
Managing Large-Scale Workflow Execution from Resource Provisioning to
Provenance tracking: The CyberShake Example

Ewa Deelman1, Scott Callaghan2, Edward Field3, Hunter Francoeur2, Robert Graves4, Nitin

Gupta2,, Vipin Gupta2,,Thomas H. Jordan2, Carl Kesselman1, Philip Maechling2, John
Mehringer2, Gaurang Mehta1, David Okaya2, Karan Vahi1, Li Zhao2

(1)USC Information Sciences Institute, Marina Del Rey, CA 90292
{deelman,carl,gmehta,vahi}@isi.edu

(3)University of Southern California, Los Angeles, CA, 90089
{scottcal, francoeu, niting, vgupta, tjordan, maechlin, jmehring,okaya zhaol}usc.edu]

(2)US Geological Survey, Pasadena, CA 91106
field@caltech.edu

(4)URS Corporation, Pasadena, CA 91101
robert_graves@urscorp.com

Abstract

This paper discusses the process of building an
environment where large-scale, complex, scientific
analysis can be scheduled onto a heterogeneous
collection of computational and storage resources. The
example application is the Southern California
Earthquake Center (SCEC) CyberShake project, an
analysis designed to compute probabilistic seismic
hazard curves for sites in the Los Angeles area. We
explain which software tools were used to build to the
system, describe their functionality and interactions.
We show the results of running the CyberShake
analysis that included over 250,000 jobs using
resources available through SCEC and the TeraGrid.

1. Introduction

Increasingly, Grid infrastructure is becoming
available on a production basis [1-3]. Deployed as part
of the general purpose computing infrastructure, the
services and capabilities being provided are generally
shared across many users from a variety of
communities. One of the compelling motivations for
the creation of the Grid infrastructure is that it provides
a foundation on which distributed collaborations, or
Virtual Organizations (VO)[4] may be formed.

One notable example of a VO is the Southern
California Earthquake Center (SCEC)[5] an
organization that consists of 50 earth science research
institutions in the United States and several other
countries. As a VO, SCEC has created its own
production Grid infrastructure that enables sharing of
resources owned by participants across the
collaboration [6]. However, there are problems of great
interest to the SCEC community that requires

capabilities far beyond those that can be brought to
bear by the participating institutions. One example is
the calculation of Probabilistic Seismic Hazard
Analysis (PSHA) maps, which indicate the likelihood
of seeing a specific amount of surface motion within a
specified period of time. PSHA is used (among other
things) to determine the placement and design of
buildings and other structures. To date, PSHA curves
have been calculated using simplistic empirically-
derived attenuation relationship to describe the
relationship between a rupture and the surface motion.
However, advances in a variety of geophysical models
related to earthquakes have for the first time made it
possible to calculate these models based on physics-
based earthquake wave propagation simulations.

The requirements of new calculations go well
beyond the computational and storage capacities of the
SCEC member institutions, thus significant fractions of
the calculations must be outsourced to high-end
facilities such as the TeraGrid[3] in order to be
completed in an acceptable time frame.

The PSHA calculations are quite complex, and
involve many different processing steps, models and
data sources. While all of these components could be
re-hosted on the large-scale computational resources,
this imposes a significant burden on the application
community and greatly limits the flexibility in which
computational sites may be used. A more effective
approach is to integrate the external resources into the
SCEC Grid, essentially augmenting the SCEC VO’s
resources and capabilities with the additional resources
and services required to operate the VO.

Overlaying a VO-specific structure on the deployed
Grid infrastructure can achieve a number of goals:

deelman
Text Box
In Proceedings of the e-Science 2006 Conference in Amsterdam, the Netherlands, Dec. 2006
Best Paper Award

deelman
Text Box

• Integration of external services with those owned
by the community. This provides a uniform view
of the community resources to the community
members and to the applications.

• Removal of the “noise” of resources and services
that is not relevant to the community.

• Deployment of domain-specific services that are
part of the community infrastructure. This
simplifies the application development and
supports the enforcement of community policies.
Additionally, deploying domain-specific services
such as schedulers can potentially improve the
throughput of the applications.

