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Abstract 

This paper discusses the process of building an 
environment where large-scale, complex, scientific 
analysis can be scheduled onto a heterogeneous 
collection of computational and storage resources. The 
example application is the Southern California 
Earthquake Center (SCEC) CyberShake project, an 
analysis designed to compute probabilistic seismic 
hazard curves for sites in the Los Angeles area. We 
explain which software tools were used to build to the 
system, describe their functionality and interactions. 
We show the results of running the CyberShake 
analysis that included over 250,000 jobs using 
resources available through SCEC and the TeraGrid.  
 
1. Introduction 

Increasingly, Grid infrastructure is becoming 
available on a production basis [1-3]. Deployed as part 
of the general purpose computing infrastructure, the 
services and capabilities being provided are generally 
shared across many users from a variety of 
communities. One of the compelling motivations for 
the creation of the Grid infrastructure is that it provides 
a foundation on which distributed collaborations, or 
Virtual Organizations (VO)[4] may be formed.  

One notable example of a VO is the Southern 
California Earthquake Center (SCEC)[5] an 
organization that consists of 50 earth science research 
institutions in the United States and several other 
countries. As a VO, SCEC has created its own 
production Grid infrastructure that enables sharing of 
resources owned by participants across the 
collaboration [6]. However, there are problems of great 
interest to the SCEC community that requires 

capabilities far beyond those that can be brought to 
bear by the participating institutions.  One example is 
the calculation of Probabilistic Seismic Hazard 
Analysis (PSHA) maps, which indicate the likelihood 
of seeing a specific amount of surface motion within a 
specified period of time. PSHA is used (among other 
things) to determine the placement and design of 
buildings and other structures. To date, PSHA curves 
have been calculated using simplistic empirically-
derived attenuation relationship to describe the 
relationship between a rupture and the surface motion. 
However, advances in a variety of geophysical models 
related to earthquakes have for the first time made it 
possible to calculate these models based on physics-
based earthquake wave propagation simulations. 

The requirements of new calculations go well 
beyond the computational and storage capacities of the 
SCEC member institutions, thus significant fractions of 
the calculations must be outsourced to high-end 
facilities such as the TeraGrid[3] in order to be 
completed in an acceptable time frame. 

The PSHA calculations are quite complex, and 
involve many different processing steps, models and 
data sources. While all of these components could be 
re-hosted on the large-scale computational resources, 
this imposes a significant burden on the application 
community and greatly limits the flexibility in which 
computational sites may be used.  A more effective 
approach is to integrate the external resources into the 
SCEC Grid, essentially augmenting the SCEC VO’s 
resources and capabilities with the additional resources 
and services required to operate the VO.   

Overlaying a VO-specific structure on the deployed 
Grid infrastructure can achieve a number of goals:  
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• Integration of external services with those owned 
by the community.  This provides a uniform view 
of the community resources to the community 
members and to the applications. 

• Removal of the “noise” of resources and services 
that is not relevant to the community.  

• Deployment of domain-specific services that are 
part of the community infrastructure. This 
simplifies the application development and 
supports the enforcement of community policies. 
Additionally, deploying domain-specific services 
such as schedulers can potentially improve the 
throughput of the applications. 

In this paper we describe how we constructed a 
SCEC-specific environment optimized to the 
calculation of PSHA by combining the infrastructure 
provided by the TeraGrid and the SCEC resources. We 
outline how we built the VO-based environment and 
provide results from running PSHA calculations in this 
environment. In this environment the workflows can be 
executed end-to-end the derived data can be 
automatically staged-out to long term storage, and 
provenance information can be recorded. First, we 
describe PSHA calculations and their computational 
requirements (Section 2). Next we detail the approach 
we took in building up the SCEC VO environment 
(Section 3). In Section 4 we describe the results 
obtained from running PSHA calculations on a variety 
of resources. We show results of running 
approximately 250,000 jobs corresponding to 1.8 CPU 
years over a period of 23 days. These jobs produced 
and registered approximately 100,000 files. Finally, we 
conclude with related work and future directions.   
 
2. CyberShake and its Requirements 

 SCEC researchers are developing physics-
based models of earthquake processes and integrating 
these models into a scientific framework for seismic 
hazard analysis and risk management. These seismic 
simulations are leading toward a physics-based, model-
oriented approach to earthquake science with the 
eventual goal of transforming seismology into a 
predictive science with forecasting capabilities similar 
to those available today in the areas of climate 
modeling and weather forecasting. 

