
Managing Large-Scale Scientific Workflows in Distributed Environments:
Experiences and Challenges

Ewa Deelman, Yolanda Gil

USC Information Sciences Institute, Marina Del Rey, CA 90292,
deelman@isi.edu, gil@isi.edu

Abstract

In this paper we discuss several challenges
associated scientific workflow design and management
in distributed, heterogeneous environments. Based on
our prior work with a number of scientific
applications, we describe the workflow lifecycle and
examine our experiences and the challenges ahead as
they pertain to the user experience, planning the
workflow execution and managing the execution itself.

1. Introduction

Scientific workflows are becoming a vehicle for
enabling science at a large scale [1]. The scale can be
measured in terms of the scale and scope of the
scientific analysis itself and its complexity as well as in
terms of the number of scientists and the number of

organizations that collaborate in the process of
scientific discovery. Workflows provide a
representation of complex analyses composed of
heterogeneous models designed by various individuals.
At the same time, workflows have also become a
useful representation that is used to manage the
execution of large-scale computations. This
representation not only facilitates overall creation and
management of the computation but also builds a
foundation upon which results can be analyzed and
validated. Since workflows formally describe the
sequence of computational and data management tasks,
it is easy to trace back how particular data were
derived.

Workflows can also become a tool capable of bringing
sophisticated analysis to a broad range of users.
Experts can: formulate workflows, set parameters of
individual components, annotate the workflow

Workflow
Template

Workflow
Instance

Executable
Workflow

Data, Metadata,
Provenance
Repositories
and Catalogs

Data,
Metadata
Catalogs

Resource,
Application
Component
DescriptionsCompute,

Storage
and

Network
Resources

Data
Products

Execute
Map to

available
resources

Adapt,
Modify

Workflow
and

Component
Libraries

Populate
with data

Figure 1: The Workflow Lifecycle.

components or the overall workflow, and validate the
results. Once this process is completed, the newly
developed workflows can be shared with other
members of the community, other experts or even
researchers and students that are not familiar with all
the details of the analysis to the point where they can
set all the necessary parameters themselves, but are
fully able to make use of the workflow for their own
work.

In this paper we describe the workflow lifecycle in
terms of how workflows are defined, managed and
executed, and illustrate several existing challenges and
the solutions we are exploring for each of the lifecycle
stages.

2. The Workflow Lifecycle

Figure 1 depicts the workflow lifecycle. Starting at the
top of the figure, we can begin the process by
composing a workflow template. A template
describes the steps of analysis to be done by
indentifying individual application components (at an
abstract level—without identifying particular codes)
and their order. An example template could indicate
that first component would decimate a signal and then
perform an FFT. This would be a workflow template
composed of two application components and there
would be a dependency between them (see Figure 2).

Figure 2: A Workflow Template.

When composing templates, users can access and
search workflow and component libraries. Users can
find “similar” templates that can be modified as well as
components that can be added to existing templates.
We assume that application developers would
previously input the component descriptions into the
component library. Workflow templates can be very
useful within a collaboration because they allow for
the sharing of the definition of an analysis. Experts can
help develop and validate the templates, checking
whether the overall logic of the analysis makes sense,
and whether the parameters are set correctly. Users
can also be assisted in validating the correctness of
templates they create, either with syntactic checks or
more complex semantic checks that take into account

the constraints of the components. Once the templates
are validated they can be re-used “as is” and
referenced widely. It is also often the case that the
templates are being developed and validated by a
group of experts, where each individual brings their
own knowledge about subparts of the problem.

Figure 3: A Workflow Instance. Identifies the

Workflow Steps and the Data Used in Each Step
(f1, g1,f2,g2...).

Once the template is constructed, it needs to be
populated with data, we call this form of the workflow
a workflow instance. The instance describes the
analysis exactly at the application level without
indicating the resources needed to execute the analysis.
Users can create a workflow instance by finding
appropriate data using data and metadata catalogs. For
example, a user could decide to run the two step
workflow mentioned above on the data collected from
experiment X during the time interval T. The user
would query a metadata catalog (such as MCS [2] for
example) to retrieve the identifiers of the data of
interest (in our case these are often file names). These
identifiers are then used to populate the template. In
our example, if there were a thousand of identifiers of
interest, then the workflow instance would be a two-
level workflow composed of 2,000 nodes. At the first
level we would have 1000 “decimate” nodes, each of
which having a dependency to one of the 1000 “fft”
nodes as illustrated in Figure 3. The workflow instance
can also be represented more compactly through the
use of the iteration construct, but for illustration
purposes, we show the full instance. In our work we
use Wings [3] to assist with the workflow template
composition and workflow instantiation.

The workflow instance is important because it
uniquely identifies the analysis to be conducted at the
application level without including operational details
of the execution environment. The instance can thus be
published along with the results to describe how a

particular data product was obtained. As such the
workflow instance is key to reproducibility of
scientific results.

