuration. The coordinator stores 
information about its deployments in an 
SQLite database. 

• Agents run on each of the provisioned nodes 
to manage their configuration and monitor 
their health. The agent is responsible for 
collecting information about the node (such 
as its IP addresses and hostnames), reporting 
the state of the node to the coordinator, 
configuring the node with the software and 

services specified by the user, and 
monitoring the node for failures. 

• Plugins are user-defined scripts that 
implement the behavior of a node. They are 
invoked by the agent to configure and 
monitor a node. Each node in a deployment 
can be configured with multiple plugins. 

Users specify their deployment using a simple 
XML format. Each XML request document 
describes a deployment consisting of several nodes, 
which correspond to virtual machines. Each node 
has a provider that specifies the cloud resource 
provider to use for the node, and defines the 
characteristics of the virtual machine to be 
provisioned—including the VM image to use and 
the hardware resource type—as well as 
authentication credentials required by the provider. 
Each node has one or more plugins, which define the 
behaviors, services and functionality that should be 
implemented by the node. Plugins can have multiple 
parameters, which enable the user to configure the 
plugin, and are passed to the script when it is 
executed on the node. Nodes may be members of a 
named group, and each node may depend on zero or 
more other nodes or groups. 

3.3 Observation of Cloud Failures 

 
Figure 2: Virtual cluster using local resources, and 
cloud resources from both Sierra and Magellan, that 
was used to execute the periodograms workflows. 

We can use Wrangler to build virtual clusters 
across heterogeneous clouds. In the example below 
we ran the test workflow 3 times provisioning 6 
nodes (or 48 cores on each resource): once on 
FutureGrid (Sierra host), an academic cloud 
deployment in the US, once on Magellan, which was 
an experimental cloud deployment supported by the 
US Department of Energy, and once on both Sierra 
and Magellan at the same time using 6 nodes (48 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Wrangler architecture.  



 

cores) each (for a total of 96 cores). Figure 2 
illustrates the deployment, which consists of a 
Master Node (submit host) and a virtual cluster 
running Condor provisioned by Wrangler. 

After some failures we were able to execute 3 
complete runs of the periodogram workflow, which 
read a total of 5.4 GB of input data, produced 30 GB 
of output data, and consumed 713 hours of CPU 
time, all within the course of a few hours.  

Although Wrangler was able to successfully 
provision resources and execute the application, we 
found that failures were a major problem. We 
encountered several different types of failures while 
running this application. Table 1 shows a breakdown 
of the number of requests made and the number and 
type of failures for both Sierra and Magellan. The 
failures we encountered include: 

• Failed to start: The request was accepted, but 
the VM state went from 'pending' to 
'terminated' without reaching 'running'. 

• No route to host: The VM is in the 'running' 
state and reports to the Coordinator, but does 
not respond to network connections, or it 
stops responding to network connections after 
some time. 

• Invalid IP: The provider’s information 
service reported a public IP of '0.0.0.0' for the 
VM.  

• No public IP: VM was assigned two private 
IP addresses instead of one public and one 
private. 

• Request timed out: Resource provider’s web 
service hangs and the connection times out. 
These failures are automatically corrected by 
retrying the request. 

• Insufficient resources: The resource provider 
was not able to satisfy the request due to the 
lack of available resources. 

The failure rate we observed in running this 
application was significant. Five out of 20 requests 
to Sierra failed, which translates to a failure rate of 
25%. Magellan was even worse with 12 out of 28, or 
42%, of requests failing. The high failure rate on 
Magellan was primarily due to a network outage that 
caused several VMs to fail at the same time, and 
several failures were caused by a lack of resources, 
which is not a failure in the strictest sense. The 
effect of each of these failures is a request that did 
not result in a usable VM. Although these failures 
may, in some cases, be prevented by changes to the 
cloud management system, the fact is that such 
failures will occasionally occur. Provisioning 
systems like Wrangler should be prepared to detect 
and manage such failures, otherwise it will be 

difficult for an application to achieve meaningful 
results. 