To characterize the earthquake hazards in a region, 
seismologists and engineers utilize the Probabilistic 
Seismic Hazard Analysis technique. PSHA attempts to 
quantify the peak ground motions from all possible 
earthquakes that might affect a particular site 
(geographic area) and to establish the probabilities that 
the site will experience a given ground motion level 
over a particular time frame. PSHA information is used 

by city planners and building engineers and is often the 
basis for building codes in a region. 

Up to now PSHA techniques have not fully 
integrated the recent advances in earthquake simulation 
capabilities. Probabilistic seismic hazard curves have 
been calculated using empirically-based attenuation 
relationships that represent relatively simple analytical 
models based on the regression of observed data. 
However, it is widely believed that significant 
improvements in PSHA will rely on the use of more 
physics-based waveform modeling. The goal of the 
CyberShake project is to bring the physics-based 
modeling for PSHA calculation into the mainstream. 

For each site of interest (geographical area) a 
CyberShake calculation consists of the following steps:  
1. Generation of  Strain Green Tensors (SGTs)—this 

is an MPI-based finite-difference simulation that 
can run over a period of days using 144 or 288 
processors and produces as much as 10TB of data. 

2. Calculation of synthetic seismograms from SGT 
data calculated in Step 1 for each likely earthquake 
in the region. Depending on the rupture forecasts, 
there can as many as 35,000 and 5,000 on average 
of such calculations. Seismogram calculation runs 
on a single processor, and each calculation for 
each rupture can run for as little as a few minutes 
and as long as 3 days.  

3. Calculation of spectral acceleration. This 
processes the seismograms into some peak 
intensity measure type of interest, in our case 
spectral acceleration. The number of these tasks 
corresponds to the number of tasks in step 2. 
However, these are short running tasks—on the 
order of minutes 

4. Generation of hazard curves which combine the 
spectral acceleration values into a probabilistic 
hazard curve  based on their likelihood of 
occurring.. 

This series of operations will produce a single 
PSHA curve which describes hazards at a particular 
site. In order to produce hazard maps for the Ventura 
and Los Angeles counties in California, at least 1,000 
and up to 10,000 sites need to be calculated. Thus, 
CyberShake requires significant amounts of large high-
performance computing resources in order to support 
the highly parallel, MPI-based SGT code. There is also 
a need for a high-throughput computing platform for 
the second and third phases of the analysis in which a 
large number of processing jobs must be submitted and 
monitored across a distributed computing environment.  

Up to now SCEC relied mostly on its own 
resources-a high performance cluster at USC to 
perform the calculations. Although the cluster is large, 
over 1,800 processors [7], a single user such as SCEC 
can have access to only small fractions of the resources 



at any one time. Additional burden is placed on the 
resources by the TeraByte-scale data sets. Thus, it is 
essential for SCEC to draw upon external resources in 
order to support the desired computations.  

A third requirement imposed by the CyberShake is 
a significant file-oriented, data management capability. 
The post-processing phase (steps 2 and 3 above) is data 
intensive generating tens or hundreds of thousands of 
files. All files must be tracked, and managed, and 
annotated with metadata.  

In the next Section we describe how we provided an 
environment for CyberShake that seamlessly integrated 
SCEC and outside resources and supported the 
automated management of both computation and data: 
from resource provisioning, to resource scheduling; 
from data registration to provenance recording. 

 
3. Approach 

3.1. Problem Representation 
CyberShake can be represented as an ordered set of 

tasks described as a workflow and shown in Figure 1. 
Our initial calculations were limited to a small number 
of sites so as to focus on scientific validation of the 
results, and consequently the workflows were limited 
to seismogram calculation with SGT calculations being 
done ahead of time. With validation complete, we need 
to run several hundred sites, and the workflow is being 
augmented to include SGTs.  Although the current 
workflow conceptually consists of only two main steps 
(steps 2 and 3 in Section 2), we plan to expand the 
workflow description to include all of the analysis. 
Each geographical site which is the target of the 
CyberShake analysis consists of tens of workflows 
each composed of between 11 and 1,000 of the two-
step analysis components. In this paper we present 
results from running CyberShake for two sites: 
Pasadena and the University of Southern California 
(USC). The Pasadena site contained a total of 33 
workflows and the USC site 26 workflows. The 
cumulative number of synthetic seismograms and 
spectral acceleration generation tasks for each site was 
on the order of 50,000. 

