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Abstract. This paper describes the Pegasus workflow mapping and
planning system that can map complex workflows onto the Grid. In par-
ticular, Pegasus can be configured to generate an executable workflow
based on application-specific attributes. In that configuration, Pegasus
uses and Al-based planner to perform the mapping from high-level meta-
data descriptions to a workflow that can be executed on the Grid. This
configuration of Pegasus was used in the context of the Laser Inter-
ferometer Gravitational Wave Observatory (LIGO) pulsar search. We
conducted a successful demonstration of the system at SC 2002 during
which time we ran approximately 200 pulsar searches.

1 Introduction

Grid computing has made great progress in the last few years. The basic mecha-
nisms for accessing remote resources have been developed as part of the Globus
Toolkit and are now widely deployed and used. Among such mechanisms are:

— Information services that allow for the discovery and monitoring of resources.
The information provided can be used to find the available resources and
select the resources that are the most appropriate for a given task.

— Security services that allow users and resources to mutually authenticate and
allows the resources to authorize users based on local and global policies.

— Resource management that allow for the remote scheduling of jobs on par-
ticular resources.

— Data management services that enable users and applications to manage
large, distributed and replicated data sets. Some of the available services
deal with locating particular data sets, others with efficiently moving large
amounts of data across wide area networks.



With the use of the above mechanisms, one can manually find the available
resources and schedule the desired computations and data movements. However,
this process is time consuming and can potentially be complex. As a result it is
becoming increasingly necessary to develop higher level services that can auto-
mate the process and provide an adequate level of performance and reliability.

The NSF-funded Grid Physics Network (GriPhyN [1]) project aims to de-
velop just such services. In this paper we focus in particular on a workflow
management system that can map complex workflows onto the Grid. In general,
GriPhyN aims to support large-scale data management in physics experiments
such as high-energy physics, astronomy and gravitational wave physics. GriPhyN
puts data both raw and derived under the umbrella of Virtual Data. A user or
application can ask for data using application-specific metadata without needing
to know whether the data is available on some storage system or if it needs to
be computed. To satisfy the request, GriPhyN will schedule the necessary data
movements and computations to produce the requested results.

The paper is organized as follows: first, we describe Pegasus, the system we
developed to map both domain-independent and domain-specific requests onto
the Grid. Section 3 describes in more detail the heart of domain-specific Pegasus
that includes an Al-based planner. Following is a description of applying Pegasus
to the gravitational wave pulsar search. Section 5 gives a summary of our results
and experiences demonstrating our system during the SC 2002 conference, and
discusses the related work. We conclude with final remarks in Section 6.

2 Pegasus, a Workflow Mapping System

In general we can think of applications as being composed of application com-
ponents. The process of application development (shown in Figure 1) can be
described as follows. First, the application components are selected, their in-
put and output file names are identified by their logical names (names that
uniquely identify the content of the file, but not its location), and the order of
the execution of the components is specified. As a result, we obtain an abstract
workflow (AW), where the behavior of the application is specified at an abstract
level (without identifying the resources needed for execution.) Next this work-
flow needs to be mapped onto the available Grid resources, performing resource
discovery and selection. Finally the resulting concrete workflow (CW) is sent to
the executor, such as Condor-G/DAGMan [21] for execution. Pegasus [10,9, 18,
16], which stands for Planning for Execution in Grids, was developed at IST as
part of the GriPhyN project. Pegasus is a configurable system that can map and
execute complex workflows on the Grid. Pegasus exists in two configurations:
Abstract workflow-driven and metadata-driven.

2.1 Abstract Workflow-Driven Pegasus

In the first configuration, Pegasus is an application-independent software that
takes an abstract workflow as input and produces a concrete workflow that



Abstract workflow Concrete workflow

generation generation Execution

Concrete
Workflow

Metadata Logical filenames, Physical filenames,
attributes logical transformations executables,
data movement

Abstract
Workflow

Application
Components

Fig. 1. Generating and Mapping Workflows onto the Grid.

