
GriPhyN and LIGO, Building a Virtual Data Grid for Gravitational
Wave Scientists

Ewa Deelman, Carl Kesselman, Gaurang Mehta, Leila Meshkat, Laura Pearlman
Information Sciences Institute

University of Southern California
Marina Del Rey, CA 90292

{deelman, carl, gmehta, meshkat, laura}@isi.edu

Kent Blackburn, Phil Ehrens, Albert Lazzarini, Roy Williams
California Institute of Technology
1200 East California Boulevard

Pasadena, California 91125
{kent, pehrens, lazz}@ligo.caltech.edu, roy@cacr.caltech.edu

Scott Koranda

University of Wisconsin Milwaukee
Department of Physics

1900 East Kenwood Blvd
Milwaukee, WI 53211

skoranda@gravity.phys.uwm.edu

Abstract
Many Physics experiments today generate large
volumes of data. That data is then processed in a
variety of ways in order to achieve the understanding
of fundamental physical phenomena. The goal of the
NSF-funded GriPhyN project (Grid Physics Network)
is to enable scientists to seamlessly access data
whether it is raw experimental data or a data product
which is a result of further processing. GriPhyN
provides a new degree of transparency in how data-
handling and processing capabilities are integrated
to deliver data products to end-users or applications,
so that requests for such products are easily mapped
into computation and/or data access at multiple
locations. GriPhyN refers to the set of all data
products available to the user as Virtual Data.
Among the physics applications participating in the
project is the Laser Interferometer Gravitational-
wave Observatory (LIGO), which is being built to
observe the gravitational waves predicted by general
relativity. In this paper, we describe our initial design
and prototype of a Virtual Data Grid for LIGO.

1. Introduction

GriPhyN (Grid Physics Network,
www.griphyn.org) is a NSF-funded project which
aims to support large-scale data management in
physics experiments such as high-energy physics,
astronomy and gravitational wave physics. GriPhyN
puts data both raw and derived under the umbrella of
Virtual Data[1]. A user or application can ask for data
using application-specific metadata without needing
to know whether the data is available on some
storage system or if it needs to be computed. To
satisfy the request, GriPhyN will schedule the
necessary data movements and computations to
produce the requested results. GriPhyN uses the
Globus toolkit (www.globus.org) as the basic grid
infrastructure and builds on top of it high-level
services, which can support virtual data requests.
Some of these services are request planning, request
execution, replica selection, etc.

In this paper we describe the work we have done
within the context of one of the experiments in

GriPhyN, namely the Laser Interferometer
Gravitational-wave Observatory (LIGO),
www.ligo.caltech.edu. Using LIGO, we explore the
concepts of Virtual Data via a prototype. This
prototype has been built within the larger framework
of the GriPhyN architecture [2] and demonstrated at
SC’01. Our contributions encompass three areas:

• Request planning.
• Transparency of Virtual Data requests with

respect to data location and materialization.
• Integration of Globus security and resource

management with the existing LIGO Data
Analysis System (LDAS, ldas-
sw.ligo.caltech.edu), which is the production
environment for data processing in LIGO.

We describe the request management system,
which takes the application-specific metadata and
maps it to an abstract representation of the necessary
transformations and the data required by them. That
abstract representation, in the form of a directed

acyclic graph (DAG), is taken by the request planner
and transformed into a concrete DAG which includes
the commands for necessary data movements,
computations, etc. The plan also includes registering
new data products in the replica catalog [3] to
indicate the availability of the data.

Once the user makes the request, the user does
not need to know whether the data is available on
some storage system or whether it needs to be

computed. The planner provides that transparency
and places the desired data in a user-defined location.

In order to be able to execute requests,
authentication and authorization need to be
performed. All the operations set up by the planner
(in the concrete DAG), are executed on the user’s
behalf by the request executor using the user’s proxy
credentials.

To frame this work in a context relevant to the
LIGO application, we have used the LDAS system,
developed by the LIGO Laboratory and being used
widely within the LIGO Scientific Collaboration, as
an execution platform. LDAS can perform a wide
range of sophisticated and computationally intensive
data analysis. To achieve integration of LDAS into
the Grid environment, we have designed Globus [4]
interfaces both for data staging (via GridFTP [5], a
Globus Security Infrastructure-based data transfer
protocol) and computation scheduling (via GRAM
(Globus Resource Allocation Manager)) .