CyberShake workflows were expressed in abstract 
terms in that they described only the analysis that 
needed to take place and the data needed in abstract 
terms without indicating either the execution locations 
or the actual storage location of the data. The VO we 
designed and implemented took care of provisioning 
the necessary resources, mapping the abstract 
workflow onto the VO resources, executing the 
necessary tasks and cataloging the results and 
provenance information. 

 

3.2. SCEC-centric Grid 
Executing large-scale, long running applications on 

today’s Grid systems is a challenge as the resources are 
often shared across many users and applications. From 
the point of view of the application flexibility, it is 
important to provide a view that allows for the design 
of the analysis in terms independent of the underlying 
resources with the software used to manage VO 
resources performing the mapping onto the resources 
and the management of the execution. 
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Figure 1: The CyberShake Workflow. 

Figure 2 depicts the infrastructure we designed to 
support the execution of SCEC workflows. The 
infrastructure relies on heterogeneous resources drawn 
from the SCEC and TeraGrid resources: both storage 
and compute. The information about the resources 
available to the VO and other services such as data 
movement, replica management, and job scheduling 
services are maintained in the VO Service Catalog.   
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Figure 2: The SCEC Virtual Organization. 

To support the VO operation, we deployed a VO-
specific workflow scheduler and engine. This 
scheduler uses a workflow refinement system to 
augment workflow tasks with data management and 
catalog operations and maps tasks to specific resources 
dynamically provisioned into the VO. The workflow 
scheduler uses a VO specific execution engine based 
on Condor DAGMan [8]  to execute and manage the 
mapped tasks. The tasks are sent for execution to a VO 
scheduler that manages the VO resources. As a result 
of the workflow execution, the newly created data 
products are stored in the Data Catalogs. The 
provenance information related to the data generation 



and the workflow execution itself are stored in the 
Provenance Catalog. 

In order to design and deploy the system we relied 
on existing Grid technologies. In some cases we 
integrated some of the components to automate the 
process of workflow management. We describe the 
software involved and the integration process below. 
We also designed and implemented SCEC-specific 
components that provided feedback to the scientists on 
the progress of the analysis (in the top left of Figure 2 
we see a web-based display that generated and updated 
the hazard curves in real time.) 
SCEC Catalogs 

In this Section we describe the catalogs that were 
used by the SCEC VO and their implementation.  
VO Service Catalog 

The VO Service Catalog maintains information 
about the resources available to SCEC. Among the 
information included are the resources names, the 
jobmanagers [9] that allow for remote job submission, 
the GridFTP[10] servers that can be used to stage data 
in and out of the resource, the Replica Location 
Service (RLS)[11] which is used to maintain 
information about the data location, and other 
information. The VO Service Catalog, which is 
implemented by the Pegasus site (resource) catalog 
[13] is usually populated using the Globus Monitoring 
and Discovery Service (MDS) [14] or in absence of 
that service a static file can be provided. Having 
dynamic MDS information allows the Workflow 
Scheduler to make job placement decisions based on 
the current system conditions. In absence of this 
information static scheduling is used.  
Data Catalog 

The function of the Data Catalog is to store 
information about the newly created data products. 
Regardless of where the data was created, whether on 
the TeraGrid or on the SCEC resources, the data is 
moved back automatically to the SCEC permanent 
storage. Thus the Data Catalog needs to maintain 
information about the content of the data files 
(metadata) and locations of the files. In the SCEC VO 
the function of the Data Catalog is played by two 
systems, the Metadata Catalog Service (MCS) [15] and 
the Replica Location Service. MCS contains 
information about application-specific metadata 
attributes such as the site name, rupture information, 
and many others. MCS identifies the application files 
using a location independent logical filename. The 
RLS maintains mappings between the logical 
filenames and the physical locations of the files.  
 
 

Provenance Catalog 
Metadata is not the only information needed to 

ascertain the quality of the data. When the data is 
generated as the result of a variety of processing, it is 
important to know exactly how the data was obtained, 
which input data was used, where the computations 
have taken place and any other relevant information. 
This provenance is being stored in the Provenance 
Tracking Catalog (PTC) [16]. In addition to the 
provenance information, the catalog also maintains 
performance information related to the execution of the 
workflow tasks, such as runtime, memory used, etc. 
The results presented in this paper have been obtained 
via mining of the PTC. 
Workflow Refinement and Execution 

As we mentioned in Section 3.1 the initial workflow 
is represented in an abstract way, independent of the 
execution and data resources. The role of the workflow 
refinement is to transform the abstract workflow into 
an executable form. This transformation is performed 
based on the available compute resources and the 
location of the data.  