The next step in the workflow lifecycle is to create the
executable workflow. It is created by mapping the
workflow instance onto the available execution
resources. We assume that the execution environment
is composed of distributed, heterogeneous resources.
The mapping includes finding the appropriate software
and computational resources where the execution can
take place as well as finding copies of the data
indicated in the workflow instance. This mapping
usually involves adding nodes to the workflow to
perform the desired functions. The mapping process
can also involve workflow restructuring geared
towards optimizing the overall workflow performance
as well as workflow transformation geared towards
data management and provenance information
generation. The mapping process is usually automated
(in our work we use Pegasus [4]) and involves the
discovery of data replicas and the discovery of the
available resources and their characteristics.
Information about the application components and
their locations are also necessary for the process of
executable workflow generation.

Once the executable workflow is defined, it can be
executed by a workflow engine which follows the
dependencies defined in the workflow and executes the
activities defined in the workflow nodes. The
workflow engine (in our work we use Condor’s
DAGMan [5]) relies on the resources (compute,
storage and network) defined in the workflow to
perform the necessary actions. As part of the
execution, the data is generated along with its
associated metadata and any provenance information
that is collected. This information can then be used to
reuse the workflow in future analyses, either as is or
modifying and adapting it, thus completing the
workflow lifecycle.

We note that there are also other paths through the
stages of the workflow and that a user can enter the
cycle at different points. For example, the mapping
from the workflow instance to the executable
workflow may be done incrementally instead of in one
shot. The user may develop a workflow instance or
executable workflow directly. Also, based on the
possible failures in the execution, the executable
workflows, workflow instances or even workflow
templates may need to be revised and the process of
workflow refinement needs to be repeated.

We can broadly classify the process of workflow
template and instance creation as user experiences, the
mapping process as pre-planning and the execution as
dynamic scheduling and monitoring. Based on these
three general categories, we explore several challenges
associated with them and describe our work in these
areas.

3. Challenges in User Experiences

Challenges in providing users with satisfying
experiences and enabling them to conduct their science
efficiently and effortlessly stem from the fact that user
expectations vary greatly. Users typically want to be
able to focus solely on the scientific aspects of the
problem, choosing appropriate components, structuring
the overall analysis, selecting the necessary data, etc.
However, some users may want to look deeper into the
workflow lifecycle and guide the mapping process,
perhaps indicating preferred compute resources and
data sources.

At the same time, users often do not have a fixed
analysis in mind, rather they converge on the final
workflow through the process of exploration, perhaps
developing different versions of the same workflow or
modifying portions of the workflow as the
computation progresses.

Finding information about the state of the workflow
and being advised of any fatal failures or long delays
are important feedback to provide to the users. The
challenge is to supply the information at the right level
of detail in a form that is easily understandable by the
user (again the differences in user expectations make
this challenging).

In our work, we explored the issues of user
experiences from two angles: one is to adopt widely
used portal technologies to provide users with high-
level interfaces, and the second is to use semantic
technologies to assist users with workflow
composition.

Portals are being used today to deliver sophisticated
capabilities customized for a wide range of users
within a given community. They can also be used to
provide an interface to the development and execution
of workflow-based applications. One example of this
work is the Montage portal [6], where the Montage
application [7] which delivers science-grade mosaics
of the sky is made available to the astronomy
community. Figure 4 shows a generic view of portal

that supports workflow-based applications. The user
interface is customized to a given application domain
and to a given community. Based on the user requests,
a workflow instance is generated. In some portals, such
as Montage, there exists support for only one
application, but the user is able to select from a variety
of data sources, for example, choosing images from
different sky surveys. In other portals, such as the
Earthworks portal [8] developed by the earthquake
science community, users are able to configure a
template by choosing amongst different application
components (although the overall structure of the
template is pre-defined).

Figure 4: A Schematic of a Portal for Workflow-
based Applications.

After the workflow instance is defined, it is passed to
the Pegasus planner for mapping. The resulting
executable workflow is then executed by Condor’s
DAGMan workflow engine. Finally the results are
displayed to the user inside the portal or links to the
data are presented.

However, in these portals the user has a limited choice
of workflow templates. Many scientists desire more
flexibility and also want to be able to explore
alternative analysis, which means creating alternative
workflow templates. Also, as we mentioned before,
users may not know ahead of time the exact structure
of the workflow and may need guidance in the way the
workflows are constructed. In our work [3] we use
semantic technologies to describe the application
components and input data and use this information to
guide the user in developing semantically correct
workflows.

In some cases, it is impossible to develop and execute
the entire workflow at once, sometimes because the
user does not have enough information about the
intermediate data to fully specify the workflow,
sometimes because the instantiation of the workflow
(populating the workflow template with data) can only
be done once this data is generated. In such cases we

can use Wings and Pegasus to iteratively instantiate
and map the workflow.