2. Related work

Many projects both in the US and in Europe are
building and deploying data grids. The majority are
focused on designing higher-level services on top of
the basic Globus infrastructure. Some of the services
being developed are: replica management, which
combines replica cataloging with file transfer, replica

Figure 1: Virtual Data System

selection, which chooses the “best” replica with
respect to network and storage performance, and
broker services, which seek out available resources to
schedule jobs. Among the data-grid-centric projects
are the Particle Physics Data Grid (PPDG,
www.ppdg.net), the European Data Grid (www.eu-
datagrid.org), and the National Virtual Observatory
(www.us-vo.org/). Another project, Gridlab
(www.gridlab.org), is concerned with developing
support for adaptive applications on the grid. The
main difference between the projects mentioned
above and GriPhyN is that the latter is the only one
that supports the concept of Virtual Data and
specifically provides transparency with respect to
materialization.

3. Request Management System Design

Our system is designed to deliver data requested
by the user/application at a user specified location.
The user is provided with a customized GUI to input
the desired metadata attribute values. This request is
formatted into XML and sent to the application-
specific request interpreter (see Figure 1).

The interpreter takes the XML request and
translates it into an abstract directed acyclic, task
graph (aDAG). The aDAG specifies the computations
which need to take place (transformations) and the
data needed for the computation without specifying
the physical location of the data. Figure 2 (left)
shows an aDAG which represents the sequence of
operations needed to extract a channel of data from a
frame file (a standard data structure in LIGO). The
necessary operations are that the input file
(“frame1.F”) needs to be sent to the processing
location “X”, yet to be determined, then the
transformation “extract”, with the parameters,
“channelA” (a specific channel requested by the user)
needs to be performed at some location “X” and then
the resulting data needs to be placed at the user-
specified location, here “isi.edu”

3.1. Planning

The abstract DAG representation is sent to the
planner, which combines information gathered about
the data location(s), location(s) where the
transformations can take place and constructs a
concrete DAG.

The planner consults various services, described
below, to determine the locations of the data, the
locations of the transformations, and the state of the
Grid—the availability of the resources.

The replica catalog [3, 6], which is a Globus
service, allows users to register files as logical

collections and provides mappings between logical
names for files and collections and the storage system
locations of file replicas. The catalog registers three
types of entries: logical collections, locations, and
logical files. A logical collection is a user-defined
group of files. Collections allow users and
applications to register and manipulate groups of files
as a collection, rather than requiring that every file be
registered and manipulated individually. Location
entries in the replica catalog contain the information
required for mapping a logical collection to a
particular physical instance of that collection. Each
location entry represents a complete or partial copy of
a logical collection on a storage system. The planner
consults the replica catalog to determine the locations
of the data specified in the aDAG.

The transformation catalog [7] maps a logical
transformation to a physical instance of the
transformation. Logical transformations represent an
abstract view of the transformation and can have one
or more instances. A physical transformation is an
instance of a logical transformation and refers to the
physical location of the machine on which the
transformation exists and the full path on that
machine. The physical instantiations of the
transformation can be installed, binary, or source.
The latter two types of transformations can be moved
to an appropriate system and executed.

Using the transformation catalog, the request
manager can check for the presence of a requested
transform, find the appropriate transformation for a
given architecture and find the location of the
transformation (URL). The transformation catalog
can also provide necessary information to run the
executable (for example, shared libraries) or compile
from source (Makefile), as well as provide validation
information for transformation (digital signature).

The Network Weather Service (NWS) [8] is a
distributed system that periodically monitors and
dynamically forecasts the performance that various
network and computational resources can deliver
over a given time interval. NWS forecasts process-to-
process network performance (latency and
bandwidth) and available CPU percentage for each
machine that it monitors. This information can be
used by the planner to evaluate which replicas should
be accessed in the computations.
 The Globus Metacomputing Directory Service
(MDS) can provide information about the resources
available in the Grid (within the scope of a Virtual
Organization (VO)). It can also provide detailed
information about the physical characteristics of a
resource—the number of processors, memory, and
disk space available, etc. This information can be

used by the planner to choose the most appropriate
resources.

