
GriPhyN Technical Report 2004-24

Please send comments to deelman@isi.edu

Overall architecture and control flow
Ewa Deelman, Ian Foster, Carl Kesselman, Reagan Moore, Sanjay Ranka

December 2003

Workflow Representation
We define a workflow as a graph, where the vertices represent “activities” and the edges
represent the precedence between the “activities”. The graph may be cyclic and the
graph needs not be connected. The following figure shows an example of a workflow
represented as a graph.

Figure 1: A Graph Representation of a Workflow.

Annotations can also be defined on the workflows, the vertices and the edges. An
annotation is a set of zero or more attributes associated with a vertex, edge or subgraph of
the graph. The annotations can represent the state of the workflow, the history of the
operations performed on the workflow, options considered during these operations and
others. The annotations thus can provide the provenance of the data computed by the
workflow. The annotations defined on the edges can specify the nature of the
dependency between the vertices. For instance, data produced by a precedent activity are
annotated as input data to a depending one.

We can consider a vertex as a super node that contains a workflow in itself. The concept
that we have defined for the workflow and annotation can be applied to the vertex as a
super node recursively.

In order to execute the workflows on the Grid, the workflows need to undergo a series of
refinement, of editing. The editing of a workflow continues until the workflow is
annotated to be in a “done” state. There may be additional state information available
when a workflow completes, for example provenance information about how the
workflow was executed.

GriPhyN Technical Report 2004-24

Please send comments to deelman@isi.edu

Workflow Editing
Workflows can be modified by editors. In general, editors may:

• Add vertices or edges to the graph
o For example, information about the dependency between two

vertices can be described by adding vertices and edges with
annotations

o Also, An editor can set apart activities by adding vertices and
edges in a workflow.

• Delete vertices or edges from the graph
o For example, activities that have already been executed (based on

provenance information) can be deleted from the workflow. For
example, the editor can delete redundant works in workflow
execution by removing vertices and edges from a workflow, so
called ‘Graph Reduce’.

• Add, delete or modify annotations on the graph, vertices or edges
o For instance, data- or execution-planning editor performs the

modification with replacing a logical name with a physical name
for data or resource location.

We note that editors can operate on portions of the graph (subgraphs) and not only on the
entire graph. In general, an editor performs a transaction that maps a subgraph (s1) onto
a subgraph (s2). The editor needs to preserve the dependencies that relate to s1 in s2:
after the mapping the edges that were directed to s1 are directed to s2 the edges that were
directed from s1 are directed from s2. Annotations on the input/output edges of s1 are
also preserved in s2. The annotations can include additional information for the
dependencies, but can’t eliminate pre-existing information as attributes. We also assume
that two editors cannot edit two subgraphs at the same time if these subgraphs have
common vertices or edges. For performance issues, or for reliability, we may allow two
editors to make several copies of a workflow. An instance of a workflow can be
submitted simultaneously to multiple execution environments. This may allow a
workflow submitter to get the workflow executed with better performance.

An editor can be defined by its type, which includes the type of workflow it takes as
input, the type of workflow it provides as output and the type of algorithm it uses to do
the editing. Editors can perform workflow composition, planning, scheduling, execution
and other functions.

Some editors may only re-write the workflow, change it from one representation to
another. Examples of these editors are Chimera, Pegasus. Some editors may execute
portions of the workflow, consuming resources, modifying the state of the vertices to
“done” or “failed”. Examples of this type of executors are DAGMan, PBS, etc.

The various types editors and their functions are described in another document
[GriPhyN technical report 2004-23].

GriPhyN Technical Report 2004-24

Please send comments to deelman@isi.edu

Coordination between Editors
In general, the editors communicate with each other indirectly, by annotating the
workflows. We assume that not all editors need to understand all the annotations, just the
ones that are relevant to them.

There are two main ways the editors can work together to refine the workflow.

1) Via a common workflow pool, where each editor picks an “appropriate”
workflow, “locks it” and edits it. Upon completion of the editing process the
new workflow is placed in the workflow pool and the lock is released. In this
case the editors discover and select the workflows they want to edits and there
is little control over which editors actually perform the refinement.

2) Via a coordinator, that decides the appropriate workflow to send to a given
editor. In this case the editors are discovered by the coordinator and selected
based on their characteristics.

The difficulty of the first approach is to define a control structure for the editing process,
for example if they are two editors that can edit the same type of workflow, which one
will get to edit it. In the second approach, we can have more control over the sequence of
editors that operate on the workflow. The coordinator can choose the editors based not
only on their suitability, but also performance and reliability. A more coordinated editing
process can however potentially suffer from performance bottlenecks.

A third approach uses a hybrid approach with the workflow pool and the coordinator,
where workflows in the pool are organized according to their types, and the coordinator
classifies editors according to their types. Editors in a same class can compete for
workflows in a section of the workflow pool, in which section there are workflows with
the same type. The third approach gives the coordinator control over the sequence of
editors for suitability and performance as well as resolving the potential bottleneck
suffering.

Hierarchical Refinement Structure
A possible organization and coordination among the editors can be imposed by a
hierarchical structure of the editing process. In this structure there are well defined
editing levels related to the state of the workflows. The editors usually communicate
between near-by levels, however skipping levels is also allowed. The nature of the
communication is that of delegation, where one editor delegates the editing of a particular
workflow to another editor. It is also possible to involve a coordinator in the process
whose role will be to perform the delegation. As part of the delegation process, an
appropriate editor needs to be chosen based on its ability to refine the workflow further.
Having a workflow coordinator would allow for making global decision about the
workflow editing process, whereas having the editors directly communicate with each
other would provide for localized decisions.

GriPhyN Technical Report 2004-24

Please send comments to deelman@isi.edu

Several strategies are possible to find appropriate editors for the delegation in addition to
the workflow type consideration. For instance, Round Robin is simple and effective
schedule for many environments. It will simply assign a next available editor to delegate
responsibility. However, a workflow coordinator can make the editor selection utilizing
complex algorithms to improve the overall performance.

