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Abstract 
 

In this paper we discuss several challenges 
associated scientific workflow design and management 
in distributed, heterogeneous environments.  Based on 
our prior work with a number of scientific 
applications, we describe the workflow lifecycle and 
examine our experiences and the challenges ahead as 
they pertain to the user experience, planning the 
workflow execution and managing the execution itself. 

  
 
1. Introduction 
 
Scientific workflows are becoming a vehicle for 
enabling science at a large scale [1].  The scale can be 
measured in terms of the scale and scope of the 
scientific analysis itself and its complexity as well as in 
terms of the number of scientists and the number of 

organizations that collaborate in the process of 
scientific discovery. Workflows provide a 
representation of complex analyses composed of 
heterogeneous models designed by various individuals. 
At the same time, workflows have also become a 
useful representation that is used to manage the 
execution of large-scale computations.  This 
representation not only facilitates overall creation and 
management of the computation but also builds a 
foundation upon which results can be analyzed and 
validated. Since workflows formally describe the 
sequence of computational and data management tasks, 
it is easy to trace back how particular data were 
derived.  
 
Workflows can also become a tool capable of bringing 
sophisticated analysis to a broad range of users.  
Experts can: formulate workflows, set parameters of 
individual components, annotate the workflow 

Workflow 
Template

Workflow 
Instance

Executable 
Workflow

Data, Metadata, 
Provenance 
Repositories 
and Catalogs

Data, 
Metadata  
Catalogs

Resource, 
Application 
Component 
DescriptionsCompute, 

Storage 
and 

Network 
Resources

Data 
Products

Execute
Map to 

available 
resources

Adapt, 
Modify

Workflow 
and 

Component 
Libraries

Populate 
with data

Figure 1: The Workflow Lifecycle. 



components or the overall workflow, and validate the 
results. Once this process is completed, the newly 
developed workflows can be shared with other 
members of the community, other experts or even 
researchers and students that are not familiar with all 
the details of the analysis to the point where they can 
set all the necessary parameters themselves, but are 
fully able to make use of the workflow for their own 
work.  
 
In this paper we describe the workflow lifecycle in 
terms of how workflows are defined, managed and 
executed, and illustrate several existing challenges and 
the solutions we are exploring for each of the lifecycle 
stages.  

 
2. The Workflow Lifecycle 
 
Figure 1 depicts the workflow lifecycle.  Starting at the 
top of the figure, we can begin the process by 
composing a workflow template. A template 
describes the steps of analysis to be done by 
indentifying individual application components (at an 
abstract level—without identifying particular codes) 
and their order. An example template could indicate 
that first component would decimate a signal and then 
perform an FFT. This would be a workflow template 
composed of two application components and there 
would be a dependency between them (see Figure 2).   
 

 
Figure 2: A Workflow Template. 

 
When composing templates, users can access and 
search workflow and component libraries. Users can 
find “similar” templates that can be modified as well as 
components that can be added to existing templates. 
We assume that application developers would 
previously input the component descriptions into the 
component library. Workflow templates can be very 
useful within a collaboration because they allow for 
the sharing of the definition of an analysis. Experts can 
help develop and validate the templates, checking 
whether the overall logic of the analysis makes sense, 
and whether the parameters are set correctly.  Users 
can also be assisted in validating the correctness of 
templates they create, either with syntactic checks or 
more complex semantic checks that take into account 

the constraints of the components.  Once the templates 
are validated they can be re-used “as is” and 
referenced widely.  It is also often the case that the 
templates are being developed and validated by a 
group of experts, where each individual brings their 
own knowledge about subparts of the problem. 
 

 
Figure 3: A Workflow Instance. Identifies the 

Workflow Steps and the Data Used in Each Step 
(f1, g1,f2,g2...). 

