
USING CLOUDS FOR SCIENCE, IS IT JUST KICKING THE CAN
DOWN THE ROAD?

Ewa Deelman1, Gideon Juve1 and G. Bruce Berriman2
1Information Sciences Institute, University of Southern California, Marina del Rey, CA, USA

2Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA, USA
{deelman, gideon}@isi.edu, gbb@ipac.caltech.edu

Keywords: cloud computing, scientific workflows

Abstract: In this paper we describe issues related to the execution of scientific workflows on clouds, giving particular
emphasis to the challenges faced by scientists when using grids and clouds for workflows. We also mention
some existing solutions and identify areas requiring additional work.

1 INTRODUCTION

Over the past decade grid computing has been
put forward as a platform for conducting science.
We have seen both tightly and loosely coupled
parallel applications making use of national and
international infrastructures such as the Open
Science Grid (OSG) [1], TeraGrid [2], EGI [3], and
others. These applications have been developed for
domains such as astronomy [4], bioinformatics [5],
earthquake science [6], physics [7], and others.

The broad spectrum of distributed computing
provides unique opportunities for large-scale,
complex scientific applications in terms of resource
selection, performance optimization, reliability, etc.
However many issues of usability, reliability,
performance, and efficient computation remain
challenges in the area of grid computing. Over time
the architecture of the underlying clusters used for
scientific computation has been changing, from
commodity-type architectures connected by high-
performance networks to more complex
architectures and deployments such as those of the
Cray XT5 [8] or IBM Blue Gene [9]. As the
computing architectures have changed, so has the
software used to access these machines across the
network. For example, the Globus Toolkit [10] has
undergone many revisions and architectural changes
over the past decade.

Although the various hardware and software
systems have been changing, users have been
dealing with the same issues when executing
applications on these distributed systems. One of
these issues is usability. Much of the software that is

deployed today is very complex and often geared
towards high-end users that have already invested a
large amount of time and effort to learn the ins-and-
outs of the cyberinfrastructure. An average scientist
who is ready to scale up his or her computations to
the large-scale infrastructure is faced with learning
new software components that will move the data to
the computations, schedule the jobs, and bring the
results back. Although these functions seem
relatively small, they involve relying on a stack of
software that includes services (e.g. Condor [11]
/GRAM [12] /PBS [13] /local OS) for scheduling
jobs and a data transfer service (e.g. GridFTP [14])
that is interacting with a parallel file system (e.g.
Lustre [15], PVFS, etc.) deployed on the resource.
The software stack can be unreliable and prone to
user, system, and software errors. If an error occurs
in that software stack, then it is very hard for the
user to discover the source of the problem. Currently
there are no debugging tools available to enable the
tracing of the problem. Tuning the system for
performance is an additional concern. Each of the
system components has their own controls, and
exposes only some of them to the users. As a result,
obtaining performance from an application can be
difficult.

In addition to the large-scale cyberinfrastructure,
applications can target campus clusters, or utility
computing platforms such as commercial [16, 17]
and academic clouds [18, 19]. However, these
opportunities also bring with them many challenges.
It is hard to decide which resources to use and how
long they will be needed. It is hard to determine
what the cost/benefit trade-offs are when running in
a particular environment. It is also difficult to
achieve good performance and reliability for an
application on a given system.

In the paper, we describe an approach to
managing scientific applications, in particular
scientific workflows, on cloud resources. We use
this example as an illustration of the challenges
faced by such applications on clouds, and postulate
that although cloud computing is, in some ways, an
improvement in distributed computing capabilities,
many issues still need to be addressed.

2 APPLICATION CHALLENGES

Scientific workflows are being used today in a
number of disciplines. They stitch together
computational tasks so that they can be executed
automatically and reliably on behalf of the
researcher. For example, in astronomy, researchers
use workflows to generate science-grade mosaics of
the sky [20, 21]. These workflows are composed of a
number of image processing applications that
discover the geometry of the input images on the
sky, calculate the geometry of the output mosaic on
the sky, re-project the flux in the input images to
conform to the geometry of the output mosaic,
model the background radiation in the input images
to achieve common flux scales and background
levels across the mosaic, and rectify the background
that makes all constituent images conform to a
common background level. Finally these normalized
images are added together to form the final mosaic.

