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Abstract 
As part of the development of the National Virtual Observatory (NVO), a Data Grid for 
astronomy, we have developed a prototype science application to explore the dynamical 
history of galaxy clusters by analyzing the galaxies’ morphologies.  The purpose of the 
prototype is to investigate how Grid-based technologies can be used to provide 
specialized computational services within the NVO environment.  In this paper we focus 
on the key enabling technology components, particularly Chimera and Pegasus which 
are used to create and manage the computational workflow that must be present to deal 
with the challenging application requirements.  We illustrate how the components 
interplay with each other and can be driven from a special purpose application portal. 
 

1 Introduction  
The National Virtual Observatory (NVO) initiative can be concisely described as a Data 
Grid for astronomy.  Its goal is to provide integrated access to distributed databases, 
archives, and computational services in order to enable efficient and previously 
impractical, labor-intensive research in astronomy [Brunner 2001; Hanisch 2001a; us-
vo].  The NVO will benefit from the large and growing collections of digital astronomical 
imagery, spectra, and time series data being collected by ground-based observatories and 
NASA space missions.  By implementing metadata standards and standard access 
protocols, the NVO will allow these diverse and distributed information resources to be 
utilized by researchers as a single entity.  Moreover, analysis and intercomparison of 
terabyte to Petabyte scale databases will be enabled by closely linking the data resources 
to the computational power of the emerging Grid. The Grid is an attractive infrastructure, 
because NVO applications will perform computationally complex analysis on large, 
heterogeneous and distributed datasets. 
 
Today, the NVO is a project in its early stages.  Currently, the astronomical research 
community has public, on-line access (primarily via the Web) to thousands of data 
collections (images, catalogs, spectra, literature, and other various datasets) through a 
large number of different sites [Hanisch 2000; Hanisch 2001a].  These collections range 
in size from a few kilobytes to terabytes.  In the early phases of NVO growth, registries, 
data information services, and data access services will help users locate and retrieve data 
in a uniform way without having to visit many sites and learn their specialized interfaces.  
As the project evolves, we see general-purpose services becoming available. These 
services can perform common data manipulation and integration tasks, such as one that 
can join two tables or convert astronomical coordinates from one system to another.  In 
its full maturity, there will also be many highly-specialized services dedicated to specific 
forms of analysis, such as those that classify objects in an image by their morphologies. 
While advanced users of the NVO will provide processing algorithms and create new 
services, the vast majority of the NVO user community will be non-programming 
astronomers using portals to connect existing services to conduct research. 
 
In pursuing these goals, the NVO team is utilizing a number of scientific prototypes as 
demonstration projects [us-vo].  Our initial set of prototypes attempts to capture various 
aspects of the different levels of complexity described above.  Their purpose is to help to 
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validate the standards and protocols and show the user community part of the promise of 
the Virtual Observatory.  The prototypes allow us to test our designs and implementations 
and to improve them prior to general release.  With the help of the end-to-end prototypes, 
we have been able to discover a number of deficiencies in our system.  
 
This paper describes one of the NVO science prototypes aimed at studying the 
morphological properties of galaxies in rich clusters.  The Galaxy Morphology prototype 
is an example of a highly-specialized analysis service. It has many of the key technical 
elements of the astronomical problem (data to be found at many data centers, data 
representing different wavelengths, integrating heterogeneous tabular data) and combines 
them with the need to perform dynamic computations on the data.  The prototype needs 
to support the following operations: find online catalogs of galaxies in clusters, obtain 
images of the many hundreds of those galaxies, compute a set of morphological 
parameters on those images using Grid computing, and integrate the new results into the 
catalogs.  The prototype is illustrative of a large class of NVO science challenges, where 
information available from generally available, precomputed image properties are 
insufficient to address new research questions. 
 
The remainder of the paper is structured as follows: Section 2 explains the scientific goals 
of the galaxy morphology prototype, Section 3 describes the technologies used in our 
work, Section 4 details the end-to-end prototype, including the portal, and finally Section 
5 provides the results and conclusions. 

2 Science Goals: The Dynamical State of Galaxy 
Clusters 

Our goal is to investigate the dynamical state of galaxy clusters and to explore galaxy 
evolution inside the context of large-scale structure. We use galaxy morphologies as a 
probe of the star formation and stellar distribution history of the galaxies inside the 
clusters. The hypothesis is that recent falling of matter into the cluster, be it in the form of 
single galaxies or cluster mass groupings, will show the effects of the merging into the 
main cluster mass through star formation events [Ellingson 2003]. 
 