 
Once the template is constructed, it needs to be 
populated with data, we call this form of the workflow 
a workflow instance. The instance describes the 
analysis exactly at the application level without 
indicating the resources needed to execute the analysis. 
Users can create a workflow instance by finding 
appropriate data using data and metadata catalogs. For 
example, a user could decide to run the two step 
workflow mentioned above on the data collected from 
experiment X during the time interval T.  The user 
would query a metadata catalog (such as MCS [2] for 
example) to retrieve the identifiers of the data of 
interest (in our case these are often file names). These 
identifiers are then used to populate the template. In 
our example, if there were a thousand of identifiers of 
interest, then the workflow instance would be a two-
level workflow composed of 2,000 nodes. At the first 
level we would have 1000 “decimate” nodes, each of 
which having a dependency to one of the 1000 “fft” 
nodes as illustrated in Figure 3. The workflow instance 
can also be represented more compactly through the 
use of the iteration construct, but for illustration 
purposes, we show the full instance. In our work we 
use Wings [3] to assist with the workflow template 
composition and workflow instantiation. 
 
The workflow instance is important because it 
uniquely identifies the analysis to be conducted at the 
application level without including operational details 
of the execution environment. The instance can thus be 
published along with the results to describe how a 



particular data product was obtained. As such the 
workflow instance is key to reproducibility of 
scientific results. 
 
The next step in the workflow lifecycle is to create the 
executable workflow.  It is created by mapping the 
workflow instance onto the available execution 
resources. We assume that the execution environment 
is composed of distributed, heterogeneous resources. 
The mapping includes finding the appropriate software 
and computational resources where the execution can 
take place as well as finding copies of the data 
indicated in the workflow instance. This mapping 
usually involves adding nodes to the workflow to 
perform the desired functions.  The mapping process 
can also involve workflow restructuring geared 
towards optimizing the overall workflow performance 
as well as workflow transformation geared towards 
data management and provenance information 
generation. The mapping process is usually automated 
(in our work we use Pegasus [4]) and involves the 
discovery of data replicas and the discovery of the 
available resources and their characteristics. 
Information about the application components and 
their locations are also necessary for the process of 
executable workflow generation.  
 
Once the executable workflow is defined, it can be 
executed by a workflow engine which follows the 
dependencies defined in the workflow and executes the 
activities defined in the workflow nodes. The 
workflow engine (in our work we use Condor’s 
DAGMan [5]) relies on the resources (compute, 
storage and network) defined in the workflow to 
perform the necessary actions. As part of the 
execution, the data is generated along with its 
associated metadata and any provenance information 
that is collected.  This information can then be used to 
reuse the workflow in future analyses, either as is or 
modifying and adapting it, thus completing the 
workflow lifecycle. 
 
We note that there are also other paths through the 
stages of the workflow and that a user can enter the 
cycle at different points. For example, the mapping 
from the workflow instance to the executable 
workflow may be done incrementally instead of in one 
shot. The user may develop a workflow instance or 
executable workflow directly. Also, based on the 
possible failures in the execution, the executable 
workflows, workflow instances or even workflow 
templates may need to be revised and the process of 
workflow refinement needs to be repeated. 
 

We can broadly classify the process of workflow 
template and instance creation as user experiences, the 
mapping process as pre-planning and the execution as 
dynamic scheduling and monitoring. Based on these 
three general categories, we explore several challenges 
associated with them and describe our work in these 
areas.   
 
3. Challenges in User Experiences 
 
Challenges in providing users with satisfying 
experiences and enabling them to conduct their science 
efficiently and effortlessly stem from the fact that user 
expectations vary greatly.  Users typically want to be 
able to focus solely on the scientific aspects of the 
problem, choosing appropriate components, structuring 
the overall analysis, selecting the necessary data, etc. 
However, some users may want to look deeper into the 
workflow lifecycle and guide the mapping process, 
perhaps indicating preferred compute resources and 
data sources. 
 
At the same time, users often do not have a fixed 
analysis in mind, rather they converge on the final 
workflow through the process of exploration, perhaps 
developing different versions of the same workflow or 
modifying portions of the workflow as the 
computation progresses.  
 