The search for exoplanets is another example,
The NASA Kepler mission (http://kepler.nasa.gov/)
uses high-precision photometry to search for
transiting exoplanets around main sequence stars. In
May 2009, it began a photometric transit survey of
170,000 stars that has a nominal mission lifetime of
3.5 years. By the end of 2010, the Kepler mission
had released light curves of 210,664 stars; these light
curves contain measurements made over 229 days,
with between 500 to 50,000 epochs per light curve.
Analysing these light curves to identify periodic
signals, such as those that arise from transiting
planets and from stellar variability, requires
calculations of periodograms that reveal periodicities
in time-series data and estimates of their
significance. Because periodograms require large
amounts of computation to produce, workflows are
being used to coordinate periodogram generation
across distributed computing infrastructures.

 Another example is from the earthquake science
domain, where researchers use workflows to
generate earthquake hazard maps of the Southern
California region [22]. These maps show the
maximum seismic shaking that can be expected to
happen in a given region over a period of time
(typically 50 years). Each point is obtained from a

single hazard curve and each curve is generated by a
workflow containing ~800,000 to ~1,000,000
computational tasks [6]. This application requires
large-scale computing capabilities such as those
provided by the NSF TeraGrid [2].

In order to support such workflows, software
systems need to 1) adapt the workflows to the
execution environment (which, by necessity, is often
heterogeneous and distributed), 2) optimize
workflows for performance to provide a reasonable
time to solution, 3) provide reliability so that
scientists do not have to manage the potentially large
numbers of failures that may occur, and 4) manage
data so that it can be easily found and accessed at the
end of the execution.

2.3 Cloud Issues

Having a number of capabilities, clouds can
provide a variety of different solutions for
applications. The latter have a choice of either adapt
themselves to the new computational models
provided by the cloud (such as MapReduce [23]) or
adapt the cloud to look like a computational
environment that the applications have used so far—
a compute cluster. Although new applications,
especially those in bioinformatics, are willing to
adopt new programming models, other applications,
which have been using long time-validated and
community accepted codes, are not willing to re-
write their applications.

Virtualization in general opens up a greater
number of resources to legacy applications. These
applications are often very brittle and require a very
specific software environment to execute
successfully. Today, scientists struggle to make the
codes that they rely on for weather prediction, ocean
modelling, and many other computations work on
different execution sites. No one wants to touch the
codes that have been designed and validated many
years ago in fear of breaking their scientific quality.

Clouds and their use of virtualization
technologies may make these legacy codes much
easier to run. With virtualization the environment
can be customized with a given OS, libraries,
software packages, etc. The needed directory
structure can be created to anchor the application in
its preferred location without interfering with other
users of the system. The downside is obviously that
the environment needs to be created and this may
require more knowledge and effort on the part of the
scientist than they are willing or able to spend.

For cluster-friendly applications, clouds can be
configured (with additional work and tools) to look
like a remote cluster, presenting interfaces for
remote job submission and data transfer. As such,

scientists can use existing grid software and tools to
get their work done.

Another interesting aspect of the cloud is that, by
default, it includes resource provisioning as part of
the usage mode. Unlike the grid, where jobs are
often executed on a best-effort basis, when running
on the cloud, a user requests a certain amount of
resources and has them dedicated for a given
duration of time. Resource provisioning is
particularly useful for workflow-based applications,
where overheads of scheduling individual, inter-
dependent tasks in isolation (as it is done by grid
clusters) can be very costly. For example, if there are
two dependent jobs in the workflow, the second job
will not be released to a local resource manager on
the cluster until the first job successfully completes.
Thus the second job will incur additional queuing
delays. In the provisioned case, as soon as the first
job finishes, the second job is released to the local
resource manager and since the resource is
dedicated, it can be scheduled right away. Thus the
overall workflow can be executed much more
efficiently.

3 MANAGING WORK ON
CLOUDS

3.1 Application Management

One approach to managing workflow-based
applications in grid or cloud environments is to use
the Pegasus Workflow Management System [24].
Pegasus runs scientific workflows on desktops,
private clusters, campus clusters, the Open Science
Grid [1], the TeraGrid [2], and academic and
commercial clouds [16, 18]. Pegasus can be used to
run workflows ranging from just a few
computational tasks up to millions. When errors
occur, Pegasus tries to recover when possible by
retrying tasks, by retrying the entire workflow, by
providing workflow-level check-pointing, by re-
mapping portions of the workflow, by trying
alternative data sources for staging data, and, when
all else fails, by providing a rescue workflow
containing a description of only the work that
remains to be done so that the user can resubmit it
later when the problem is resolved [25]. Pegasus
cleans up storage as the workflow is executed so that
data-intensive workflows have enough space to
execute on storage-constrained resources [26, 27].
Pegasus keeps track of what has been done
(provenance) including the locations of data used
and produced, and which software was used with
which parameters [28-30].