The morphology of a galaxy is related to the past star formation, as well as the dynamical 
environment the stars find themselves in. By mapping morphologies one might be able to 
see large scale events in the history of the galaxy cluster, those that have occurred more 
recently than the few Giga-year mixing time of a cluster.  Galaxy morphologies are 
known to be related to the local density of galaxies [Dressler 1980]; the morphologies are 
also possibly related to the distance of the galaxy from the center of the cluster it inhabits. 
Our science model examines the distribution of star formation indicators, both spectral 
and morphological, as a function of cluster radius, local density, and x-ray surface 
brightness.  
 
In our demonstration, we characterize a galaxy’s morphology in terms three parameters 
that can be calculated directly from an image of the galaxy [Conselice 2003]: 

o Average Surface Brightness – a measure of the total amount of detected light 
(per area) from the galaxy. 
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o Concentration Index – a measure that differentiates between galaxies with a 
uniform distribution of brightness and those dominated by a bright core. 

o Asymmetry Index – a measure that differentiates between spiral galaxies (most 
asymmetric) and elliptical galaxies (most symmetric). 

 
The computational requirements for calculating these parameters for a single galaxy are 
fairly light; however, to statistically characterize a cluster well, we need to calculate our 
parameters for the hundreds or thousands of galaxies that constitute the galaxy cluster.  
Ultimately, we would like to apply this technique to hundreds of clusters, analyzing 
hundreds of thousands of galaxies; at that level, the statistical sampling would be 
sufficient to gain insight into the evolution of our Universe as a whole.   
 
There is also a significant amount of knowledge that we already have about many of the 
galaxies that make up clusters, such as their colors, their brightness at different 
frequencies, and their motions within the cluster.  This information is available from the 
many, various catalogs accessible on-line.  In addition, we can also make use of other 
image sources that contain images that reveal important large-scale characteristics of the 
galaxy cluster, such as the x-ray emission that traces the hot inter-galactic gas.  We can 
assemble a picture of the dynamical state of a cluster by gathering together this existing 
information and comparing it with our new calculations.  Clearly, as we extend our study 
to many galaxy clusters, efficient access to the data becomes important. 
 
Our strategy, for the single galaxy cluster, is as follows: 

1. Choose a cluster. 
2. Obtain optical and x-ray images revealing the large-scale structure of the cluster. 
3. Create a catalog of the galaxies making up the cluster, including any interesting 

properties from existing catalogs. 
4. Obtain a “cutout” image for each individual galaxy—that is, an image extracted 

from a larger one but which contains only that galaxy. 
5. Calculate the morphology parameters from the cutout images 
6. Merge the calculated values into the galaxy catalog.   
7. Visualize the results. 

 
The goal, then, of the NVO Grid is to make the process simple and scalable. 

3 Enabling Standards and Technologies 
An important purpose behind our science prototypes is to understand the important 
technical components of our application, particularly those that might be common to 
many NVO applications [us-vo] (e.g. data access, interchange, and transformation; 
common metadata schemas; distributed queries; and workflow management).  In this 
section, we highlight some of the core technologies important for accessing data and 
performing the computations. 

3.1 Data Formats and Data Access Interfaces 
A study that involves integrating large amounts of diverse data has the challenge of 
dealing with the problem of formats and access interfaces.  Thus, a major effort of the 
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NVO project is to develop the standard formats and interfaces that allow one to handle 
various types of data in a uniform way.   
 
The astronomy community is fortunate to have the well-established, internationally 
accepted standard format for exchanging astronomical images and tables known as FITS 
[Hanisch 2001b]; we use this standard in the all our NVO demonstrations to transport 
images.  Augmenting this format is VOTable, an XML schema for transmitting 
astronomical tables [VOTable].  Developed through an international collaboration of 
Virtual Observatory projects, this format can be more convenient than FITS within a web 
context: by virtue of being XML, VOTable is readily created and manipulated with off-
the-shelf tools.  As described in Section 4, this proved useful for integrating with the 
Chimera and Pegasus software [Foster 2002, Deelman 2003, Blythe 2003].   
 