can be executed on the Grid. This version of Pegasus is available as part of
the GriPhyN Virtual Data Toolkit [3]. In that configuration, Pegasus receives
an abstract workflow (AW) description from Chimera[20], produces a concrete
workflow (CW), and submits it to DAGMan for execution. The workflows are
represented as Directed Acyclic Graphs (DAGs). AW describes the transfor-
mations and data in terms of their logical names. CW, which specifies the lo-
cation of the data and the execution platforms, is optimized by Pegasus from
the point of view of Virtual Data. If data products described within AW are
found to be already materialized (via queries to the Globus Replica Location
Service (RLS)) [13], Pegasus reuses them and thus reduces the complexity of
CW. Pegasus also consults the Transformation Catalog (TC) [19] to determine
the locations where the computations can be executed. If there is more than
one possible location, a location is chosen at random. Pegasus also adds data
transfer and data registration nodes. Transfer nodes are used to stage data in or
out. Registration nodes are used to publish the resulting data products in the
RLS. They are added if the user requested that all the data be published and
sent to a particular storage location. Once the resources are identified for each
task, Pegasus generates the submit files for DAGMan. In that configuration, Pe-
gasus has been shown to be successful in mapping workflows for very complex
applications such as the Sloan Digital Sky Survey [6] and the Compact Muon
Source [18].

2.2 Metadata-Driven Pegasus

Pegasus can also be configured to perform the generation of the abstract work-
flow based on application-level metadata attributes (See Figure 2.) Given at-
tributes such as time interval, frequency of interest, location in the sky, etc.,
Pegasus is able to produce any virtual data products present in the LIGO Pul-
sar search, described in the Section 4.

Pegasus uses the Metadata Catalog Service (MCS) [26] to perform the map-
ping between application-specific attributes and logical file names of existing
data products. Al-based planning technologies, described in the next section, are
used to construct both the abstract and concrete workflows. MCS is also used
to determine the metadata and logical file names for all other sub products that
can be used to generate the data product. Pegasus then queries the RLS to find



the physical locations of the logical files. The Globus Monitoring and Discovery
Service (MDS) [14] is used to find the available Grid resources. The metadata
and the current information about the Grid are used by the Pegasus planner to
generate the concrete workflow (in the form of a DAG) necessary to satisfy the
user’s request. The planner reuses existing data products where applicable. The
generated plan specifies the sites where the job should be executed and refers
to the data products in terms of metadata. This metadata-defined plan needs
to mapped to particular file instances. Pegasus determines the logical names for
the input data in the plan by querying the MCS and then the physical names
by querying the RLS. In addition it queries the Transformation Catalog to get
the complete paths for the transformations at the execution locations described
in the plan. Finally, the submit files for Condor-G/DAGMan are generated.
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Fig. 2. Configuration of Pegasus when used to construct both the abstract and concrete
workflows.

Pegasus contains a Virtual Data Language generator that can populate the
Chimera catalog with newly constructed derivations. This information can be
used for provenance tracking of the derived data products. Finally, Pegasus also
sends the concrete workflow to DAGMan for execution. As the result of execution
of the workflow, the newly derived data products are registered both in the
MCS and RLS and thus are made available to the following requests. We have
configured Pegasus to support the LIGO and GEO pulsar searches. Details about
the search can be found in Section 4 and [17].

3 Planning Approach

The Abstract and Concrete Workflow are generated using the Prodigy plan-
ner [27]. The planner models the application components along with data trans-
fer and data registration as operators. Each operator’s parameters include the



host where the component is to be run and as a result an output plan corre-
sponds to a concrete workflow. In addition, some of the effects and preconditions
of the operators capture the data produced by components and their input data
dependencies. The state information used by the planner includes a description
of the available resources and the relevant files that have already been created.
The input goal description can include (1) a metadata specification of the infor-
mation the user requires and the desired location for the final output file, (2)
specific components to be run or (3) intermediate data products. Several issues
make this application domain challenging, we touch upon them as we describe
the domain model in more detail.

3.1 State information

The planner’s world state includes information about resources. Some state infor-
mation changes slowly, such as the operating system or total disk space available
on a resource, and some of the information can change in seconds or minutes,
such as the available memory or job queue length. In the long run the planner
may need to reason about how the information can change over time, but in our
initial implementation we only model the type of a host, network bandwidths
and file information.

It is useful for the planning state to include metadata about the files for
several reasons. First, the planner can assume the task of creating both the
abstract and concrete workflows. Second, it is also more appropriate to reason
at the level of the metadata rather than at the level of the files that represent
that data content. Rather than search for a file with appropriate characteristics,
the components are linked by the characteristics themselves. This also avoids
quantifying over the set of existing files that may change during planning as
objects are created and destroyed.