As we mentioned in Section 2, our CyberShake 
workflows require 10TB of input data and some of the 
computations can run over a period of several days. In 
order to simplify the process of application level 
scheduling of VO-specific tasks, and isolate the VO 
from the underlying resource management policies, we 
provisioned resources  into the VO, allocating them 
ahead of time and turning them over to the VO-level 
scheduler for mapping of the workflow. Thus in our 
work we included the resource provisioning process as 
part of the overall workflow management.  

Figure 3: Workflow refinement, execution and 
resource provisioning. 

Figure 3 depicts the end-to-end workflow 
management process. First, the resources are 
provisioned making them exclusively available to the 
VO to schedule and use in accordance to its policy. 
The act of provisioning isolates the members of the VO 
from the details of the local resource management, and 
impact of other users [17]. Based on the resource 



descriptions obtained through the provisioning process 
and published into the VO Service Catalog the abstract 
workflow is mapped onto these resources. The 
resulting executable workflow is given to the workflow 
engine for execution on the specified resources. After 
the successful execution, the data, metadata and 
provenance information are stored in the VO data 
catalogs. The top right side of Figure 3 shows a small 
executable workflow. Later in this section we describe 
the executable workflow in more detail. 
Workflow Provisioning 

We employed two methods of provisioning 
resources: through advance reservations and using 
Condor Glide-ins [18]. In the first case we were 
granted reservations for a certain number of processors 
for a given amount of time. Along with the 
reservations we also obtained special queues to use for 
the scheduling. In the case of Condor Glide-ins we 
submitted (via Condor-G) as many as 100 Glide-ins at 
any one time to the regular TeraGrid queues. The 
Glide-ins were essentially place holders. When they 
were executed on the target system, they reported back 
to the condor pool that scheduled them, effectively 
becoming part of the initial condor pool. This dynamic 
pool of resources that can be composed of 
heterogeneous resources could then be used by  
Pegasus as a target for the workflow mapping process. 
We have to note that the resources obtained via Glide-
ins had the same limitations as the jobs scheduled 
through the same remote queues. For example if a 
queue on the TeraGrid had a maximum wall time of 1 
day, the Glide-ins and thus the dynamically 
provisioned resources were available for a maximum 
of 1 day.  

To maintain uniformity in the system, we also 
scheduled Glide-ins to the reserved resources. As a 
result the workflow management system mapped the 
abstract workflows to a heterogeneous pool of 
resources, managed by the VO-scheduler as described 
below. The information about the resource types and 
availability were published in the VO Service Catalog. 
Workflow Refinement 

Once the resources were provisioned and made 
available via a dynamic Condor pool, the workflow 
mapping and scheduling process could begin. 
Currently the interaction between the provisioning 
process and the workflow refinement and execution is 
not automated and is the subject of future work. 
We used Pegasus [19-22] to perform the mapping of 
the abstract CyberShake workflows onto the available 
resources. Pegasus performs a series of workflow 
refinement operations that enable the individual 
application components to run on a variety of 
resources. To conduct the refinement Pegasus consults 

the VO Service Catalog to find what resources are 
available and what their characteristics are. Given this 
set of target resources, Pegasus determines where the 
workflow components can run and uses simple 
scheduling heuristics (random, round-robin or min-
min) to select the desired resources. In addition to the 
execution site, Pegasus also selects which data 
(possibly replicated) to transfer to the execution site. It 
consults the Replica Location Service to find the 
locations of the data. Obviously priority is given to the 
data co-located with the computational resources. Once 
the resources are identified, Pegasus generates a 
workflow that can be executed by a workflow 
execution system such as Condor’s DAGMan [8]. The 
executable workflow includes directives for staging 
data in and out of computations, for the setup of the 
remote execution system such as isolated execution 
directories and the necessary environmental variables. 
When Pegasus targets DAGMan as a workflow 
execution engine is writes out the executable workflow 
in the form of Condor submit files. 
Workflow Execution 