We found that using Wrangler greatly simplified 
the process of provisioning and configuring cloud 
resources to execute this application. We were able 
to provision resources across two different clouds, 
quickly deploy a resource management system, and 
perform a non-trivial amount of computation in a 
short amount of time. However, we determined that 
more work is needed to automatically detect and 
recover from failures. 

Table 1: Number of requests and number and type of 
failures for the periodograms application on Sierra 
and Magellan. 

 

4 RELATED WORK 

There has been a considerable amount of work in 
the area of scientific workflows [34]. Here we just 
present related work in the area of virtual clusters.  

Constructing clusters on top of virtual machines 
has been explored by several previous research 
efforts. These include VMPlants [35], StarCluster 
[36], and others [37, 38]. These systems typically 
assume a fixed architecture that consists of a head 
node and N worker nodes. They also typically 
support only a single type of cluster software, such 
as SGE, Condor, or Globus.  

Many different configuration management and 
policy engines have been developed for UNIX 
systems. Cfengine [39], Puppet [40], and Chef [41] 
are a few well-known examples. Wrangler is similar 
to these systems in that configuration is one of its 
primary concerns, however, the other concern of this 
work, provisioning, is not addressed by 
configuration management systems.  



 

This work is related to virtual appliances [42] in 
that we are interested in deploying application 
services in the cloud. The focus of our project is on 
deploying collections of appliances for distributed 
applications. As such, our research is 
complementary to that of the virtual appliances 
community. 

Wrangler is similar to the Nimbus Context 
Broker (NCB) [43] used with the Nimbus cloud 
computing system [44]. NCB supports roles, which 
are similar to Wrangler plugins with the exception 
that NCB roles must be installed in the VM image 
and cannot be defined by the user when the 
application is deployed. In addition, our system is 
designed to support multiple cloud providers, while 
NCB works best with Nimbus-based clouds. 

Recently, other groups are recognizing the need 
for deployment services, and are developing similar 
solutions. One example is cloudinit.d [45], which 
enables users to deploy and monitor interdependent 
services in the cloud. Cloudinit.d services are similar 
to Wrangler plugins, but each node in cloudinit.d 
can have only one service, while Wrangler enables 
users to compose several, modular plugins to define 
the behavior of a node. 

5 DISCUSSION AND 
CONCLUSIONS 

We have shown that workflow-based 
applications can run successfully on cloud resources 
using the same execution model as they use on the 
grid.  However, there are still many obstacles to 
making this mode of execution efficient and robust. 
Although cluster configuration tools exist, they need 
to be able to deal with the failures we see in the 
underlying cloud software.  A big challenge, just as 
is in the case of grids, is managing the failures, 
either by masking them, by presenting them to the 
user in an understandable way, and/or by providing 
tools to help pinpoint the source of problems.  

If one approaches application execution the way 
we do, where we stand up a cloud infrastructure that 
is similar to what can be found on campus or 
national resources, then we still have the same 
problems that we see in grids, with a number of 
software systems layered on top of each other. We 
still have issues of deciphering problems when 
errors are not passed gracefully between the 
software layers. Just as with grids, there are no 
debugging tools or sophisticated user-friendly 
monitoring tools for applications running on cloud 
environments. Although virtualization can be a very 
powerful tool for providing better reliability and 

performance, today’s tools do not take full 
advantage of it.   

Although commercial clouds, such as Amazon, 
are currently much more reliable than their academic 
counterparts, there are monetary costs associated 
with their use. Therefore applications developers and 
users need tools to help evaluate the cost and 
turnaround time of the entire computational problem 
(for example whole sets of workflows—ensembles). 
They also need tools to manage these costs (or 
allocations on grids). 

For a number of new bioinformatics 
applications, which are entering the arena of cloud 
computing, issues of data privacy and security are 
critical. Thus a new understanding and evaluation of 
the security practices of virtual environments needs 
to be developed. 
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