In this paper we describe how we constructed a
SCEC-specific environment optimized to the
calculation of PSHA by combining the infrastructure
provided by the TeraGrid and the SCEC resources. We
outline how we built the VO-based environment and
provide results from running PSHA calculations in this
environment. In this environment the workflows can be
executed end-to-end the derived data can be
automatically staged-out to long term storage, and
provenance information can be recorded. First, we
describe PSHA calculations and their computational
requirements (Section 2). Next we detail the approach
we took in building up the SCEC VO environment
(Section 3). In Section 4 we describe the results
obtained from running PSHA calculations on a variety
of resources. We show results of running
approximately 250,000 jobs corresponding to 1.8 CPU
years over a period of 23 days. These jobs produced
and registered approximately 100,000 files. Finally, we
conclude with related work and future directions.

2. CyberShake and its Requirements

 SCEC researchers are developing physics-
based models of earthquake processes and integrating
these models into a scientific framework for seismic
hazard analysis and risk management. These seismic
simulations are leading toward a physics-based, model-
oriented approach to earthquake science with the
eventual goal of transforming seismology into a
predictive science with forecasting capabilities similar
to those available today in the areas of climate
modeling and weather forecasting.

To characterize the earthquake hazards in a region,
seismologists and engineers utilize the Probabilistic
Seismic Hazard Analysis technique. PSHA attempts to
quantify the peak ground motions from all possible
earthquakes that might affect a particular site
(geographic area) and to establish the probabilities that
the site will experience a given ground motion level
over a particular time frame. PSHA information is used

by city planners and building engineers and is often the
basis for building codes in a region.

Up to now PSHA techniques have not fully
integrated the recent advances in earthquake simulation
capabilities. Probabilistic seismic hazard curves have
been calculated using empirically-based attenuation
relationships that represent relatively simple analytical
models based on the regression of observed data.
However, it is widely believed that significant
improvements in PSHA will rely on the use of more
physics-based waveform modeling. The goal of the
CyberShake project is to bring the physics-based
modeling for PSHA calculation into the mainstream.

For each site of interest (geographical area) a
CyberShake calculation consists of the following steps:
1. Generation of Strain Green Tensors (SGTs)—this

is an MPI-based finite-difference simulation that
can run over a period of days using 144 or 288
processors and produces as much as 10TB of data.

2. Calculation of synthetic seismograms from SGT
data calculated in Step 1 for each likely earthquake
in the region. Depending on the rupture forecasts,
there can as many as 35,000 and 5,000 on average
of such calculations. Seismogram calculation runs
on a single processor, and each calculation for
each rupture can run for as little as a few minutes
and as long as 3 days.

3. Calculation of spectral acceleration. This
processes the seismograms into some peak
intensity measure type of interest, in our case
spectral acceleration. The number of these tasks
corresponds to the number of tasks in step 2.
However, these are short running tasks—on the
order of minutes

4. Generation of hazard curves which combine the
spectral acceleration values into a probabilistic
hazard curve based on their likelihood of
occurring..

This series of operations will produce a single
PSHA curve which describes hazards at a particular
site. In order to produce hazard maps for the Ventura
and Los Angeles counties in California, at least 1,000
and up to 10,000 sites need to be calculated. Thus,
CyberShake requires significant amounts of large high-
performance computing resources in order to support
the highly parallel, MPI-based SGT code. There is also
a need for a high-throughput computing platform for
the second and third phases of the analysis in which a
large number of processing jobs must be submitted and
monitored across a distributed computing environment.

Up to now SCEC relied mostly on its own
resources-a high performance cluster at USC to
perform the calculations. Although the cluster is large,
over 1,800 processors [7], a single user such as SCEC
can have access to only small fractions of the resources

at any one time. Additional burden is placed on the
resources by the TeraByte-scale data sets. Thus, it is
essential for SCEC to draw upon external resources in
order to support the desired computations.

A third requirement imposed by the CyberShake is
a significant file-oriented, data management capability.
The post-processing phase (steps 2 and 3 above) is data
intensive generating tens or hundreds of thousands of
files. All files must be tracked, and managed, and
annotated with metadata.