Two standard interfaces provided by the data resources of the NVO project allowed us to 
access data from the various astronomy catalogs in a uniform way. The Cone Search 
protocol [cone] defines an interface for searching and retrieving records from an 
astronomical catalog over the web.  The Simple Image Access protocol (SIA) [sia] is a 
similar interface for images.  This latter interface is general enough to provide access to 
both simple static images from an image archive (as is needed for obtaining large-scale 
images of a cluster) and custom cutout images from an image cutout service. It is worth 
noting that both of these interfaces use position in the sky as the primary data selection 
criterion; that is, the interface includes domain-specific features. How this selection is 
handled in detail may vary greatly among the repositories that implement the interface.  It 
is also important to recognize the prototype status of these interfaces:  like the 
demonstration as a whole, they are defined primarily to help us understand the problem 
of building an astronomy Data Grid.  Based on HTTP Get operations, the interface is 
simple, highly-specialized, and meant to be easy for data providers to connect to their 
existing services in the language of their choice.  Successors to these interfaces (now in 
development) will likely leverage emerging standards such as Web Services and OGSA-
DAI and will employ more sophisticated techniques for accessing large amounts of data 
efficiently.  

3.2 Chimera and Pegasus  
The NVO applications are characterized by complex queries, which refer to data in many 
distributed, heterogeneous data catalogs. Additional requirements are to support a large 
problem solution space and a large user community. In response to the queries, the initial 
data may be processed in many intermediate steps, those results are less costly to store 
than re-derive. As a result, the prototype needs to be able to derive data on demand.  
 
Chimera [Foster 2002] and Pegasus [Deelman 2003, Deelman 2003b, Blythe 2003, 
Blythe 2003b, Blythe 2003b] are part of the GriPhyN Virtual Data System (VDS) which 
enables efficient on-demand data derivation. They allow users and applications to 
describe data products in terms of abstract workflows and to execute these workflows on 
the Grid. Unlike other workflow mapping systems (described in Section 3.3), Pegasus 
allows for easy reuse of existing, intermediate data products.  
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GriPhyN (Grid Physics Network) [griphyn] is an NSF-funded project that aims to support 
large-scale data management in physics experiments such as high-energy physics, 
astronomy and gravitational wave physics. GriPhyN puts data both raw and derived 
under the umbrella of Virtual Data. A user or application can ask for data using 
application-specific metadata without needing to know whether the data is available on 
some storage system or if it needs to be computed. To satisfy the request, GriPhyN will 
schedule the necessary data movements and computations to produce the requested 
results.  
 
Using the Chimera Virtual Data Language (VDL), the user can describe transformations, 
which are general descriptions of the transformation (e.g. an executable program) applied 
to data, and derivations, which are instantiations of these transformations on specific 
datasets. The transformations enumerate the input and output files as well as define the 
parameters used by the program. The derivations name the particular input files and 
provide the actual parameters used to produce desired files. An example of  the galaxy 
morphology transformations described in VDL is shown below.   
 
TR galMorph( in redshift, in pixScale, in zeroPoint, in Ho, in om, in flat,  
  in image, out galMorph ) { 
  …   } 
 
The “in” prefix in front of the argument name signifies that it is an input argument and 
the “out” prefix signifies that it is an output argument. The transformation is a template 
for the program and its parameters. In order to be able to construct the desired workflow, 
the user also needs to define derivations, where the transformation template parameters 
are instantiated and the files are indicated by their logical names. Below is an example 
derivation (arbitrarily named d1), for a single invocation of the transformation.  
 
DV d1->galMorph(  
        redshift="0.027886",  
        image=@{in:"NGP9_F323-0927589.fit"},  
        pixScale="2.831933107035062E-4",  
        zeroPoint="0",  
        Ho="100",  
        om="0.3",  
        flat="1",  
        galMorph=@{out:"NGP9_F323-0927589.txt"}  ); 
 
When a user or application requests a particular logical file name, Chimera composes an 
abstract workflow based on the previously defined derivations (if that composition is 
possible). For example, assume there are two derivations, d1 and d2, where d1 takes an 
input file a and produces an input file b, and d2 takes an input file b and produces an 
output file c. If a user requests file c, Chimera will produce the workflow in Figure 1. 
This workflow is termed abstract, because it describes the desired data product in terms 
of logical filenames and logical transformations without specifying the resources that will 
be used to execute the workflow. 
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d1 d2

ba c

 
Figure 1: Abstract Workflow. 

 
Pegasus, which stands for Planning for Execution in Grids [Deelman 2003, Deelman 
2003b, Blythe 2003, Blythe 2003b, Blythe 2003c], was developed at ISI as part of the 
GriPhyN project. Pegasus is a configurable system that can map and execute workflows 
on the Grid. In particular, Pegasus can map an abstract workflow onto the available Grid 
resources.  
 