The executable workflow is given to Condor 
DAGMan for execution. DAGMan follows the 
dependencies in the workflow and releases jobs into 
the local Condor queue as their dependencies are 
satisfied. As jobs progress through the queue they are 
being scheduled to the pool of provisioned resources 
(by the VO-Scheduler—here Condor). Since the 
resources in the pool are heterogeneous and distributed 
geographically Pegasus indicates resource preferences 
(for example the NCSA TeraGrid) by providing 
appropriate Class-Ads [23] in the Condor submit files. 
In cases of failures we used the DAGMan retry 
mechanism to retry a failed workflow node and the 
Rescue DAGs generated by DAGMan when it could 
no longer continue with the workflow tasks. The rescue 
DAG contained the jobs that remained to be executed. 
VO Scheduler 
The VO Scheduler manages the pool of resources that 
are available to the VO. The In our case the scheduler 
is implemented as a Condor scheduler that is 
responsible for a Condor pool. As we mentioned before 
we use provisioning via Condor Glide-ins to provision 
resources from the TeraGrid. Once the Glide-ins start 
running, they report back to the VO Scheduler and are 
thus made part of the pool of resources managed by the 
scheduler.  The workflow refiner uses this pool and the 
scheduler as the target for mapping the workflows.  
Since the resources were provisioned ahead of time, 
when a job in the workflow is submitted, it can start 
running immediately without incurring any further 
overheads thus reducing the overall runtime of the 
workflow[24].  



Number of Jobs, total number of jobs 261,823 
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Provenance Tracking 
When dealing with large amounts of data it is 

essential to keep track of how the data was generated 
and where. Additional information also encompasses 
performance information. In this work we used a code 
wrapper named kickstart to manage the local execution 
of the application codes—launching them, capturing 
the exit status and runtime information. Kickstart is 
one of the tools in the Virtual Data System [25]. The 
information provided by kickstart was then 
automatically stored in the Provenance Tracking 
Catalog and was mined to produce the results shown in 
the next section. 

 
4. Results 

In the subsequent results, we used the following set 
up. The resources were provisioned from the TeraGrid 
nodes at NCSA and SDSC using Glide-ins and via 
reservations. We obtained reservations for 11 nodes at 
SDSC starting on November 2nd 2005 for a duration of 
9.5 days. Additional 125 nodes were reserved at NCSA 
starting on November 3rd for a period of 7 days.   

We provisioned as many as 100 TeraGrid nodes 
into the VO resource pool.  The abstract workflows 
were submitted for refinement and execution to a 
SCEC host. The execution resources were drawn from 
the VO resource pool. Although we had the capability 
of running individual workflows across multiple sites, 
because of the size of the input data sets, running a 
single workflow at more than one site was not 
efficient. 

Figure 4 shows the distribution of jobs over the 23 
days of our initial computations that were used for 
validation purposes. The fist bar shows the total 
number of jobs run on a particular day and the second 
bar shows the total number of CPU hours that the jobs 
took. During this analysis run we calculated the hazard 
curves for two SCEC sites: Pasadena and USC. As can 
be seen in the figure, the initial jobs were of long 

duration (the number of jobs is proportional to the 
number of hours the jobs ran). As time progressed we 
see that the number of jobs was disproportionately 
greater than the runtime of the jobs (towards 10/25/05). 
This shows that the execution of the data management 
jobs such as the data stage-out and data registration 
jobs are a dominant factor. These jobs are numerous 
but short running. Then, (towards 11/1/05) we see 
again that the number of jobs is proportional to their 
runtime. At this point the application jobs (with long 
execution times) are running again. This also indicates 
the ramp up for the calculations for the second SCEC 
site─USC. Towards the end of the graph, we see again 
the short running data management tasks. In summary, 
over the period of 23 days, the system executed 
261,823 jobs whose cumulative runtime corresponded 
to 1.8CPU years. This throughput is possible only 
because we were able to provision resources ahead of 
time and minimize the overheads one normally incurs 
in a queue management system such as PBS or LSF. 

Figure 5 gives the breakdown of the jobs run. The 
first two bars refer to the application codes. There were 
over 87,000 application jobs run. There were 
significantly more data management tasks performed 
than application jobs. Approximately 170,500 tasks 
transferred the final and intermediate results to the 
SCEC storage systems and registered these data in the 
Replica Location Service.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
There were also almost 5,300 failed jobs. These 

failures were due mostly to overloading of the 
GridFTP servers (too many simultaneous requests) and 
due to RLS server time outs. Both kinds of failures 
were dealt with by automatically retrying the task 
execution (using the Condor retry feature) and/or by 
submitting the rescue DAG.   Figure 6 shows another 
view of the data. The graph indicates the number of 
seismogram jobs (the longest running application jobs) 
that ran for a given time interval. We can see that there 
were mostly short running jobs. Approximately 35,000 
jobs ran for less than 10 CPU minutes. 7,300 jobs ran 

Number of jobs per day (23 days), 261,823 jobs total, Number 
of CPU hours per day, 15,706 hours total (1.8 years)
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Figure 4: Number of jobs run per day on the 
TeraGrid resources. 