Pegasus assumes that the workflow management
system and the workflow description live on a
submit host, which is under the user’s control.
Pegasus launches jobs from the submit host to the
execution sites (either local or remote). The notion
of a submit host and execution environment lends
itself well to the Infrastructure as a Service (IaaS)
model of cloud computing [31].

Although Pegasus controls workflow execution
through both static workflow restructuring and
dynamic tuning of the job execution, it does not
control the resources where the jobs are executing.
However, managing resources is important in grids
when trying to optimize workflow performance and
is critical in clouds where the resources are not
necessarily preconfigured for the workflow. As a
result, we advocate the approach of building virtual
clusters on the cloud and configuring them in a way
similar to the clusters encountered by grid
applications.

3.2 Building Virtual Clusters

Deploying applications in the cloud is not a
trivial task. It is usually not sufficient to simply
develop a virtual machine (VM) image that runs the
appropriate services when the virtual machine starts
up, and then just deploy the image on several VMs
in the cloud. Often, the configuration of distributed
services requires information about the nodes in the
deployment that is not available until after nodes are
provisioned (such as IP addresses, host names, etc.)
as well as parameters specified by the user. In
addition, nodes often form a complex hierarchy of
interdependent services that must be configured in
the correct order. Although users can manually
configure such complex deployments, doing so is
time consuming and error prone, especially for
deployments with a large number of nodes. Instead,
we advocate an approach where the user is able to
specify the layout of their application declaratively,
and use a service to automatically provision,
configure, and monitor the application deployment.
The service should allow for the dynamic
configuration of the deployment, so that a variety of
services can be deployed based on the needs of the
user. It should also be resilient to failures that occur
during the provisioning process and allow for the
dynamic addition and removal of nodes.

The Wrangler system [32, 33] allows users to
send a simple XML description of the desired
deployment to a web service that manages the
provisioning of virtual machines and the installation
and configuration of software and services. It is

capable of interfacing with many different resource
providers in order to deploy applications across
clouds, supports plugins that enable users to define
custom behaviors for their application, and allows
dependencies to be specified between nodes.
Complex deployments can be created by composing
several plugins that set up services, install and
configure application software, download data, and
monitor services on several interdependent nodes.

The components of the system are shown in
Figure 1. They include: clients, a coordinator, and
agents.

• Clients run on each user’s machine and send
requests to the coordinator to launch, query,
and terminate, deployments. Clients have
the option of using a command-line tool, a
Python API, or XML-RPC to interact with
the coordinator.

• The coordinator is a web service that
manages application deployments. It accepts
requests from clients, provisions nodes from
cloud providers, collects information about
the state of a deployment, and acts as an
information broker to aid application
configuration. The coordinator stores
information about its deployments in an
SQLite database.

• Agents run on each of the provisioned nodes
to manage their configuration and monitor
their health. The agent is responsible for
collecting information about the node (such
as its IP addresses and hostnames), reporting
the state of the node to the coordinator,
configuring the node with the software and

services specified by the user, and
monitoring the node for failures.

• Plugins are user-defined scripts that
implement the behavior of a node. They are
invoked by the agent to configure and
monitor a node. Each node in a deployment
can be configured with multiple plugins.

Users specify their deployment using a simple
XML format. Each XML request document
describes a deployment consisting of several nodes,
which correspond to virtual machines. Each node
has a provider that specifies the cloud resource
provider to use for the node, and defines the
characteristics of the virtual machine to be
provisioned—including the VM image to use and
the hardware resource type—as well as
authentication credentials required by the provider.
Each node has one or more plugins, which define the
behaviors, services and functionality that should be
implemented by the node. Plugins can have multiple
parameters, which enable the user to configure the
plugin, and are passed to the script when it is
executed on the node. Nodes may be members of a
named group, and each node may depend on zero or
more other nodes or groups.

3.3 Observation of Cloud Failures

Figure 2: Virtual cluster using local resources, and
cloud resources from both Sierra and Magellan, that
was used to execute the periodograms workflows.