Since the input data files can be replicated at
several locations and the transformations can be
performed on a variety of systems, it is the planner’s
responsibility to find the “optimum” plan. The
evaluation of what is optimal can be varied and can
depend on a wide range of criteria. The simplest
strategy is to find a feasible plan.

One possible solution to this planning problem is
to use a general-purpose AI planner, such as
Blackbox [9] or FF [10]. An AI planner uses
sophisticated search techniques to find a path from
the initial state of the system to the goal state, based
on the domain knowledge—the planner’s
understanding of how various, predefined actions
affect the state of the system. In the context of the
GriPhyN project, the initial state of the system is
determined by the resources available, both compute
and storage, as well as the available transformations
and data files.

The domain is composed of actions which are
defined in the system. One such action is data
transfer. The preconditions of the transfer of data “A”
from location “X” to location “Y” is that “X” and

“Y” are storage locations and that “A” is present at
location “X” and not at location “Y”. The result or

post-condition of the transfer is that “A” is present at
“Y”.

The goal state of the system is determined by the
user’s request. In the simple example above, the goal
state could be: “A” at location “Y”. We have
evaluated two planners: Blackbox and FF. The
inputs to the Blackbox and FF planners are provided
in PPDL (Planning Domain Definition Language),
which describes the possible actions in a particular
domain, their preconditions and effects.

The Blackbox planner finds all the paths between
the initial state and goal state and then checks to see
if they satisfy the constraints of the problem. For
instance, it may be unfeasible to do computations on
an LDAS system that has no memory available.

The FF planner uses heuristics to find a plan that
satisfies the constraints without initially generating an
exhaustive set of plans, thus making it faster than the
Blackbox planner. We have been able to define our
prototype domain in both planners and obtain feasible
plans to satisfy the user’s request.

We plan to incorporate performance estimates as
well as reliability measures to guide the planning
process. Incorporating modules within or outside of
the planner that would allow us to find plans that are

optimal for cost, performance, and reliability are
subjects of our current research.

Figure 2: Planner transforming an abstract DAG into a concrete DAG

Evaluating the performance will take into
account factors such as network, disk and compute
resource performance. Basic information can be
gathered from MDS and NWS. The expected
performance of the plan can be obtained by
evaluating the cost of each of the nodes in the
concrete DAG.

Reliability measures will need to account not
only for simple faults, such as lack of disk space or
network partitioning, but also more complex events,
such as “system is up and functioning, but your job is
999th in the queue and will not complete any time
soon”. The difficulty lies in capturing the latter
effect, because, even though the system is not faulty,
the application which relies on that system
experiences unquantifiable delays.

Currently, the planner does not provide the user
feedback regarding the expected execution time of
the request. However, providing this type of
information to the user is important. It is possible that
the virtual data requested results in access to many
data files and large amounts of computation. Given
this information, the user might want to refine the
request.

Another important feedback to the user is an
indication of the amount of resource usage needed to

satisfy the request. It is possible that the best
performance, from the point of view of fulfilling the
request, is to perform the computation on a massively
parallel machine. However, if the user has a limited
allocation on that machine, a network of workstations
might be a more suitable alternative. Although the
issues of accounting and policy-based resource usage
are important, they are not addressed in the current
work.

As the result of the planner, we have a concrete
DAG (shown on the right in Figure 2), where each
node contains a fully specified command—here a
globus_url_copy of the input and output files for data
staging in and out—and the extract transformation
which will be performed at Caltech.

3.2. Execution

Once the concrete DAG is generated by the
planner, it is submitted to a Condor-G server which
starts a DAGMan . DAGMan analyses the DAG and
then submits jobs in the manner in which they are
defined in the DAG making sure that the
dependencies between the nodes are observed. These
jobs may run locally or on a Condor pool or via a
GRAM interface to a resource, where Globus is

Long time frames

Store

archive

raw channels

Short time frames

Hz

Time

Single Frame

In
te

rf
e
ro

m
e
te

r

Extract
channel

transpose

Time-frequency
Image

Find Candidate event
DB

SFFT

Extract
frequency
range

Construct
image

Long time frames

Store

archive

raw channelsraw channels

Short time frames

Hz

Time

Hz

Time

Single Frame

In
te

rf
e
ro

m
e
te

r

Extract
channel

transpose

Time-frequency
Image

Find Candidate event
DB

SFFT

Extract
frequency
range

Construct
image

Figure 3: LIGO’s Virtual Data.

available.
As the jobs in the plan finish they write the exit

status of the job to a log file, which is parsed
continuously by the request manager. If any of the
tasks in the plan fail then the execution of the DAG is
halted and the error is reported to the user via the web
interface. Condor-G has a restart facility available by
which a job can be resubmitted and it can continue
from the point where it stopped, but this feature is
currently not being used. If all the jobs in a plan
succeed then the output file is generated and the
replica catalog is updated to reflect the availability of
the data at the new location (in the example in Figure
2, isi.edu).