3.2 Goal statements

In most planning applications, goals refer to properties that should be true after
the plan has been executed. For the planner, such goals include having data
described by the desired metadata information on some host. However, it is also
sometimes useful to specify goals that refer to intermediate components or data
products, or for registering certain files. Thus the goal statement can specify a
partial plan.

3.3 Operator descriptions

The operators themselves represent the concrete application of a component at
a particular location to generate a particular file or a file movement across the
network. Their preconditions represent both the data dependencies of the com-
ponent, in terms of the input information required, and the feasible resources for
running the component, including the type of resource. These operators capture



information similar to that represented in Chimera’s Virtual Data Language [20],
such as the name of the component and its parameters. However, the operators
also contain the additional information about the preconditions necessary for the
use of the component, and provide the effect of the application of the component
on the state of the system, such as the consumption of the resources. Further
information about resource requirements, such as minimal physical memory or
hard disk space, is a planned extension.

Plans generated in response to user requests may often involve hundreds or
thousands of files and it is important to manage the process of searching for
plans efficiently. If a component needs to be run many times on different input
files, it is not useful for the planner to explicitly consider different orderings of
those files. Instead the planner reasons about groups of files that will be treated
identically. An auxiliary routine allocates the files to different groups, looking
for a locally optimal allocation. Since the number of input files or groups may
vary by component and even by invocation, the preconditions are modeled using
quantification over possible files.

3.4 Solution space and plan generation strategy

In our initial approach, we seek high-quality plans with a combination of lo-
cal search heuristics, aimed at preferring good choices for individual component
assignments, and an exhaustive search for a plan that minimizes the global esti-
mated runtime. Both aspects are necessary: without the global measure, several
locally optimal choices can combine to make a poor overall plan because of
conflicts between them. Without the local heuristics, the planner may have to
generate many alternatives before finding a high quality plan.

4 LIGO and GEO Pulsar Search

LIGO (Laser Interferometer Gravitational-Wave Observatory,) [2,4,7] is a dis-
tributed network of three km-scale interferometers occupying two sites in the
U.S. The construction project was funded by NSF and jointly built by Caltech
and MIT. GEO 600 is a 600 meter interferometer installed in Hannover, Ger-
many built by a British-German collaboration. The observatories’ mission is to
detect and measure gravitational waves predicted by general relativity, Einstein’s
theory of gravity, in which gravity is described as due to the curvature of the
fabric of time and space. One well-studied source of gravitational waves is the
motion of dense, massive astrophysical objects such as neutron stars or black
holes. Other signals may come from supernova explosions, quakes in neutron
stars, and pulsars.

Gravitational waves interact extremely weakly with matter, and the measur-
able effects produced in terrestrial instruments by their passage will be miniscule.
In order to establish a confident detection or measurement, a large amount of
auxiliary data will be acquired and analyzed along with the strain signal that
measures the passage of gravitational waves. The amount of data that will be



acquired and cataloged each year is in the order of tens to hundreds of terabytes.
Analysis on the data is performed in both time and Fourier domains.
Searching for pulsars that may emit gravitational waves requires, involves
among others, a Fourier analysis of a particular set of frequencies over some time
frame. To conduct a pulsar search, for example, the user must find a number of
files of raw data output corresponding to this time frame, extract the required
channel, concatenate the files and make a series of Fourier transforms (FT) on the
result. The desired frequencies must then be extracted from the set of FT output
files, and processed by a separate program that performs the pulsar search.
Depending on search parameters and the details of the search being con-
ducted, a typical LIGO or GEO pulsar search may require thousands of Fourier
transforms, some of that may have already been performed and stored at some
location in the Grid. The results must be marshaled to one host for frequency
extraction, and the final search must be executed on a different host because of
the program requirements. In all, many gigabytes of data files may be generated,
so a fast-running solution must take the bandwidth between hosts into account.
We have tailored the metadata-driven Pegasus to support LIGO and GEO
pulsar searches. This involved developing application-specific operators for the
planner and providing a Globus interface to the LIGO data analysis facilities
that are customized to the LIGO project needs. This included developing a new
Globus jobmanager [15] to enable scheduling of jobs on the LIGO analysis system
and providing a GridFTP [5] interface to stage data in and out of the system.