In the next Section we describe how we provided an
environment for CyberShake that seamlessly integrated
SCEC and outside resources and supported the
automated management of both computation and data:
from resource provisioning, to resource scheduling;
from data registration to provenance recording.

3. Approach

3.1. Problem Representation
CyberShake can be represented as an ordered set of

tasks described as a workflow and shown in Figure 1.
Our initial calculations were limited to a small number
of sites so as to focus on scientific validation of the
results, and consequently the workflows were limited
to seismogram calculation with SGT calculations being
done ahead of time. With validation complete, we need
to run several hundred sites, and the workflow is being
augmented to include SGTs. Although the current
workflow conceptually consists of only two main steps
(steps 2 and 3 in Section 2), we plan to expand the
workflow description to include all of the analysis.
Each geographical site which is the target of the
CyberShake analysis consists of tens of workflows
each composed of between 11 and 1,000 of the two-
step analysis components. In this paper we present
results from running CyberShake for two sites:
Pasadena and the University of Southern California
(USC). The Pasadena site contained a total of 33
workflows and the USC site 26 workflows. The
cumulative number of synthetic seismograms and
spectral acceleration generation tasks for each site was
on the order of 50,000.

CyberShake workflows were expressed in abstract
terms in that they described only the analysis that
needed to take place and the data needed in abstract
terms without indicating either the execution locations
or the actual storage location of the data. The VO we
designed and implemented took care of provisioning
the necessary resources, mapping the abstract
workflow onto the VO resources, executing the
necessary tasks and cataloging the results and
provenance information.

3.2. SCEC-centric Grid
Executing large-scale, long running applications on

today’s Grid systems is a challenge as the resources are
often shared across many users and applications. From
the point of view of the application flexibility, it is
important to provide a view that allows for the design
of the analysis in terms independent of the underlying
resources with the software used to manage VO
resources performing the mapping onto the resources
and the management of the execution.

Rupture ForecastRupture Forecast

Synthetic SeismogramSynthetic Seismogram

Strain Green
Tensor

Spectral AccelerationSpectral Acceleration

Hazard Map

Figure 1: The CyberShake Workflow.

Figure 2 depicts the infrastructure we designed to
support the execution of SCEC workflows. The
infrastructure relies on heterogeneous resources drawn
from the SCEC and TeraGrid resources: both storage
and compute. The information about the resources
available to the VO and other services such as data
movement, replica management, and job scheduling
services are maintained in the VO Service Catalog.

TeraGrid
Compute

TeraGrid
Storage

VO Scheduler

Workflow Scheduler
& Engine

VO Service
Catalog

Provenance
Catalog

Data
Catalog

SCEC
Storage

Figure 2: The SCEC Virtual Organization.

To support the VO operation, we deployed a VO-
specific workflow scheduler and engine. This
scheduler uses a workflow refinement system to
augment workflow tasks with data management and
catalog operations and maps tasks to specific resources
dynamically provisioned into the VO. The workflow
scheduler uses a VO specific execution engine based
on Condor DAGMan [8] to execute and manage the
mapped tasks. The tasks are sent for execution to a VO
scheduler that manages the VO resources. As a result
of the workflow execution, the newly created data
products are stored in the Data Catalogs. The
provenance information related to the data generation

and the workflow execution itself are stored in the
Provenance Catalog.

In order to design and deploy the system we relied
on existing Grid technologies. In some cases we
integrated some of the components to automate the
process of workflow management. We describe the
software involved and the integration process below.
We also designed and implemented SCEC-specific
components that provided feedback to the scientists on
the progress of the analysis (in the top left of Figure 2
we see a web-based display that generated and updated
the hazard curves in real time.)
SCEC Catalogs

In this Section we describe the catalogs that were
used by the SCEC VO and their implementation.
VO Service Catalog