We can use Wrangler to build virtual clusters
across heterogeneous clouds. In the example below
we ran the test workflow 3 times provisioning 6
nodes (or 48 cores on each resource): once on
FutureGrid (Sierra host), an academic cloud
deployment in the US, once on Magellan, which was
an experimental cloud deployment supported by the
US Department of Energy, and once on both Sierra
and Magellan at the same time using 6 nodes (48

Figure 1: Wrangler architecture.

cores) each (for a total of 96 cores). Figure 2
illustrates the deployment, which consists of a
Master Node (submit host) and a virtual cluster
running Condor provisioned by Wrangler.

After some failures we were able to execute 3
complete runs of the periodogram workflow, which
read a total of 5.4 GB of input data, produced 30 GB
of output data, and consumed 713 hours of CPU
time, all within the course of a few hours.

Although Wrangler was able to successfully
provision resources and execute the application, we
found that failures were a major problem. We
encountered several different types of failures while
running this application. Table 1 shows a breakdown
of the number of requests made and the number and
type of failures for both Sierra and Magellan. The
failures we encountered include:

• Failed to start: The request was accepted, but
the VM state went from 'pending' to
'terminated' without reaching 'running'.

• No route to host: The VM is in the 'running'
state and reports to the Coordinator, but does
not respond to network connections, or it
stops responding to network connections after
some time.

• Invalid IP: The provider’s information
service reported a public IP of '0.0.0.0' for the
VM.

• No public IP: VM was assigned two private
IP addresses instead of one public and one
private.

• Request timed out: Resource provider’s web
service hangs and the connection times out.
These failures are automatically corrected by
retrying the request.

• Insufficient resources: The resource provider
was not able to satisfy the request due to the
lack of available resources.

The failure rate we observed in running this
application was significant. Five out of 20 requests
to Sierra failed, which translates to a failure rate of
25%. Magellan was even worse with 12 out of 28, or
42%, of requests failing. The high failure rate on
Magellan was primarily due to a network outage that
caused several VMs to fail at the same time, and
several failures were caused by a lack of resources,
which is not a failure in the strictest sense. The
effect of each of these failures is a request that did
not result in a usable VM. Although these failures
may, in some cases, be prevented by changes to the
cloud management system, the fact is that such
failures will occasionally occur. Provisioning
systems like Wrangler should be prepared to detect
and manage such failures, otherwise it will be

difficult for an application to achieve meaningful
results.

We found that using Wrangler greatly simplified
the process of provisioning and configuring cloud
resources to execute this application. We were able
to provision resources across two different clouds,
quickly deploy a resource management system, and
perform a non-trivial amount of computation in a
short amount of time. However, we determined that
more work is needed to automatically detect and
recover from failures.

Table 1: Number of requests and number and type of
failures for the periodograms application on Sierra
and Magellan.

4 RELATED WORK

There has been a considerable amount of work in
the area of scientific workflows [34]. Here we just
present related work in the area of virtual clusters.

Constructing clusters on top of virtual machines
has been explored by several previous research
efforts. These include VMPlants [35], StarCluster
[36], and others [37, 38]. These systems typically
assume a fixed architecture that consists of a head
node and N worker nodes. They also typically
support only a single type of cluster software, such
as SGE, Condor, or Globus.

Many different configuration management and
policy engines have been developed for UNIX
systems. Cfengine [39], Puppet [40], and Chef [41]
are a few well-known examples. Wrangler is similar
to these systems in that configuration is one of its
primary concerns, however, the other concern of this
work, provisioning, is not addressed by
configuration management systems.

This work is related to virtual appliances [42] in
that we are interested in deploying application
services in the cloud. The focus of our project is on
deploying collections of appliances for distributed
applications. As such, our research is
complementary to that of the virtual appliances
community.

Wrangler is similar to the Nimbus Context
Broker (NCB) [43] used with the Nimbus cloud
computing system [44]. NCB supports roles, which
are similar to Wrangler plugins with the exception
that NCB roles must be installed in the VM image
and cannot be defined by the user when the
application is deployed. In addition, our system is
designed to support multiple cloud providers, while
NCB works best with Nimbus-based clouds.

Recently, other groups are recognizing the need
for deployment services, and are developing similar
solutions. One example is cloudinit.d [45], which
enables users to deploy and monitor interdependent
services in the cloud. Cloudinit.d services are similar
to Wrangler plugins, but each node in cloudinit.d
can have only one service, while Wrangler enables
users to compose several, modular plugins to define
the behavior of a node.