In the configuration described here, Pegasus receives an abstract workflow (AW) 
description from Chimera, produces a concrete workflow (CW), and submits it to 
Condor-G/DAGMan [Frey 2001] for execution.  
 
The workflows are represented as Directed Acyclic Graphs (DAGs). The AW describes 
the transformations and data in terms of their logical names; it has information about all 
the jobs that need to be executed to “materialize” the required data. The Pegasus Request 
Manager sends this workflow (labeled “Abstract DAG” in Figure 2) to the Concrete 
Workflow Generator. In order to locate the input data in the Grid environment, Pegasus 
uses services such as the Globus Replica Location Service (RLS) [Chervenak 2002]. The 
input files are specified by their logical filenames in the DAG. Using RLS, Pegasus finds 
the list of physical locations for these files.  
 
The information about the available data is then used to optimize the concrete workflow 
from the point of view of Virtual Data. The optimization is performed by the Abstract 
DAG Reduction component of Pegasus.  If data products described within the AW 
already exist, Pegasus reuses them and thus reduces the complexity of the CW.  In 
general, the reduction component of Pegasus assumes that it is more costly to execute a 
component (a job) than to access the results of the component if that data is available.  
For example, some other user may have already materialized (available on some storage 
system) part of the entire required dataset. If this information is published into the RLS, 
Pegasus can utilize this knowledge and obtain the data, thus avoiding possibly costly 
computation.  As a result, some components that appear in the abstract workflow do not 
appear in the concrete workflow.  
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Figure 2:  Chimera-driven Pegasus. Pegasus generates the concrete workflow. 

 
Continuing with the example shown in Figure 2, if the intermediate file b exists at some 
location identified by the RLS, then the workflow will be reduced to that shown in Figure 
3. 
 

d2
b c

 
Figure 3: Reduced Abstract Workflow. 

Next, the Concrete Workflow Generator component of Pegasus maps the remaining 
abstract workflow onto the available resources. Currently the information about the 
available resources is statically configured. In the near future, we plan to include dynamic 
information provided by Globus Monitoring and Discovery Service (MDS) [Czajkowski 
2001].  
 
Pegasus also checks for the feasibility of the abstract workflow. It determines the root 
nodes for the abstract workflow and queries the RLS for the existence of the input files 
for these components. The workflow can only be executed if the input files for these 
components can be found to exist somewhere in the Grid and are accessible via a data 
transport protocol.  
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The transformations in the abstract workflow are only identified by their logical name. In 
order to be able to find the actual executables, we have developed a Transformation 
Catalog [Deelman 2001].  The Transformation Catalog performs the mapping between a 
logical component name and the location of the corresponding executables on specific 
compute resources. The Transformation Catalog can also be used to annotate the 
components with the creation information. Pegasus queries the catalog to determine if the 
components are available in the execution environment and to identify their locations. 
Currently, the Concrete Workflow Generator picks a random location to execute from 
among the returned locations.   

 
Transfer nodes are added for any input files that need to be staged in, so that each 
component and its input files are at the same physical location.  If the input files are 
replicated at several locations, Pegasus currently picks the source location at random.  
 
Finally, transfer nodes and registration nodes, which publish the resulting data products 
in the RLS, are added if the user requested that all the data be published and sent to a 
particular storage location.  
 
The concrete workflow for the example in Figure 3 is shown in Figure 4. The workflow 
now specifies the resources to be used, performs the data movement, stages the data in 
and out of the computation, delivers it to the user-specified location U and registers the 
newly created data product in the RLS. 
 

Execute
d2 at B

Move b
from A

to B

Move c
from B

to U

Register
c in the

RLS
 

Figure 4: Concrete, Executable Workflow. 

 
In order to be able to execute the workflow, Pegasus’ Submit File Generator generates 
submit files which are given to Condor-G and the associated DAGMan for execution. 
These files contain the actual commands used to execute the workflow as well as the path 
for the executables and data. 
 

3.3 Related Technologies 
There have been a number of efforts within the Grid community to develop general-
purpose workflow management solutions.  While it was not intended that our prototype 
compare the applicability or effectiveness these various solutions, it is worth identifying 
them and commenting on how they differ from Chimera and Pegasus in their approach. 
 
WebFlow [Fox 1998] is a multi-leveled system for high performance distributed 
computing. It consists of three layers. The top layer consists of a web-based tool for 
visual programming and monitoring. It provides the user the ability to compose new 
applications with existing components using a drag and drop capability. The middle layer 
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consists of distributed web flow server implemented using java extensions to httpd 
servers. The lower layer uses the Java CoG Kit to interface with the Grid [Laszewski 
2001] for high performance computing. WebFlow uses GRAM as the interface between 
itself and the Globus Toolkit. Thus, WebFlow also provides a visual programming aid for 
the Globus toolkit. 
 