The VO Service Catalog maintains information
about the resources available to SCEC. Among the
information included are the resources names, the
jobmanagers [9] that allow for remote job submission,
the GridFTP[10] servers that can be used to stage data
in and out of the resource, the Replica Location
Service (RLS)[11] which is used to maintain
information about the data location, and other
information. The VO Service Catalog, which is
implemented by the Pegasus site (resource) catalog
[13] is usually populated using the Globus Monitoring
and Discovery Service (MDS) [14] or in absence of
that service a static file can be provided. Having
dynamic MDS information allows the Workflow
Scheduler to make job placement decisions based on
the current system conditions. In absence of this
information static scheduling is used.
Data Catalog

The function of the Data Catalog is to store
information about the newly created data products.
Regardless of where the data was created, whether on
the TeraGrid or on the SCEC resources, the data is
moved back automatically to the SCEC permanent
storage. Thus the Data Catalog needs to maintain
information about the content of the data files
(metadata) and locations of the files. In the SCEC VO
the function of the Data Catalog is played by two
systems, the Metadata Catalog Service (MCS) [15] and
the Replica Location Service. MCS contains
information about application-specific metadata
attributes such as the site name, rupture information,
and many others. MCS identifies the application files
using a location independent logical filename. The
RLS maintains mappings between the logical
filenames and the physical locations of the files.

Provenance Catalog
Metadata is not the only information needed to

ascertain the quality of the data. When the data is
generated as the result of a variety of processing, it is
important to know exactly how the data was obtained,
which input data was used, where the computations
have taken place and any other relevant information.
This provenance is being stored in the Provenance
Tracking Catalog (PTC) [16]. In addition to the
provenance information, the catalog also maintains
performance information related to the execution of the
workflow tasks, such as runtime, memory used, etc.
The results presented in this paper have been obtained
via mining of the PTC.
Workflow Refinement and Execution

As we mentioned in Section 3.1 the initial workflow
is represented in an abstract way, independent of the
execution and data resources. The role of the workflow
refinement is to transform the abstract workflow into
an executable form. This transformation is performed
based on the available compute resources and the
location of the data.

As we mentioned in Section 2, our CyberShake
workflows require 10TB of input data and some of the
computations can run over a period of several days. In
order to simplify the process of application level
scheduling of VO-specific tasks, and isolate the VO
from the underlying resource management policies, we
provisioned resources into the VO, allocating them
ahead of time and turning them over to the VO-level
scheduler for mapping of the workflow. Thus in our
work we included the resource provisioning process as
part of the overall workflow management.

Figure 3: Workflow refinement, execution and
resource provisioning.

Figure 3 depicts the end-to-end workflow
management process. First, the resources are
provisioned making them exclusively available to the
VO to schedule and use in accordance to its policy.
The act of provisioning isolates the members of the VO
from the details of the local resource management, and
impact of other users [17]. Based on the resource

descriptions obtained through the provisioning process
and published into the VO Service Catalog the abstract
workflow is mapped onto these resources. The
resulting executable workflow is given to the workflow
engine for execution on the specified resources. After
the successful execution, the data, metadata and
provenance information are stored in the VO data
catalogs. The top right side of Figure 3 shows a small
executable workflow. Later in this section we describe
the executable workflow in more detail.
Workflow Provisioning

We employed two methods of provisioning
resources: through advance reservations and using
Condor Glide-ins [18]. In the first case we were
granted reservations for a certain number of processors
for a given amount of time. Along with the
reservations we also obtained special queues to use for
the scheduling. In the case of Condor Glide-ins we
submitted (via Condor-G) as many as 100 Glide-ins at
any one time to the regular TeraGrid queues. The
Glide-ins were essentially place holders. When they
were executed on the target system, they reported back
to the condor pool that scheduled them, effectively
becoming part of the initial condor pool. This dynamic
pool of resources that can be composed of
heterogeneous resources could then be used by
Pegasus as a target for the workflow mapping process.
We have to note that the resources obtained via Glide-
ins had the same limitations as the jobs scheduled
through the same remote queues. For example if a
queue on the TeraGrid had a maximum wall time of 1
day, the Glide-ins and thus the dynamically
provisioned resources were available for a maximum
of 1 day.