5 DISCUSSION AND
CONCLUSIONS

We have shown that workflow-based
applications can run successfully on cloud resources
using the same execution model as they use on the
grid. However, there are still many obstacles to
making this mode of execution efficient and robust.
Although cluster configuration tools exist, they need
to be able to deal with the failures we see in the
underlying cloud software. A big challenge, just as
is in the case of grids, is managing the failures,
either by masking them, by presenting them to the
user in an understandable way, and/or by providing
tools to help pinpoint the source of problems.

If one approaches application execution the way
we do, where we stand up a cloud infrastructure that
is similar to what can be found on campus or
national resources, then we still have the same
problems that we see in grids, with a number of
software systems layered on top of each other. We
still have issues of deciphering problems when
errors are not passed gracefully between the
software layers. Just as with grids, there are no
debugging tools or sophisticated user-friendly
monitoring tools for applications running on cloud
environments. Although virtualization can be a very
powerful tool for providing better reliability and

performance, today’s tools do not take full
advantage of it.

Although commercial clouds, such as Amazon,
are currently much more reliable than their academic
counterparts, there are monetary costs associated
with their use. Therefore applications developers and
users need tools to help evaluate the cost and
turnaround time of the entire computational problem
(for example whole sets of workflows—ensembles).
They also need tools to manage these costs (or
allocations on grids).

For a number of new bioinformatics
applications, which are entering the arena of cloud
computing, issues of data privacy and security are
critical. Thus a new understanding and evaluation of
the security practices of virtual environments needs
to be developed.

ACKNOWLEDGEMENTS

This work was supported by the National
Science Foundation under grant OCI-0943725.

G. B. Berriman is supported by the NASA
Exoplanet Science Institute at the Infrared
Processing and Analysis Center, operated by the
California Institute of Technology in coordination
with the Jet Propulsion Laboratory (JPL).

REFERENCES

[1] "Open Science Grid," www.opensciencegrid.org.
[2] TeraGrid. Available: http://www.teragrid.org/
[3] D. Kranzlmüller, J. M. Lucas, et al, "The European

Grid Initiative (EGI)," Remote Instrumentation and
Virtual Laboratories, pp. 61-66, 2010.

[4] E. Deelman, G. Singh, et al, "The Cost of Doing
Science on the Cloud: The Montage Example,"
presented at the SC'08 Austin, TX, 2008.

[5] R. D. Stevens, A. J. Robinson, and C. A. Goble,
"myGrid: personalised bioinformatics on the
information grid," Bioinformatics (Eleventh
International Conference on Intelligent Systems for
Molecular Biology), vol. 19, 2003.

[6] S. Callaghan, P. Maechling, et al, "Reducing Time-
to-Solution Using Distributed High-Throughput
Mega-Workflows - Experiences from SCEC
CyberShake," Fourth IEEE International Conference
on e-Science, Indianapolis, Indiana, USA, 2008.

[7] D. A. Brown, P. R. Brady, et al, "A Case Study on
the Use of Workflow Technologies for Scientific
Analysis: Gravitational Wave Data Analysis," in

Workflows for e-Science, I. Taylor, et al, Eds.,
Springer, 2006.

[8] A. S. Bland, R. A. Kendall, et al, "Jaguar: The
world’s most powerful computer," Memory (TB), vol.
300, p. 362, 2009.

[9] A. Gara, M. A. Blumrich, et al, "Overview of the
Blue Gene/L system architecture," IBM Journal of
Research and Development, vol. 49, pp. 195-212,
2005.

[10] I. Foster, "Globus Toolkit Version 4: Software for
Service-Oriented Systems," 2006.

[11] M. Litzkow, M. Livny, and M. Mutka, "Condor - A
Hunter of Idle Workstations," in Proc. 8th Intl Conf.
on Distributed Computing Systems, ed, 1988.

[12] K. Czajkowski, I. Foster, et al, "A Resource
Management Architecture for Metacomputing
Systems," in 4th Workshop on Job Scheduling
Strategies for Parallel Processing, ed: Springer-
Verlag, 1998, pp. 62-82.

[13] A. Bayucan, R. L. Henderson, et al, "Portable Batch
System: External reference specification," ed, 1999.

[14] W. Allcock, J. Bester, et al, "Data Management and
Transfer in High-Performance Computational Grid
Environments," Parallel Computing, 2001.

[15] Sun Microsystems. Lustre. http://www.lustre.org
[16] Amazon Elastic Compute Cloud.

http://aws.amazon.com/ec2/
[17] Google App Engine.

http://code.google.com/appengine/
[18] Nimbus Science Cloud.

http://workspace.globus.org/clouds/nimbus.html
[19] (2010). FutureGrid. http://www.futuregrid.org/
[20] G. B. Berriman, E. Deelman, et al, "Montage: A

Grid Enabled Engine for Delivering Custom
Science-Grade Mosaics On Demand," in SPIE
Conference 5487: Astronomical Telescopes, 2004.