Finding information about the state of the workflow 
and being advised of any fatal failures or long delays 
are important feedback to provide to the users. The 
challenge is to supply the information at the right level 
of detail in a form that is easily understandable by the 
user (again the differences in user expectations make 
this challenging).  
 
In our work, we explored the issues of user 
experiences from two angles: one is to adopt widely 
used portal technologies to provide users with high-
level interfaces, and the second is to use semantic 
technologies to assist users with workflow 
composition. 
 
Portals are being used today to deliver sophisticated 
capabilities customized for a wide range of users 
within a given community. They can also be used to 
provide an interface to the development and execution 
of workflow-based applications. One example of this 
work is the Montage portal [6], where the Montage 
application [7] which delivers science-grade mosaics 
of the sky is made available to the astronomy 
community.  Figure 4 shows a generic view of portal 



that supports workflow-based applications. The user 
interface is customized to a given application domain 
and to a given community.  Based on the user requests, 
a workflow instance is generated. In some portals, such 
as Montage, there exists support for only one 
application, but the user is able to select from a variety 
of data sources, for example, choosing images from 
different sky surveys. In other portals, such as the 
Earthworks portal [8] developed by the earthquake 
science community, users are able to configure a 
template by choosing amongst different application 
components (although the overall structure of the 
template is pre-defined).  
 

 
Figure 4: A Schematic of a Portal for Workflow-
based Applications. 
 
After the workflow instance is defined, it is passed to 
the Pegasus planner for mapping. The resulting 
executable workflow is then executed by Condor’s 
DAGMan workflow engine. Finally the results are 
displayed to the user inside the portal or links to the 
data are presented.  
 
However, in these portals the user has a limited choice 
of workflow templates. Many scientists desire more 
flexibility and also want to be able to explore 
alternative analysis, which means creating alternative 
workflow templates.  Also, as we mentioned before, 
users may not know ahead of time the exact structure 
of the workflow and may need guidance in the way the 
workflows are constructed. In our work [3] we use 
semantic technologies to describe the application 
components and input data and use this information to 
guide the user in developing semantically correct 
workflows.  
 
In some cases, it is impossible to develop and execute 
the entire workflow at once, sometimes because the 
user does not have enough information about the 
intermediate data to fully specify the workflow, 
sometimes because the instantiation of the workflow 
(populating the workflow template with data) can only 
be done once this data is generated. In such cases we 

can use Wings and Pegasus to iteratively instantiate 
and map the workflow.  
 
Figure 5 shows the interaction between Wings and 
Pegasus when instantiating a workflow in an 
earthquake science application CyberShake[9].  
Initially the first portion of the workflow is instantiated 
by Wings and sent to Pegasus for mapping. Once that 
portion is executed, the resulting data files are sent 
back to Wings and are used to instantiate the 
remaining portions of the workflow. The latter portion 
of the workflow can then be mapped and executed and 
the final results can be sent back to the user.  
 

Figure 5: Iterative Workflow Instantiation, 
Planning and Execution. 
 
4. Challenges in Workflow Planning 
 
The challenges in workflow planning can be divided 
into two parts: feasibility and performance.  In the first 
case we need to find a mapping of the workflow 
instance to an executable workflow that correctly 
identifies the needed resources and data and that 
manages the resulting data by staging them out to 
appropriate storage locations and by registering them 
in a catalog where they can be subsequently found.  
Obviously, faults in the environment can still occur, 
but the executable workflow generated by the planning 
process needs to be correct in order to minimize errors 
during execution.  
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Workflow planners also can optimize the workflow 
from the point of view of performance by scheduling 
individual jobs and the entire workflow onto resources 
in a way that optimizes the overall workflow 
performance [10]. One can sometimes increase the 
performance of the overall workflow when one can 
carefully schedule critical portions of the workflow. In 
data-intensive workflows making sure to schedule the 
computation close to the data is also important.  
 