To maintain uniformity in the system, we also
scheduled Glide-ins to the reserved resources. As a
result the workflow management system mapped the
abstract workflows to a heterogeneous pool of
resources, managed by the VO-scheduler as described
below. The information about the resource types and
availability were published in the VO Service Catalog.
Workflow Refinement

Once the resources were provisioned and made
available via a dynamic Condor pool, the workflow
mapping and scheduling process could begin.
Currently the interaction between the provisioning
process and the workflow refinement and execution is
not automated and is the subject of future work.
We used Pegasus [19-22] to perform the mapping of
the abstract CyberShake workflows onto the available
resources. Pegasus performs a series of workflow
refinement operations that enable the individual
application components to run on a variety of
resources. To conduct the refinement Pegasus consults

the VO Service Catalog to find what resources are
available and what their characteristics are. Given this
set of target resources, Pegasus determines where the
workflow components can run and uses simple
scheduling heuristics (random, round-robin or min-
min) to select the desired resources. In addition to the
execution site, Pegasus also selects which data
(possibly replicated) to transfer to the execution site. It
consults the Replica Location Service to find the
locations of the data. Obviously priority is given to the
data co-located with the computational resources. Once
the resources are identified, Pegasus generates a
workflow that can be executed by a workflow
execution system such as Condor’s DAGMan [8]. The
executable workflow includes directives for staging
data in and out of computations, for the setup of the
remote execution system such as isolated execution
directories and the necessary environmental variables.
When Pegasus targets DAGMan as a workflow
execution engine is writes out the executable workflow
in the form of Condor submit files.
Workflow Execution

The executable workflow is given to Condor
DAGMan for execution. DAGMan follows the
dependencies in the workflow and releases jobs into
the local Condor queue as their dependencies are
satisfied. As jobs progress through the queue they are
being scheduled to the pool of provisioned resources
(by the VO-Scheduler—here Condor). Since the
resources in the pool are heterogeneous and distributed
geographically Pegasus indicates resource preferences
(for example the NCSA TeraGrid) by providing
appropriate Class-Ads [23] in the Condor submit files.
In cases of failures we used the DAGMan retry
mechanism to retry a failed workflow node and the
Rescue DAGs generated by DAGMan when it could
no longer continue with the workflow tasks. The rescue
DAG contained the jobs that remained to be executed.
VO Scheduler
The VO Scheduler manages the pool of resources that
are available to the VO. The In our case the scheduler
is implemented as a Condor scheduler that is
responsible for a Condor pool. As we mentioned before
we use provisioning via Condor Glide-ins to provision
resources from the TeraGrid. Once the Glide-ins start
running, they report back to the VO Scheduler and are
thus made part of the pool of resources managed by the
scheduler. The workflow refiner uses this pool and the
scheduler as the target for mapping the workflows.
Since the resources were provisioned ahead of time,
when a job in the workflow is submitted, it can start
running immediately without incurring any further
overheads thus reducing the overall runtime of the
workflow[24].

Number of Jobs, total number of jobs 261,823

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

 Pea
kV

alC
alc

_O
ka

ya

 S
eis

mog
ram

Gen
_L

i

Data
 Tran

sfe
r

Data
 R

eg
ist

rat
ion

fai
led

 jo
bs

Provenance Tracking
When dealing with large amounts of data it is

essential to keep track of how the data was generated
and where. Additional information also encompasses
performance information. In this work we used a code
wrapper named kickstart to manage the local execution
of the application codes—launching them, capturing
the exit status and runtime information. Kickstart is
one of the tools in the Virtual Data System [25]. The
information provided by kickstart was then
automatically stored in the Provenance Tracking
Catalog and was mined to produce the results shown in
the next section.

4. Results

In the subsequent results, we used the following set
up. The resources were provisioned from the TeraGrid
nodes at NCSA and SDSC using Glide-ins and via
reservations. We obtained reservations for 11 nodes at
SDSC starting on November 2nd 2005 for a duration of
9.5 days. Additional 125 nodes were reserved at NCSA
starting on November 3rd for a period of 7 days.

We provisioned as many as 100 TeraGrid nodes
into the VO resource pool. The abstract workflows
were submitted for refinement and execution to a
SCEC host. The execution resources were drawn from
the VO resource pool. Although we had the capability
of running individual workflows across multiple sites,
because of the size of the input data sets, running a
single workflow at more than one site was not
efficient.