[21] Montage. Available: http://montage.ipac.caltech.edu
[22] R. W. G. Paul G. Somerville, et al, "Ground motion

environment of the Los Angeles region," The
Structural Design of Tall and Special Buildings, vol.
15, pp. 483-494, 2006.

[23] J. Dean and S. Ghemawat, "MapReduce: Simplified
data processing on large clusters," Communications
of the ACM, vol. 51, pp. 107-113, 2008.

[24] E. Deelman, J. Blythe, et al, "Pegasus : Mapping
Scientific Workflows onto the Grid," in 2nd
EUROPEAN ACROSS GRIDS CONFERENCE,
Nicosia, Cyprus, 2004.

[25] E. Deelman, G. Mehta, et al, "Pegasus: Mapping
Large-Scale Workflows to Distributed Resources,"
in Workflows in e-Science, I. Taylor, E. Deelman, D.
Gannon, and M. Shields, Eds., ed: Springer, 2006.

[26] A. Ramakrishnan, G. Singh, et al, "Scheduling Data
-Intensive Workflows onto Storage-Constrained
Distributed Resources," in CCGrid 2007.

[27] G. Singh, K. Vahi, et al, "Optimizing Workflow
Data Footprint " Scientific Programming Journal,
Special issue on Dynamic Computational
Workflows: Discovery, Optimization, and
Scheduling, vol. 15, 2007

[28] S. Miles, E. Deelman, et al, "Connecting Scientific
Data to Scientific Experiments with Provenance "
presented at the Third IEEE International
Conference on e-Science and Grid Computing (e-
Science 2007), Bangalore, India. , 2007.

[29] S. Miles, P. Groth, et al, "Provenance: The bridge
between experiments and data," Computing in
Science & Engineering, vol. 10, pp. 38-46, 2008.

[30] P. Groth, E. Deelman, et al, "Pipeline-Centric
Provenance Model, "The 4th Workshop on
Workflows in Support of Large-Scale Science,
Portland, OR, 2009.

[31] E. Deelman, "Grids and Clouds: Making Workflow
Applications Work in Heterogeneous Distributed
Environments," International Journal of High
Performance Computing Applications, 2009.

[32] G. Juve and E. Deelman, "Automating Application
Deployment in Infrastructure Clouds," CloudCom
2011,

[33] G. Juve and E. Deelman, "Wrangler: Virtual Cluster
Provisioning for the Cloud (short paper),"20th
International Symposium on High Performance
Distributed Computing (HPDC'11), 2011.

[34] E. Deelman, D. Gannon, et al, "Workflows and e-
Science: An overview of workflow system features
and capabilities," Future Generation Computer
Systems, vol. 25, pp. 528-540, 2009.

[35] I. Krsul, A. Ganguly, et al, "Vmplants: Providing
and managing virtual machine execution
environments for grid computing," 2004, pp. 7-7.

[36] StarCluster. http://web.mit.edu/stardev/cluster/.
[37] M. A. Murphy, B. Kagey, et al, "Dynamic

provisioning of virtual organization clusters," 2009,
pp. 364-371.

[38] J.-S. Vöckler, G. Juve, et al, "Experiences Using
Cloud Computing for A Scientific Workflow
Application," presented at the 2nd Workshop on
Scientific Cloud Computing (ScienceCloud), 2011.

[39] M. Burgess, "A site configuration engine," USENIX
Computing Systems, vol. 8, 1995.

[40] L. Kanies, "Puppet: Next Generation Configuration
Management," Login, vol. 31, 2006.

[41] Opscode, Chef. Available:
http://www.opscode.com/chef.

[42] C. Sapuntzakis, D. Brumley, et al, "Virtual
Appliances for Deploying and Maintaining
Software," presented at the 17th USENIX
Conference on System Administration, 2003.

[43] Nimbus. Available: http://workspace.globus.org
[44] K. Keahey, R. Figueiredo, et al, "Science clouds:

Early experiences in cloud computing for scientific
applications," Cloud Computing and Applications,
2008.

[45] J. Bresnahan, T. Freeman, et al, "Managing
Appliance Launches in Infrastructure Clouds,"
Teragrid Conference, 2011.