5 Results and Related Work

The Metadata approach described in this paper was first demonstrated at the
SC 2002 conference held in November at Baltimore. The Pegasus system was
configured to generate both the abstract and the concrete work flows and run the
LIGO and GEQ Pulsar searches. For this demonstration the following resources
were used: 1) Caltech ( Pasadena, CA): LIGO Data Analysis System (LDAS)
and Data Storage. 2) ISI (Marina del Rey, CA): Condor Compute Pools, Data
Storage, Replica Location Services, and Metadata Catalog Services. 3) University
of Wisconsin (Milwaukee): Condor Compute Pools and Data Storage.

The requests for pulsar searches were generated using an auto generator that
produced requests both for known pulsars (approximately 1300 known pulsars)
as well as random point searches in the sky. A user could also request a specific
pulsar search by specifying the metadata of the required data product through a
web-based system. Both the submission interfaces as well as all the compute and
data management resources were Globus GSI (Grid Security Infrastructure) en-
abled. Department of Energy issued X509 certificates were used to authenticate
to all the resources.

During the demonstration period and during a subsequent run of the sys-
tem approximately 200 pulsar searches were conducted (both known as well as
random) generating approximately 1000 data products involving in the order of
1500 data transfers. The data used for this demonstration was obtained from



the first scientific run of the LIGO instrument. The total compute time taken
to do these searches was approximately 100 CPU hrs. All the generated results
were transferred to the user and registered in the RLS. The metadata for the
products was registered in the MCS as well as into LIGO’s own metadata cata-
log. Pegasus also generated the corresponding provenance information using the
Virtual Data Language and used it to populate in the Chimera Virtual Data
Catalog.

The execution of the jobs was monitored by two means. For each executable
workflow, a start and end job were added. They logged the start time and the
end time for the workflow into a MySQL database. This information was then
published via an http interface. We also implemented a shell script that parsed
the condor log files at the submit host to determine the state of the execution
and published this information to the web interface.

5.1 Related Work

Central to scheduling large complex workflows is the issue of data placement, es-
pecially when the data sets involved are very large. In Pegasus we give preference
to the compute resources where the input data set is already present. Others [23,
24] look at the data in the Grid as a tiered system and use dynamic replication
strategies to improve data access. In [25] significant performance improvement
are achieved when scheduling is performed according to data availability while
also using a dynamic replication strategy.

While running a workflow on the Grid makes it possible to perform large
computations that would not be possible on a single system, it leads to a certain
loss of control over the execution of the jobs as they might be executed in different
administrative domains. To counter this, there are other systems [11,22] that try
to provide QoS guarantees required by the user while submitting the workflow to
the Grid. NimrodG uses the information from the MDS to determine the resource
that meets the budget constraints specified by the user, while [22] monitors a
job progress over time to ensure that guarantees are being met. If a guarantee
is not being met schedules are recalculated.

Other work has focused on developing application specific schedulers that
maximize the performance of the individual application. In AppLeS [8], schedul-
ing is done on the basis of a performance metric that varies from application to
application. This leads to a customized scheduler for each application and not a
general solution. Some schedulers have focused on parameter sweep applications,
where a single application is run multiple times with different parameters [12].
Since there are no interdependencies between jobs, the scheduling process is far
simpler from the one addressed here.

Each of the systems mentioned above are rigid because they use a fix set of
optimization criteria. In this work we are developing a framework for a flexible
system that can map from the abstract workflow description to its concrete form
and can dynamically change the optimization criteria.



6 Conclusions and Future Work

The work presented in this paper describes the Pegasus planning framework and
its application to the LIGO and GEO gravitational wave physics experiments.
The interface to the system was at the level of the application and AI planning
techniques were used to map user requests to complex workflows targeted for
execution on the Grid. As part of our future work, we plan to investigate the
planning space further, explore issues of planning for only parts of the workflow
at a time, using dynamic system information to make more reactive plans, etc.

In our demonstration we used scientifically meaningful data and used both
generic Grid resources as well as LIGO specific resources enabled to work within
the Grid. The results of our analysis were fed back to the LIGO metadata cata-
logs for access by the LIGO scientists.

Although we were able to model the pulsar search within the planner, the
issue of expanding this approach to other applications needs to be evaluated.
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