Figure 4 shows the distribution of jobs over the 23
days of our initial computations that were used for
validation purposes. The fist bar shows the total
number of jobs run on a particular day and the second
bar shows the total number of CPU hours that the jobs
took. During this analysis run we calculated the hazard
curves for two SCEC sites: Pasadena and USC. As can
be seen in the figure, the initial jobs were of long

duration (the number of jobs is proportional to the
number of hours the jobs ran). As time progressed we
see that the number of jobs was disproportionately
greater than the runtime of the jobs (towards 10/25/05).
This shows that the execution of the data management
jobs such as the data stage-out and data registration
jobs are a dominant factor. These jobs are numerous
but short running. Then, (towards 11/1/05) we see
again that the number of jobs is proportional to their
runtime. At this point the application jobs (with long
execution times) are running again. This also indicates
the ramp up for the calculations for the second SCEC
site─USC. Towards the end of the graph, we see again
the short running data management tasks. In summary,
over the period of 23 days, the system executed
261,823 jobs whose cumulative runtime corresponded
to 1.8CPU years. This throughput is possible only
because we were able to provision resources ahead of
time and minimize the overheads one normally incurs
in a queue management system such as PBS or LSF.

Figure 5 gives the breakdown of the jobs run. The
first two bars refer to the application codes. There were
over 87,000 application jobs run. There were
significantly more data management tasks performed
than application jobs. Approximately 170,500 tasks
transferred the final and intermediate results to the
SCEC storage systems and registered these data in the
Replica Location Service.

There were also almost 5,300 failed jobs. These

failures were due mostly to overloading of the
GridFTP servers (too many simultaneous requests) and
due to RLS server time outs. Both kinds of failures
were dealt with by automatically retrying the task
execution (using the Condor retry feature) and/or by
submitting the rescue DAG. Figure 6 shows another
view of the data. The graph indicates the number of
seismogram jobs (the longest running application jobs)
that ran for a given time interval. We can see that there
were mostly short running jobs. Approximately 35,000
jobs ran for less than 10 CPU minutes. 7,300 jobs ran

Number of jobs per day (23 days), 261,823 jobs total, Number
of CPU hours per day, 15,706 hours total (1.8 years)

1

10

100

1000

10000

100000

10/1
9

10/2
1

10/2
3

10/2
5

10/2
7

10/2
9

10/3
1

11/2 11/4 11/6 11/8
11/1

0

 JOBS
 HRS

Figure 4: Number of jobs run per day on the
TeraGrid resources.

Figure 5: Type of jobs run.

between 20 and 220 CPU minutes. There were also 2
jobs that ran close to 3 CPU days.

Figure 7 shows the distribution of jobs across the
execution sites. The first bar shows the total number of
jobs at a given site and the second bar indicates the
cumulative amount of time (in CPU days) the jobs ran
at the sites. We can see that most of the jobs were run
locally (on the SCEC submit machine) and at NCSA.
Although approximately 100,000 jobs ran locally, their
runtime was short as these were replica registration
jobs. The application tasks ran both at NCSA and
SDSC TeraGrid sites.

1

10

100

1000

10000

100000

10 60 110 160 210 260 310 360 410 460 510 900 2400 4200

Time (mins)

N
um

 o
f J

ob
s

Figure 6: The distribution of seismogram jobs.

Execution Sites

1

10

100

1,000

10,000

100,000

1,000,000

 local ncsa sdsc

 NUM JOBS

 DAYS

Figure 7: Number of jobs run on the TeraGrid and
local sites. The graph also shows the cumulative
runtime of the jobs on the sites (in CPU days).

Our results are not solely confined to runtimes on
the TeraGrid. As part of the collaboration between the
application and computer scientists we were able to
pinpoint the inefficiencies in the application code. As a
result we have recently been able to improve the data
storage requirements by reducing the amount of space
needed for the SGTs from 10TB to 250GB! This was
done by selectively saving SGT data for only fault
surfaces rather than the full SGT simulation volume.
We also saw an improvement from 24,000 to 11,000
and then all the way down to 560 CPU hours in
runtime for the post processing jobs by reducing the
need to read large amounts of non-relevant SGT data.