GridFlow [Cao 2003] has a two-tiered architecture with global Grid workflow 
management and local Grid sub workflow scheduling. GridAnt [gridant] uses the Ant 
[ant] workflow processing engine. Nimrod-G [Buyya 2000] is a cost and deadline based 
resource management and scheduling system. The Accelerated Strategic Computing 
Initiative Grid [Beiriger 2000] distributed resource manager includes a desktop submission 
tool, a workflow manager and a resource broker. In the ASCI Grid, software components 
are registered so that the user can ask "run code X" and the system finds out an 
appropriate resource to run the code. Pegasus uses a similar concept of virtual data where 
the user can ask "get Y" where Y is a data product and the system figures out how to 
compute Y. Almost all the systems mentioned above except GridFlow use the Globus 
Toolkit [globus] for resource discovery and job submission. The GridFlow project will 
apply the OGSA [ogsa] standards and protocols when their system becomes more mature.  
Both ASCI Grid and Nimrod-G uses the Globus MDS [Fitzgerald 1997] service for 
resource discovery and a similar interface is being developed for Pegasus. GridAnt, 
Nimrod-G and Pegasus use GRAM [Czajkowski 1998] for remote job submission and GSI 
[Welch 2003] for authentication purposes. GridAnt has predefined tasks for 
authentication, file transfer and job execution, while reusing the XML-based workflow 
specification implicitly included in ant, which also makes it possible to describe parallel 
and sequential executions. 
 
The ASCI Grid is the only system which uses Kerberos. In GridAnt the user specifies the 
remote resource on which to submit the job. In ASCI Grid the system tries to schedule 
the job on the least loaded resource. The main emphasis of Nimrod-G is deadline and cost 
based scheduling. Pegasus can work with any local scheduling system such as condor 
[Litzkow 1988] or pbs [pbs] for which a GRAM jobmanager interface is available. The 
scheduling of jobs within a condor pool is left to the condor matchmaking system. The 
GridFlow system does task scheduling using a performance prediction-based mechanism. 
 
The main difference between Pegasus and the above systems is that while most of the 
above system focus on resource brokerage and scheduling strategies Pegasus uses the 
concept of virtual data and provenance to generate and reduce the workflow based on 
data products which have already been computed earlier. It prunes the workflow based on 
the assumption that it is always more costly to compute the data product than to fetch it 
from an existing location. Pegasus also automates the job of replica selection so that the 
user does not have to specify the location of the input data files. 
 

4 The End-to-End System  
Another important purpose of this prototype is to gain experience using the core 
components described above, having them interact with each other, and evaluating them 
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in a representative Grid.  In this prototype we focused on the major software components 
which support data access, computation and a friendly user interface. In the future, we 
plan to expand the capabilities to dynamic resource discovery.   Furthermore, we were 
less concerned with evaluating all the applicable technologies, rather choosing those that 
provided the necessary functionality.  

4.1 Data Interfaces 
As described in section 3.1, we have two standard interfaces for searching and retrieving 
data.  Data repositories providing data for our application had to implement either or 
both.  Table 1 outlines which datasets were involved in the demonstration: 
 
Table 1:  Data and Interfaces used by the Galaxy Morphology Application.  
Data Center Data Collection Interface used 
Chandra X-ray Center Chandra Data Archive SIA 
NASA High-Energy Astrophysical 
Science Archive (HEASARC) 

ROSAT X-ray data SIA 

NASA Infrared Processing and 
Analysis Center (IPAC) 

NASA Extragalactic Database 
(NED) 

Cone Search 

Canadian Astrophysical Data Center 
(CADC) 

Canadian Network for 
Cosmology (CNOC) Survey 

SIA 
Cone Search 

Multimission Archive at Space 
Telescope (MAST) 

Digitized Sky Survey (DSS) SIA 
Cone Search 

 

4.2 The User Portal 
To facilitate user access, a web portal was constructed as a high-level user interface to the 
Galaxy Morphology Grid analysis. The portal was also used to manage the integration of 
multiple NVO services for carrying out the procedure outlined in Section 2 and returning 
the results to the user for visualization. This framework provides an efficient means of 
integrating multiple remote and disparate systems, facilitated by the VOTable uniform 
transport format. 
 