If another request for the same data is made, the
planner finds out (by consulting the replica catalog),
that the data is already materialized and available at a
given location (isi.edu, in Figure 2) and will only do a
data movement if it is necessary to satisfy the request.

Clearly this type of system can improve the use
of computational resources and provide a better
response time to the users by identifying available
virtual data and materializing data if necessary.

4. Realizing Virtual Data

Building on the basic request management
infrastructure described above, we have prototyped a
system that can support Virtual Data by providing the
user with transparency with respect to data location
and data materialization. First, we briefly describe
LIGO and its Virtual Data[11-13].

4.1. LIGO

LIGO (Laser Interferometer Gravitational-Wave
Observatory, www.ligo.caltech.edu) [14, 15] is a
distributed network of three-km-scale interferometers
occupying two sites in the U.S. The construction
project was funded by NSF and jointly built by
Caltech and MIT. The LIGO Scientific Collaboration
(LSC, www.ligo.org) is the scientific body organized
to use the instrumentation as a national resource. The
observatory’s mission is to detect and measure
gravitational waves predicted by general relativity,
Einstein's theory of gravity, in which gravity is
described as due to the curvature of the fabric of time
and space. One well-studied source of gravitational
waves is the motion of dense, massive astrophysical
objects such as neutron stars or black holes. Other

signals may come from supernova explosions, quakes
in neutron stars, and pulsars.

Gravitational waves interact extremely weakly
with matter, and the measurable effects produced in
terrestrial instruments by their passage is expected to
be miniscule. In order to establish a confident
detection or measurement, a large amount of
auxiliary data will be acquired (including data from
seismometers, microphones, etc.) and analyzed (for
example, to eliminate noise) along with the strain
signal that measures the passage of gravitational
waves The raw data collected during experiments is
a collection of continuous time series at various
sample rates. The amount of data that will be
acquired and cataloged each year is on the order of
tens to hundreds of terabytes. The gravitational wave
strain channel is less than 1% of all data collected.
Analysis on the data is performed in both time and
Fourier domains. Requirements are to be able to
perform single channel analysis over a long period of
time as well as multi-channel analysis over a short
time period.

4.2. LIGO’s Virtual Data

The goal of GriPhyN and the idea behind Virtual
Data is to enable scientists to think of their data in
terms of metadata and not in terms of file names and
location or in terms of the processing that needs to be
done on a concrete piece of data.

Thus, the first step in building a Virtual Data
Grid for an experiment is to understand the problem
domain and capture the data analysis processes.
Initially, we focused on a specific LIGO problem, the
pulsar search, which can be implemented as a
pipeline depicted in Figure 3. The data needed to
conduct the search is a long stretch (~4 months,
2x1011 points) of a single channel—the gravitational
wave strain channel. The power spectra of the small
segments are stacked to make a large frequency-time
image, perhaps 4x105 on each side. The pulsar search
consists of searching for coherent signals in this
image. A source would appear on the frequency-time
image as a wavering line, whose frequency might be
1 kHz, but modulated by a few parts in 106 over
periods of 1 day and a few parts in 104 over periods
of 1 year. In addition, if the source exhibits any
secular variations due to slowing down of its
rotational period, these will be encoded in the data as
well.

The first element in Figure 3 is data archiving as
instrumental data is stored into an archive. Next,
since, the raw data comes from the instrument as
short (1 second duration) Frames (a data structure
used in the gravitational wave community) with all
the channels, some processing geared towards the
removal (cleaning) of certain instrumental signatures
needs to be done. For example, naturally occurring
seismic vibration can be subtracted from the data
using the channels from the sensitive seismometer
that is part of the LIGO data stream. For the pulsar
search, the gravitational wave strain channel is
extracted. The short-duration, single channel frames
are then combined into much longer frames in a
transpose operation, and further data conditioning
filters are applied.