5. Related Work
There are two main areas of related work. One deals

with managing large-scale workflows in the Grid
environment and the other with developing VO-based
services. The work described in this paper bridges
these two categories.

Kepler [26] is a data-driven workflow system where
the user can author data processing steps as a network
of predefined workflow components called ‘actors’ and
use ‘directors’ for describing execution models. Triana
[27] allows the user to specify execution behavior
easily by supporting an abstract layer for Grid
computing called GAP, a subset of the GridLab
GAT[28]. Taverna [29] is an authoring and execution
tool from the myGrid project [30]. myGrid exploits
semantic web technology to support data intensive
bioinformatics experiments in a grid environment.
ICENI [31] provides a component based Grid
middleware. Users can construct an abstract workflow
from a set of workflow components and the system
generates a concrete workflow using its scheduler.
GridAnt [32] is a client-side workflow system that
assists users to express and control execution
sequences and test Grid services. GridFlow [33]
provides user portal and services of both global grid
workflow management and local grid sub-workflow
scheduling. Unicore [34] provides a programming
environment where users can design and execute job
flows with advanced flow controls. Gridshell [35]
transparently incorporates useful distributed and grid
computing concepts into the UNIX shell login
environment.

Our work differs from others in that our workflow
system presents a more comprehensive grid-based
environment for scientific workflows. It integrates
resource provisioning and comprehensive data,
metadata and provenance tracking capabilities with
workflow management. This type of integration is not
present in other systems.

In terms of the development of VO-based services,
some of the most closely related work are the Open
Science Grid[36] Edge Services [37]. These services
are deployed on the boundary of a private/public
network on a particular resource. The services can
include scheduling and data management services that
can manage the execution environment for the
applications. Although there are plans for
implementation, edge services are not currently being
used by applications. On the other hand our VO-based
services are used on a daily basis by the SCEC scientist
to perform the CyberShake analysis.

6. Conclusions and Future Work
In this paper we described the VO and workflow-

based approach to running larger-scale SCEC
applications on the Grid. We drew upon SCEC and
TeraGrid resources to deliver the needed computing
and storage capacities. From the point of view of the
SCEC application, the execution environment
presented under the umbrella of a VO was treated
uniformly. Using our approach we have automated a
significant fraction of the CyberShake analysis and
started on the path of reaching the scientific goal of
producing a detailed hazard map of the Los Angeles
area. The solution is not solely tied to SCEC but can be
employed by any number of applications.

Much work still needs to be done. In particular we
are expanding the CyberShake workflow to include the
initial SGT calculations. This will only increase the
requirements on the workflow management system.
We also plan to smooth the transition between the
provisioning and workflow mapping phases. As we
continue to improve the system, we are proceeding in
running the newly improved application codes with the
aim of reaching the scientific goals.

7. Acknowledgments

This work was support by the SCEC Community
Modeling Environment Project which is funded by the
National Science Foundation (NSF) under contract
EAR-0122464 (The SCEC Community Modeling
Environment (SCEC/CME): An Information
Infrastructure for System-Level Earthquake Research).
This research was supported in part by the Southern
California Earthquake Center (SCEC). SCEC is funded
by NSF Cooperative Agreement EAR-0106924 and
USGS Cooperative Agreement 02HQAG0008. The
SCEC contribution number for this paper is 952.
Pegasus is being distributed as part of the GriPhyN
Virtual Data System (vds.isi.edu). The authors would
like to thank the administrators of the TeraGrid and the
USC HPC cluster for the help with reservations and for
the use of their resources.