The general information flow of the portal operation is illustrated in Figure 5.  The portal 
first allows a user to select from a list of galaxy clusters. For the demonstration, we 
restrict the clusters to those for which we know all the necessary data exist and are 
accessible through the appropriate standard interfaces (see Section 3.1).  Selection of a 
galaxy cluster causes the portal to look up the cluster’s spherical position in an internal 
catalog.  With that position, the portal searches three image archives, one containing 
optical images (DSS) and two others containing x-ray images (ROSAT, Chandra), for 
images of the large-scale structure using the SIA interface.  Links to these images are 
returned to the user.  The user can then request to begin analysis.  This triggers the 
construction of a catalog of the galaxies in the cluster; this is done by retrieving records 
from catalogs from two other data centers implementing the Cone Search interface.  
Next, references to the galaxy “cutout” images are requested, again using the SIA 
interface, and the descriptions and URLs pointing to the cutouts are merged into the 
catalog.  The combined catalog is then sent to a web service designed to carry out the 
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calculations on the Grid (see section 4.2).  Also passed (for reasons explained below) is 
the desired output name of the table returned by the service.  This output table contains 
the calculated values which the portal merges into the galaxy catalog.   
 
 

 
Figure 5: A schematic of the portal operation 

 
 
The portal was implemented at the Space Telescope Science Institute (STScI) in 
Baltimore and is accessible from a web browser via a server there. The actual analysis of 
the galaxy morphologies, on the other hand, is managed via a web service hosted at ISI. 
The portal was implemented in .NET, a technology that provides an easy portal 
development environment.  Integration of the morphology analysis web service into the 
portal was trivial and clearly demonstrating the value of high level application building 
tools provided by web services toolkits.  From the WSDL, .NET provided automatic 
generation of the corresponding web client (C#) components.  The inclusion of the 
service into the portal involved adding the client class to the project and then writing 
these two lines of code which passed in the input VOTable, vot, and returned  url where 
the output VOTable (called outVOTName) containing morphological parameters was 
posted: 
  

NVOGalMorphCompute comp = new NVOGalMorphCompute(); 
string url = comp.galMorphCompute(vot,outVOTName); 

 
The portal operates in real-time with the multiple NVO services, waiting until all 
processing is done before returning the results page to the user.  This synchronous 
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behavior demonstrates a limitation of the portal as this processing can take up to a few 
hours; clearly an asynchronous response would be helpful.  To facilitate ease of 
demonstration, the user has the ability to use cached results of the image search. 
 
The major bottleneck in the application’s operation is the querying of image servers (on 
the portal side) and collecting of the image cutouts (on the compute service side).  This is 
due to some inherent inefficiencies in the SIA protocol: an image query and download for 
each galaxy must be done separately.  This could be sped up tremendously if one could 
query for all images at once.   
 
In keeping with the prototype nature of the application, there were a few capabilities that 
we did not include in the portal implementation that would be important for a production 
version. Two, in particular, are important for the NVO in general.  The first is the ability 
to join VOTables in a general way.  Joining is one of a few general-purpose VOTable 
manipulations that should be implemented as a generic, external service that could be 
used by a number of different NVO applications.  In lieu of such a service, our portal 
combines data from different VOTables in a simple way using a local software library it 
calls internally.  Another important capability we did not implement is a general registry 
of image and catalog services.  Having such a registry would allow the user to discover 
and choose the appropriate data resources rather than being limited to the ones that were 
hard-coded into the portal.  This capability could lead to a richer set of scientific results; 
for example, galaxy images from different frequency bands could yield different results.  
Obviously, providing this flexibility would require a higher level of fault tolerance and 
recovery. 
 

4.3 Pegasus as a Web service  
The Galaxy morphological analysis web service represents the type of highly-specialized 
service that we expect to see when the NVO environment reaches its most mature state.  
The service takes as its input a VOTable containing the collected data of all the galaxies 
in the cluster including the URLs of the image files of the galaxies. The functionality of 
the web service is to fetch the image files for all the galaxies, compute the parameters of 
all the galaxies, and finally concatenate all the results into an output VOTable.  Carrying 
out these first two steps requires making use of information from the VOTable.  XSLT 
[xslt], an XML standard for stylesheets that transform XML data into other formats, is a 
convenient and effective tool for feeding XML data into heterogeneous software systems 
[Plante 2002].  In the case of this particular web service, we used two stylesheets to 
process the input VOTable:  the first simply created a URL list for loading the images 
into the RLS, and a second stylesheet converted the catalog directly into a derivation file 
containing the Virtual Data Language markup that described the necessary processing.   
 