Figure 5 shows the interaction between Wings and
Pegasus when instantiating a workflow in an
earthquake science application CyberShake[9].
Initially the first portion of the workflow is instantiated
by Wings and sent to Pegasus for mapping. Once that
portion is executed, the resulting data files are sent
back to Wings and are used to instantiate the
remaining portions of the workflow. The latter portion
of the workflow can then be mapped and executed and
the final results can be sent back to the user.

Figure 5: Iterative Workflow Instantiation,
Planning and Execution.

4. Challenges in Workflow Planning

The challenges in workflow planning can be divided
into two parts: feasibility and performance. In the first
case we need to find a mapping of the workflow
instance to an executable workflow that correctly
identifies the needed resources and data and that
manages the resulting data by staging them out to
appropriate storage locations and by registering them
in a catalog where they can be subsequently found.
Obviously, faults in the environment can still occur,
but the executable workflow generated by the planning
process needs to be correct in order to minimize errors
during execution.

SGTSGT127_6.txt.variation-s000-h000 SGT161
SGTSGT127_7.txt.variation-s000-h000 SGT282

Boxnamecheck Boxnamecheck Boxnamecheck

XYZGRD

…

CVM

pmvlchk

…

CVM

pmvlchk

…

CVM

pmvlchkPreSGT
PreSGT

PreSGT

CVMFD CVMFD CVMFD

PreSGTFDPreSGTFD
PreSGTFD

… …
…

………

SeisGen_Li

PeakValCalc

Seismograms_PAS_127_6.grm

PeakVals_allPAS_127_6.bsa

SeisGen_Li

PeakValCalc

Seismograms_PAS_127_7.grm

PeakVals_allPAS_127_7.bsa

SeisGen_Li

PeakValCalc

Seismograms_PAS_151_11.grm

PeakVals_allPAS_151_11.bsa

. . .GenMD GenMD
GenMD

SGTSGT150_11.txt.variation-s000-h000 SGT161
SGTSGT127_6.txt.variation-s000-h000 SGT161 SGT127_7.txt.variation-s000-h000 SGT282

Workflow planners also can optimize the workflow
from the point of view of performance by scheduling
individual jobs and the entire workflow onto resources
in a way that optimizes the overall workflow
performance [10]. One can sometimes increase the
performance of the overall workflow when one can
carefully schedule critical portions of the workflow. In
data-intensive workflows making sure to schedule the
computation close to the data is also important.

There can be cases where we could benefit from
combining workflow-level with component-level
optimizations. In particular, we are exploring issues of
using search techniques to select the most appropriate
implementations of both components and workflows.
In terms of component optimization, we are relying on
compiler and search technologies to select among
implementation variants of the same computation [11].
We are also relying on knowledge-rich representations
of components and workflow properties to guide the
search for an optimal overall workflow.

Another form of optimization we explore within
Pegasus is the clustering of jobs to increase the
computational granularity of the workflows, and
reduce the remote scheduling overhead of the
individual jobs [12]. Clustering is a technique which
we can also apply to data transfer jobs present in the
workflow. In this case the optimizations can be also in
terms of management of large number of jobs but also
in terms of optimizing the file transfers by performing
several transfers in parallel.

5. Challenges in Workflow Execution

One of the main challenges in workflow execution is
the ability of documenting and dealing with failures.
Failures can happen because resources go down, data
becomes unavailable, networks go down, bugs in the
system software or in the application components
appear, and many other causes.

One approach to dealing with failures is tightening the
interaction between the workflow planning and
workflow execution processes, where only small
portions of the workflow are planned ahead of time
and then executed before progressing further.
Although this approach does not avoid failures, it may
provide more resilient mappings, by allowing for the
inclusion of the latest information about the resources
into the planning process. When failures occur,
planning can also be redone. In Pegasus, we optimize
the re-mapping process by keeping track of the
intermediate data products [13] and then reducing the
workflow based on the data produced so far. For
example if a workflow composed of application
components: A, B and C, each producing files f1, f2,
and f3 respectively, fails while C is executing, we can
remap the original workflow (possibly scheduling C to
another resource) without recomputing components A
and B. Clearly, the intermediate data reuse can be very
beneficial in terms of optimizing performance.

Another challenge in workflow execution is the
collection of the information necessary to identify
causes of failures so they can be avoided in future
executions when possible. This would include placing
monitoring components within all levels of workflow
execution, from the workflow engine down to the
application and system software components. Since the
workflows are often running in very heterogeneous
environments and rely on multi-level software stacks,
collecting and interpreting this information is very
challenging.