Figure 5: Type of jobs run. 



between 20 and 220 CPU minutes. There were also 2 
jobs that ran close to 3 CPU days. 

Figure 7 shows the distribution of jobs across the 
execution sites. The first bar shows the total number of 
jobs at a given site and the second bar indicates the 
cumulative amount of time (in CPU days) the jobs ran 
at the sites. We can see that most of the jobs were run 
locally (on the SCEC submit machine) and at NCSA. 
Although approximately 100,000 jobs ran locally, their 
runtime was short as these were replica registration 
jobs. The application tasks ran both at NCSA and 
SDSC TeraGrid sites.  
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Figure 6: The distribution of seismogram jobs. 
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Figure 7: Number of jobs run on the TeraGrid and 
local sites. The graph also shows the cumulative 
runtime of the jobs on the sites (in CPU days). 

Our results are not solely confined to runtimes on 
the TeraGrid. As part of the collaboration between the 
application and computer scientists we were able to 
pinpoint the inefficiencies in the application code. As a 
result we have recently been able to improve the data 
storage requirements by reducing the amount of space 
needed for the SGTs from 10TB to 250GB! This was 
done by selectively saving SGT data for only fault 
surfaces rather than the full SGT simulation volume. 
We also saw an improvement from 24,000 to 11,000 
and then all the way down to 560 CPU hours in 
runtime for the post processing jobs by reducing the 
need to read large amounts of non-relevant SGT data. 

 

5. Related Work 
There are two main areas of related work. One deals 

with managing large-scale workflows in the Grid 
environment and the other with developing VO-based 
services. The work described in this paper bridges 
these two categories. 

Kepler [26] is a data-driven workflow system where 
the user can author data processing steps as a network 
of predefined workflow components called ‘actors’ and 
use ‘directors’ for describing execution models. Triana 
[27] allows the user to specify execution behavior 
easily by supporting an abstract layer for Grid 
computing called GAP, a subset of the GridLab 
GAT[28]. Taverna [29] is an authoring and execution 
tool from the myGrid project [30]. myGrid exploits 
semantic web technology to support data intensive 
bioinformatics experiments in a grid environment. 
ICENI [31] provides a component based Grid 
middleware. Users can construct an abstract workflow 
from a set of workflow components and the system 
generates a concrete workflow using its scheduler. 
GridAnt [32] is a client-side workflow system that 
assists users to express and control execution 
sequences and test Grid services. GridFlow [33] 
provides user portal and services of both global grid 
workflow management and local grid sub-workflow 
scheduling. Unicore [34] provides a programming 
environment where users can design and execute job 
flows with advanced flow controls. Gridshell [35] 
transparently incorporates useful distributed and grid 
computing concepts into the UNIX shell login 
environment.  

Our work differs from others in that our workflow 
system presents a more comprehensive grid-based 
environment for scientific workflows. It integrates 
resource provisioning and comprehensive data, 
metadata and provenance tracking capabilities with 
workflow management. This type of integration is not 
present in other systems. 

In terms of the development of VO-based services, 
some of the most closely related work are the Open 
Science Grid[36] Edge Services [37]. These services 
are deployed on the boundary of a private/public 
network on a particular resource.  The services can 
include scheduling and data management services that 
can manage the execution environment for the 
applications. Although there are plans for 
implementation, edge services are not currently being 
used by applications. On the other hand our VO-based 
services are used on a daily basis by the SCEC scientist 
to perform the CyberShake analysis. 

 



6. Conclusions and Future Work 
In this paper we described the VO and workflow-

based approach to running larger-scale SCEC 
applications on the Grid. We drew upon SCEC and 
TeraGrid resources to deliver the needed computing 
and storage capacities. From the point of view of the 
SCEC application, the execution environment 
presented under the umbrella of a VO was treated 
uniformly. Using our approach we have automated a 
significant fraction of the CyberShake analysis and 
started on the path of reaching the scientific goal of 
producing a detailed hazard map of the Los Angeles 
area. The solution is not solely tied to SCEC but can be 
employed by any number of applications. 

Much work still needs to be done. In particular we 
are expanding the CyberShake workflow to include the 
initial SGT calculations. This will only increase the 
requirements on the workflow management system. 
We also plan to smooth the transition between the 
provisioning and workflow mapping phases. As we 
continue to improve the system, we are proceeding in 
running the newly improved application codes with the 
aim of reaching the scientific goals. 
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