The pulsar search is conducted in the frequency
domain; thus, Fourier Transforms, in particular Short
Fourier Transforms (SFTs), are performed on the
long duration time frames. Since the pulsars are
expected to be found in a small frequency range, the
frequency interval of interest is extracted from the
STFs. The resulting power spectra are used to build
the time-frequency image, which is analyzed for the

presence of pulsar signatures. If a candidate signal
with a good signal to noise ratio is found, it is placed
in LIGO’s event database.

In Figure 3, each of the elements of the pipeline
is a Virtual Data product. The user can address each
of them using domain-specific metadata. For
example, the short Fourier transform (SFT) can be
described by the time interval of interest and the
channel over which the transform is to be computed.

The SFTs and the resulting time-frequency
images are standard data products for the LIGO
community and can be used by many applications. In
addition to being structures needed to find signals of
pulsars, gravitational wave scientists can use them to
locate gravitational wave bursts, which can be the
result of certain supernovae explosions. Thus,
building, based on user demands, a Grid of LIGO’s
Virtual Data products will be beneficial to the entire
LIGO community and enable efficient sharing of
computational and storage resources.

4.3. Prototype Demonstration

So far we have sketched the overall design of the
system. Here, we describe our prototype, which
implements many components of the design. The
goal of this implementation is two-fold: first, to

develop initial prototypes for the Virtual Data Toolkit
in support of the Virtual Data concepts, and, second,
to provide a scientifically meaningful, grid-enabled
environment for the LIGO collaboration. This

Ou=isi.edu, o=NetscapeRoot

Rc=Ligo_Replica_Catalog

lc=658020000-658020199

lc=658020400-658020599lc=658020200-658020399

lc=658020600-658020799

Caltech

ISI

UWM
Caltech

ISI ISI ISI

Caltech CaltechUWM UWM

:Raw and materialized data

:Materialized data only

UWM

Figure 4: LIGO Replica Catalog.

prototype was shown at SC’2001 in November. At
that time, our tested was composed of four storage
systems at Caltech, ISI, UWM, and one on the
showroom floor. The compute resources available
were two compute nodes (at ISI and on the
showroom floor) and two LDAS installations, one at
UWM and one at Caltech.

Initially, we populated the replica catalog with
raw LIGO data. Figure 4 depicts the organization of
that replica catalog. Since LIGO’s main index into
the data is based on time, we have arranged the data
into collections (lc) based on time intervals
(expressed in GPS time, seconds since January 7
1980─a time format used by the LIGO community).
Initially, only two locations (UWM and ISI) had raw
data captured at the instrument. As users made
requests for derived data, new data products were
calculated and stored at various locations (UWM, ISI
and Caltech).

Figure 5 depicts the overall logic and design of
the prototype. The user makes a request for virtual
data via a web portal. The user is able to specify the
channel name, the start time, where the resulting data
should be placed, and the format of the resulting data.
The format of the data can be XML, Frame, or
XSIL[16] (the Extensible Scientific
Interchange Language, based on XML), which is a

flexible, hierarchical, extensible, transport language
for scientific data objects. The request is translated

into XML and is passed to the Request Manager
(RM).

The Request Manager interprets the requests and
constructs a DAG that fully represents the
computations and data movements necessary to
satisfy the request. Some of the subtasks of the RM
are:

• Authenticate user.
• Make an optimal plan for satisfying the

user’s request using the available resources.
• Submit the plan to Condor-G for execution.
• Return the status of the request and the

location of the data to the user.
Security in the prototype is implemented using

Globus-GSI [17] (Grid Security Infrastructure), an
authentication system based on SSL/TLS and X.509
certificates, and MyProxy [18], a mechanism for
delegating GSI credentials to applications such as
web portals. GSI extends the traditional X.509 model
by allowing an individual to generate short-lived
proxy certificates that can be delegated to remote
processes running on the user’s behalf. A remote
process can use a delegated credential (proxy
certificate plus private key) to act as the original user
when authenticating to third-party servers. For
example, a simulation process may use a delegated
proxy credential to fetch one of the user’s files from a

file server. The MyProxy server provides a
mechanism to do this delegation indirectly: the user