There can be cases where we could benefit from 
combining workflow-level with component-level 
optimizations. In particular, we are exploring issues of 
using search techniques to select the most appropriate 
implementations of both components and workflows. 
In terms of component optimization, we are relying on 
compiler and search technologies to select among 
implementation variants of the same computation [11]. 
We are also relying on knowledge-rich representations 
of components and workflow properties to guide the 
search for an optimal overall workflow.  
 
Another form of optimization we explore within 
Pegasus is the clustering of jobs to increase the 
computational granularity of the workflows, and 
reduce the remote scheduling overhead of the 
individual jobs [12].  Clustering is a technique which 
we can also apply to data transfer jobs present in the 
workflow. In this case the optimizations can be also in 
terms of management of large number of jobs but also 
in terms of optimizing the file transfers by performing 
several transfers in parallel. 
 
5. Challenges in Workflow Execution 
 
One of the main challenges in workflow execution is 
the ability of documenting and dealing with failures. 
Failures can happen because resources go down, data 
becomes unavailable, networks go down, bugs in the 
system software or in the application components 
appear, and many other causes.  
 
One approach to dealing with failures is tightening the 
interaction between the workflow planning and 
workflow execution processes, where only small 
portions of the workflow are planned ahead of time 
and then executed before progressing further. 
Although this approach does not avoid failures, it may 
provide more resilient mappings, by allowing for the 
inclusion of the latest information about the resources 
into the planning process. When failures occur, 
planning can also be redone. In Pegasus, we optimize 
the re-mapping process by keeping track of the 
intermediate data products [13] and then reducing the 
workflow based on the data produced so far. For 
example if a workflow composed of application 
components: A, B and C, each producing files f1, f2, 
and f3 respectively, fails while C is executing, we can 
remap the original workflow (possibly scheduling C to 
another resource) without recomputing components A 
and B.  Clearly, the intermediate data reuse can be very 
beneficial in terms of optimizing performance. 
 

Another challenge in workflow execution is the 
collection of the information necessary to identify 
causes of failures so they can be avoided in future 
executions when possible. This would include placing 
monitoring components within all levels of workflow 
execution, from the workflow engine down to the 
application and system software components. Since the 
workflows are often running in very heterogeneous 
environments and rely on multi-level software stacks, 
collecting and interpreting this information is very 
challenging.  
 
Instrumentation of the execution process can also be 
useful for providing provenance and performance 
information about the workflow components and entire 
workflows. The provenance information, which 
specifies how particular data was produced (which 
software was used, which input data) is necessary for 
scientists to be able to interpret, validate and reproduce 
the results. The performance information is useful for 
application component developers to identify problems 
with particular algorithms. 
 
Workflow execution systems may also improve the 
performance of the workflow and support the 
scheduling performed by the workflow planner by 
providing resource provisioning capabilities [14]. 
Reserving compute resources ahead of the execution, 
removes some of the uncertainties associated with the 
scheduling of workflow components onto the 
resources. In the case of provisioned resources, the 
workflow tasks incur much reduced delays in the 
queues of the remote execution systems. These delays 
are also independent of the jobs submitted by other 
users of the resource.  
 
6. Conclusions 
 
In this paper we described several challenges 
associated with creating and managing large-scale 
workflows in distributed environments. We examined 
the problem from the point of view of user 
interactions, workflow planning and workflow 
execution.  Although we are addressing some of these 
issues in our work, many challenges still remain.  
 
In a recent NSF Workshop on the “Challenges of 
Scientific Workflows” [15], it was recognized that 
workflows are critical to capture complex scientific 
analysis processes in today’s computationally intensive 
and highly distributed science. In order to realize their 
full potential, the workshop report indicates that future 
workflow approaches will need to support the 



exploratory and dynamic nature of science and provide 
the provenance information necessary for result 
reproducibility.  
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