8. References
[1] I. Foster et al., "The Grid2003 Production Grid: Principles and

Practice," HPDC 2004.
[2] "Enabling Grids for eScience in Europe," http://public.eu-

egee.org, 2005.
[3] TeraGrid www.teragrid.org, 2005.
[4] I. Foster, et al, "The Anatomy of the Grid: Enabling Scalable

Virtual Organizations," IJHPCA, vol. 15, pp. 200-222, 2001.
[5] "Southern California Earthquake Center (SCEC)," 2004

http://www.scec.org/
[6] P. Maechling, et al. "Simplifying Construction of Complex

Workflows for Non-Expert Users of the Southern California
Earthquake Center Community Modelling Environment," ACM
SIGMOD Record, special issue on Scientific Workflows., 2005.

[7] K. Durkin, "USC Supercomputer Breaks Barrier," 2005
www.usc.edu/uscnews/stories/11846.html

[8] DAGMAN,www.cs.wisc.edu/condor, 2005.
[9] Globus Project, "Globus Resource Allocation Manager

(GRAM)," 2002.
[10]B. Allcock, et al. "The Globus Striped GridFTP Framework and

Server," SC'2005.
[11]A. Chervenak, et al. "Giggle: A Framework for Constructing

Scalable Replica Location Services.," SC2002.
[12] A. Chervenak, et al "Performance and Scalability of a Replica

Location Service," HPDC, 2004.
[13]"Site Catalog Administration," 2005
 vds.uchicago.edu/vds/doc/userguide/
[14]K. Czajkowski, et al, "Grid Information Services for Distributed

Resource Sharing," HPDC, 2001.
[15]G. Singh, et al. "A Metadata Catalog Service for Data Intensive

Applications," SC, 2003.
[16]I. Foster, et al. "Chimera: A Virtual Data System for

Representing, Querying, and Automating Data Derivation,"
SSDBM 2002.

[17]K. Czajkowski, et al, "Agreement-Based Resource
Management," Proc. of the IEEE, vol. 93, 2005.

[18]"Condor website," http://www.cs.wisc.edu/condor/
[19]E. Deelman, et al"Workflow Management in GriPhyN," in Grid

Resource Mgmt, 2003.
[20]E. Deelman, et al, "Pegasus: a Framework for Mapping Complex

Scientific Workflows onto Distributed Systems," Scientific
Prog., (13) 3 2005.

[21]E. Deelman, et al "Mapping Abstract Complex Workflows onto
Grid Environments," Journal of Grid Computing, vol. 1, pp. 25-
39, 2003.

[22]"Pegasus," http://pegasus.isi.edu
[23]R. Raman, et al "Policy Driven Heterogeneous Resource Co-

Allocation with Gangmatching," HPDC 2003.
[24]G. Singh, et al "Optimizing Grid-Based Workflow Execution,"

Journal of Grid Computing.
[25]"Virtual Data System," 2006 http://vds.isi.edu
[26]I. Altintas, et al "Kepler: An Extensible System for Design and

Execution of Scientific Workflows," SSDBM, 2004.
[27]I. Taylor, et al. "Distributed P2P Computing within Triana: A

Galaxy Visualization Test Case.," IPDPS 2003.
[28]E. Seidel, et al "Gridlab: A Grid Application Toolkit and

Testbed," GCS vol18, 2002.
[29]T. Oinn, et al, "Taverna: a tool for the composition and

enactment of bioinformatics workflows.," Bioinformatics vol.
20, 2004.

[30]R. D. Stevens, et al "myGrid: personalised bioinformatics on the
information grid," Bioinformatics, vol. 19, 2003.

[31]S. Newhouse., "ICENI: An integrated Grid Middleware to
enable e-Science.," The 2nd Annual RealityGrid Workshop.,
2004.

[32]G. v. Laszewski, et al "GridAnt – Client Side Grid Workflow
Management with Ant," 2003

www-unix.globus.org/cog/projects/gridant/gridant-whitepaper.pdf
[33]J. Cao, et al "GridFlow: WorkFlow Management for Grid

Computing," CCGRID, 2003.
[34]UNICORE, "Uniform Access to Computing Resources,"

http://www.unicore.org, 2002.
[35]E. Walker et al, "Orchestrating and Coordinating HPDC, 2004.
[36]"Open Science Grid," www.opensciencegrid.org, 2005.
[37]K. Keahey, "Edge Services Framework for OSG," OSG

Technical document OSG-doc-167-v1, 2005.