Desired
Result

:

Single channel time series

HTTP
frontend

MyProxy
server

Replica
Catalog

Executor
CondorG/
DAGMan

Planner Monitoring

Transformation
Catalog

GridFTP GRAM/LDAS

LDAS at UWMGridCVS

Logs

SC floor

GridFTP

Compute
Resource

GRAM

xml

Cgi interface

G-DAG (DAGMan)

GridFTP GRAM/LDAS

LDAS at CaltechUWM

GridFTP

Replica
Selection

Frame

In integration

Prototype exclusive

Globus component

Desired
Result

:

Single channel time series

HTTP
frontend

MyProxy
server

Replica
Catalog

Executor
CondorG/
DAGMan

Planner Monitoring

Transformation
Catalog

GridFTP GRAM/LDAS

LDAS at UWMGridCVS

Logs

SC floor

GridFTP

Compute
Resource

GRAM

xml

Cgi interface

G-DAG (DAGMan)

GridFTP GRAM/LDAS

LDAS at CaltechUWM

GridFTP

UWM

GridFTP

Replica
Selection

Frame

In integration

Prototype exclusive

Globus component

Figure 5: Prototype Overview.

delegates a proxy credential to the MyProxy server
and associates a password with that credential. Later,
an authorized application can request a delegated
credential by presenting that same password to the
MyProxy server (using an encrypted, mutually-
authenticated GSI connection). The application, here
the request manager, can then access Grid resources
with the end-user's privileges. It asks the user for the
username and password via an encrypted GSI
connection and contacts the MyProxy server to obtain
the user's proxy credential.

In order for the planner to determine if the
requested data exists, or if the necessary input data
exists (in case materialization needs to be performed),
the planner consults the replica catalog. In the
example shown in Figure 2, the planner has consulted
the replica catalog, did not find the file needed to
satisfy the user request, but found that logical file
“Frame1.F” is available at “phys.uwm.edu/…”. This
file is a full frame file, a file with all the channels,
and is needed to extract the channel specified by the
user’s request─channelA.

At the time of the demo, the transformation
catalog was not yet fully integrated into the system.
Transformations were assumed to be available at all
the compute sites.

In our current implementation, if any processing
on the data needs to be done, the planner will select a
execution location which is “close” to the input data
needed for the computation. Currently, “close” is
defined as having a high bandwidth between the data
and compute locations. In our example, caltech.edu
was “close”. To complete the user’s request, the
planner needs to move the result from caltech.edu to
the user specified location—isi.edu. The concrete
DAG on the right side of Figure 2 is the result of the
planning process (although details of the commands
are omitted here for clarity.)

The RM sends the concrete DAG to Condor-G.
In our prototype the DAG can contain LDAS
commands, GridFTP [5] commands, arbitrary
analysis pipeline commands, and updates to the
Replica Catalog. Condor-G executes the specified
data movements, submits jobs to LDAS via a GRAM
interface, and updates the replica catalog. LDAS or
another analysis system performs computation. Data
is moved to the user-specified location and the user is
then notified of the request’s completion and the
updates performed to the catalog.

5. Globus/LDAS Interface

In the original LDAS system, users submitted
jobs by sending commands to a port on a machine
running the LDAS ManagerAPI. The Globus GRAM

interface to LDAS was accomplished by adding a
new Globus GRAM service to an existing Globus
1.1.4 resource manager on a machine on the same
network as the LDAS ManagerAPI. The new service
jobmanager-ldas translates the requests sent by
Condor-G to appropriate LDAS commands and sends
them to the LDAS ManagerAPI. Note that the actual
Globus jobmanager program globus-jobmanager was
not changed. Instead a new service was added by
simply defining new submit, poll, queue, and rm
scripts for the new service. The jobmanager-ldas also
sends the name of the machine on which the Globus
GRAM service is running along with the port on
which an agent is listening. The agent listening on the
Globus service machine receives all communications
about the job that was submitted and other
information from LDAS. The received information is
parsed and written as appropriate so that the scripts
globus-script-ldas-poll, -submit, -queue, and rm can
read the information and communicate back via
callbacks as necessary and standard as part of the
GRAM protocol. Currently LDAS only reports when
a job is finished, and it is not possible to query LDAS
to determine the state of a submitted job, so the
Globus jobmanager-ldas service only reports that jobs
are either running or completed. Development is
currently underway that will allow direct queries of
job status, and we plan to incorporate this into the
jobmanager-ldas service in the coming months.