Upon receiving the input VOTable, the Pegasus web service immediately returns a URL 
where the status of the computation is published. The web service creates a unique 
identifier for each request which is included as a part of the returned URL. This identifier 
is used to match requests with replies. The portal polls the returned URL until it finds a 
“job completed” status message accompanied by a URL pointing to the location of the 
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VOTable containing the computed results. Each request from the portal also contains the 
name of the galaxy cluster for which the computations are being done. The computed 
VOTable is logically named after the galaxy cluster for which the computation is being 
performed.  
 

 
Figure 6: Design of the Web Service. 

 
The web service, seen in Figure 6 can be described as follows: 
  

1. The web service receives a request from the portal with an input VOTable and the 
name of the galaxy cluster. The web service assigns a unique identifier for the 
request. The service returns a URL to the portal where all the messages regarding 
the status of the computation are posted.  

2. The service queries the RLS for the output VOTable. If the RLS contains the 
mapping for the output VOTable, its physical location is published on the URL 
returned to the portal, and the request is completed. If the VOTable is not found 
the computation proceeds. 

3. The input VOTable is transformed into a simple list of URLs that point to the 
locations of the image files for each galaxy. Each image file is downloaded via its 
URL into a local directory and registered in the RLS. Thus the web service 
creates a local cache of image files. This feature is useful for avoiding the 
performance bottleneck of retrieving the data from the image servers via SIA 
should they be requested a second time.     

4. In case the output VOTable is not registered in the RLS, the service transforms 
the input VOTable into the Chimera derivation file. A Chimera transformation file 
is also created; this file need only be created once the first time the service is 
called as the function prototypes remain the same.  
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5. Chimera creates an abstract workflow for computing the output VOTable. 
6. Pegasus creates a concrete workflow based on the locations of the executables and 

image files. It adds nodes for registering the computed parameters for each galaxy 
and the final output VOTable. Pegasus also reduces the concrete workflow based 
on pre-computed data products. The reduced workflow is submitted to 
DAGMan/Condor-G for execution. 

7. Whenever the portal polls the URL returned to it by the web service, a java servlet 
queries the RLS for the final VOTable associated with that request. This mapping 
would be present if the concrete workflow submitted to condor in the previous 
step has run to completion. The last job in this workflow is the registration of the 
final VOTable in the RLS. 

4.3.1 Design Issues 
While developing the galaxy morphology service, we needed to consider the following 
issues: 
 

1. Web Service vs. Web Application: One of the first issues considered was whether 
to structure the service as a web service with a WSDL description or a web 
application using HTTP get/post to initiate the computations. The general 
advantage of creating a web service instead of a web application is the ability to 
formally describe and publish the service using WSDL and discover it via a 
registry service (e.g. UDDI). For us, the important advantage was the platform 
and programming language independence. It allowed the Grid-based service and 
demonstration portal to be developed at different sites.  The automated web 
service tools provided by the Apache Axis (used at the service side) and the .Net 
platform (on the portal side) made interfacing the two components 
straightforward.  Finally, as Grid services [ogsa] mature, the transition from a web 
service will be easier. 

2. Asynchronous/Synchronous interface: The next design decision was whether to 
use synchronous or asynchronous operations in the web service. In the 
synchronous mode, the client blocks until the computation is completed and the 
output VOTable is returned to the client. In the asynchronous mode,  the service 
immediately returns an URL to the client and the client keeps polling the URL for 
status messages. We decided to use an asynchronous interface because the 
computations can take a long time to get executed for bigger clusters.  It also 
provides a mean for the portal to get intermediate status messages. 

3. Data caching: We decided to cache the galaxy image files in the web server and 
register them in the RLS. This allows the service to be used even when the image 
services like MAST and CADC are down. Additionally, the data is then available 
via GridFTP [Allcock 2001], which provides much better performance than the 
SIA.  

4. Fault tolerance: Often, the computation for calculating parameters of individual 
galaxies would fail because of the bad quality of galaxy images or some other 
reasons. One option was not to let the portal time out after some time and 
resubmit the request. The other option, which we implemented, was recover from 
the failed computations during the final concatenation of results: we added a 
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validity flag to the set of returned values to indicate whether the computations for 
a given galaxy completed successfully.  Thus, this prevented a few failures from 
taking down the entire experiment. 