Instrumentation of the execution process can also be
useful for providing provenance and performance
information about the workflow components and entire
workflows. The provenance information, which
specifies how particular data was produced (which
software was used, which input data) is necessary for
scientists to be able to interpret, validate and reproduce
the results. The performance information is useful for
application component developers to identify problems
with particular algorithms.

Workflow execution systems may also improve the
performance of the workflow and support the
scheduling performed by the workflow planner by
providing resource provisioning capabilities [14].
Reserving compute resources ahead of the execution,
removes some of the uncertainties associated with the
scheduling of workflow components onto the
resources. In the case of provisioned resources, the
workflow tasks incur much reduced delays in the
queues of the remote execution systems. These delays
are also independent of the jobs submitted by other
users of the resource.

6. Conclusions

In this paper we described several challenges
associated with creating and managing large-scale
workflows in distributed environments. We examined
the problem from the point of view of user
interactions, workflow planning and workflow
execution. Although we are addressing some of these
issues in our work, many challenges still remain.

In a recent NSF Workshop on the “Challenges of
Scientific Workflows” [15], it was recognized that
workflows are critical to capture complex scientific
analysis processes in today’s computationally intensive
and highly distributed science. In order to realize their
full potential, the workshop report indicates that future
workflow approaches will need to support the

exploratory and dynamic nature of science and provide
the provenance information necessary for result
reproducibility.

7. Acknowledgments

We would like to thank the many collaborators who
made various aspects of this work possible: Bruce
Berriman, John Good, Mary Hall, Carl Kesselman,
Jihie Kim, Phillip Maechling, Gaurang Mehta, David
Meyers, Joanna Muench, Varun Ratnakar, Gurmeet
Singh, and Karan Vahi.

We would also like to thank the National Science
Foundation for the support of this work under grants:
SCI-0455361, CNS- 0509517 and CNS- 0615412.

8. References

[1] Workflows for e-Science, Scientific

Workflows for Grids," Springer, I. J. Taylor,
et al. (eds), 2006, to appear.

[2] E. Deelman, et al., "Grid-Based Metadata
Services," Proceedings of Statistical and
Scientific Database Management (SSDBM),
Santorini, Greece, 2004.

[3] J. Kim, et al., "Semantic Metadata Generation
for Large Scientific Workflows," Proceedings
of International Semantic Web Conference,
2006 (to appear).

[4] E. Deelman, et al., "Pegasus: A framework for
mapping complex scientific workflows onto
distributed systems," Scientific Programming,
vol. 13, pp. 219 - 237, 2005.

[5] J. Frey, et al., "Condor-G: A Computation
Management Agent for Multi-Institutional
Grids." Cluster Computing, vol. 5, pp. 237-
246, 2002.

[6] J. C. Jacob, et al., "Montage: a grid portal and
software toolkit for science-grade
astronomical image mosaicking," IJCSE,
2006, to appear.

[7] B. Berriman, et al., "Montage: A Grid-
Enabled Image Mosaic Service for the NVO,"
Proceedings of Astronomical Data Analysis
Software & Systems (ADASS) XIII, 2003.

[8] J. Muench, et al., "SCEC Earthworks Science
Gateway: Widening SCEC Community
Access to the TeraGrid." TeraGrid 2006
Conference, 2006.

[9] E. Deelman, et al., "Managing Large-Scale
Workflow Execution from Resource
Provisioning to Provenance tracking: The
CyberShake Example," Proceedings of e-
Science, Amsterdam, 2006 (to appear).

[10] J. Blythe, et al., "Task Scheduling Strategies
for Workflow-based Applications in Grids,"
Proceedings of IEEE International
Symposium on Cluster Computing and Grid
(CCGrid), 2005.

[11] E. Deelman, et al., "A Systematic Approach
to Composing and Optimizing Application
Workflows," Proceedings of Workshop on
Patterns in High Performance Computing,
2005.

[12] G. Singh, et al., "Optimizing Grid-Based
Workflow Execution," Journal of Grid
Computing, vol. 3, pp. 201-219, 2005

[13] E. Deelman, et al., "Pegasus : Mapping
Scientific Workflows onto the Grid,"
Proceedings of 2nd EUROPEAN ACROSS
GRIDS CONFERENCE, Nicosia, Cyprus,
2004.

[14] G. Singh, et al., "Application-level Resource
Provisioning," Proceedings of eScience,
Amsterdam, 2006 (to appear).

[15] "Workshop on the Challenges of Scientific
Workflows," Arlington, VA
2006.http://vtcpc.isi.edu/wiki/, E. Deelman
and Y.Gil (eds)

http://vtcpc.isi.edu/wiki/

	1. Introduction
	2. The Workflow Lifecycle
	3. Challenges in User Experiences
	4. Challenges in Workflow Planning
	5. Challenges in Workflow Execution
	6. Conclusions
	7. Acknowledgments
	8. References