5. Authentication: This prototype web service submits jobs onto the Grid using the 
credentials stored at the web server. However, for a more general solution, we are 
planning to use MyProxy [Novotny 2001] as a solution for authentication of 
users. 

 

4.4 Analysis tools used to view the results  
We used existing software to analyze the data.  Again, because the results were returned 
as a XML-based VOTable, it was very easy to import the data into existing tools.  One 
example, shown in Figure 7, depicts a Java application from the Strasbourg Data Center 
called Aladin, capable of visualizing image and catalog data together.  Because it is open-
source, it was straightforward to plug in a VOTable parser.  We also made use of another 
visualization tool from IBM called Mirage [mirage] which can create various plots of 
tabular data; this tool allowed to use scatter plots to look for correlations between our 
morphology parameters and other galaxy characteristics returned in the VOTable.  We 
were able to support Mirage by creating an XSL stylesheet that transformed the VOTable 
into the tool’s native format.   
 

 
Figure 7: Aladin image and catalog viewer.  The x-ray emission is shown in blue, and the 
optical mission is in red.  The colored dots are located at the positions of the galaxies within the 
cluster; the dot color represents the value of the asymmetry index.  Blue dots represent the most 
asymmetric galaxies (i.e. spiral galaxies) and are scattered throughout the image, while orange 
are the most symmetric, indicative of  elliptical galaxies, are concentrated more toward the 
center.   
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5 Results and Conclusions 

We used our prototype to separately analyze eight different galaxy clusters.  The number 
of galaxies processed for each cluster ranged from 37 to 561.  To carry out the 
computations, we used three Condor pools, one each at University of Southern 
California, University of Wisconsin, and Fermilab. During the analysis phases, there 
were a total of 1152 compute jobs executed. The computations were performed on a total 
of 1525 images, corresponding to 30MB of data.  Staging the data in and out of the 
computations involved the transfer of 2295 files. 

Analysis of our results (illustrated in Figure 7) indicates that we have "rediscovered" the 
Dressler density-morphology relation which showed that elliptical galaxies are  
concentrated more towards a cluster's center.  We note that Dressler's method (carried out 
carefully "by hand") was different from ours, pointing out the value of the Grid for 
applying new analysis techniques on existing data.  This demonstration can serve as a 
model for how generalized computational services could be exposed in a Data Grid for 
general experimentation.   
 
Much of our motivation for building this prototype application focused on understanding 
the technical issues in building a Grid-based application. Collecting heterogeneous, 
distributed datasets to perform complex analysis typifies an advance type of application 
we expect to become commonplace in the NVO.  We believe that the successful 
deployment and use of various technologies lays a foundation for the development of a 
general NVO application development framework. We identified the important 
components and necessary protocols and interfaces. We also identified the needed 
capabilities yet to be developed. 
 
In particular, domain-specific interfaces allowed us to access the image and catalog data 
simply in uniform ways.  Standard formats not only made it easier to exchange data 
between parts of the system, it allowed us to leverage existing software for visualization.  
Our XML format, VOTable, proved particularly flexible for data exchange when we 
made use of XSLT to convert the data to other formats.  Chimera and Pegasus provided 
the core infrastructure for managing the data and computations within the Grid 
environment.  The ability built into Pegasus to reuse previously calculated data was 
particularly useful.  Our prototype was also successful in connecting Web Services and 
clients developed in different languages. 
 
This effort shed light on several items of infrastructure that we still need to address when 
laying the real foundations of the NVO.  Most obvious is the need for a registry of data 
and service resources.  This would allow users to discover the relevant data and tools 
necessary for the study.  In particular, different choices of images to be analyzed or 
computation algorithms to be employed could reveal different things about the dynamical 
state of the galaxy clusters.  We also discovered the general utility of a service that could 
join two VOTables on an arbitrary column or manipulate tables in other ways.  
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Ultimately, with an environment with a rich set of data sources and services as well as 
robust tools for connecting them together, the astronomer would have great flexibility in 
harnessing the large and diverse datasets now available for on-line research. 
 
Finally, we have gained insight into how distributed, parallel processing might be 
exposed as a generic service within a Data Grid.  Chimera and Pegasus can provide the 
glue between input data, a specific set of processing modules, and general-purpose 
computing nodes and can ensure efficient use of those resources.  The key to flexible, 
“on-the-fly” use of such a service is generating the derivation descriptions in VDL 
automatically, in part, from the descriptions of the input datasets.  With this level of 
automation, we can envision a user using a portal to select data and algorithms and 
connect them in a new way, all without necessitating new programming. 
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