One of the major accomplishments of the
GRAM/LDAS interface is the integration of the GSI
security within the LDAS framework. Previously,
LDAS used an unencrypted username/password
scheme for authentication.

6. Conclusions and Future Work

Some projects, such as the Particle Physics Data
Grid and the European Data Grid, address issues of
the Data Grid by providing transparent access to
existing data (transparency with respect to location);
however, GriPhyN is the only project that aims to
provide transparency with respect to materialization.

Although we have taken the first steps in the area
of Virtual Data by allowing the user to specify the
data product in terms of the relevant metadata, these
are only the initial steps in building the Virtual Data
Grid. In the near future, we will focus on developing
more sophisticated planners, which can take into
account performance and reliability as well as
provide feedback to the user (for example, about how
long it will take to obtain the desired data products),
so that the user can decide whether to go ahead with
a request.

7. Acknowledgments

The LIGO Project and LIGO Laboratory were
constructed by the National Science Foundation
under cooperative agreement PHY-9210038. The
Laboratory operates under cooperative agreement
PHY-0107417. This work was also supported by NSF
under contract ITR-0086044, "GriPhyN: Grid Physics
Network," (www.griphyn.org). This paper has been
assigned LIGO document number LIGO-P020004-
00-E.

8. References

[1] E. Deelman, I. Foster, C. Kesselman, and M.
Livny, "Representing Virtual Data: A Catalog
Architecture for Location and Materialization
Transparency," GriPhyN technical report 2001-
13, 2001.

[2] I. Foster and C. Kesselman, "A Data Grid
Reference Architecture," GriPhyN 2001-6, 2001.

[3] W. Allcock, A. Chervenak, I. Foster, C.
Kesselman, C. Salisbury, and S. Tuecke., "The
Data Grid: Towards an Architecture for the
Distributed Management and Analysis of Large
Scientific Datasets.," Journal of Network and
Computer Applications, vol. 23, pp. 187-200,
2001.

[4] I. Foster and C. Kesselman, "Globus: A Toolkit-
Based Grid Architecture," in The Grid: Blueprint
for a New Computing Infrastructure, I. Foster
and C. Kesselman, Eds.: Morgan Kaufmann,
1999, pp. 259-278.

[5] W. Allcock, J. Bester, J. Bresnahan, A. L.
Chervenak, I. Foster, C. Kesselman, S. Meder,
V. Nefedova, D. Quesnel, and S. Tuecke,
"Secure, Efficient Data Transport and Replica
Management for High-Performance Data-
Intensive Computing," presented at Mass Storage
Conference, 2001.

[6] W. Allcock, I. Foster, V. Nefedova, A.
Chervenak, E. Deelman, C. Kesselman, J. Leigh,
A. Sim, A. Shoshani, B. Drach, and D. Williams,
"High-Performance Remote Access to Climate
Simulation Data: A Challenge Problem for Data
Grid Technologies.," presented at SC 2001,
2001.

[7] E. Deelman, C. Kesselman, and G. Mehta,
"Transformation Catalog Design for GriPhyN,
Prototype of Transformation Catalog Schema.,"
GRIPHYN 2001-17, 2001.

[8] R. Wolski, "Forecasting Network Performance to
Support Dynamic Scheduling Using the Network
Weather Service," in Proc. 6th IEEE Symp. on

High Performance Distributed Computing.
Portland, Oregon, 1997.

[9] H. Kautz and B. Selman, "Pushing the envelope:
Planning, propositional logic, and stochastic
search.," presented at AAAI, 1996.

[10] J. Hoffmann and B. Nebel, " The FF Planning
System: Fast Plan Generation Through Heuristic
Search," Journal of Artificial Intelligence
Research, vol. 14, pp. 253-302, 2001.

[11] E. Deelman, C. Kesselman, S. Koranda, A.
Lazzarini, and R. Williams, "Applications of
Virtual Data in the LIGO Experiment," presented
at Fourth International Conference on Parallel
Processing and Applied Mathematics
(PPAM'2001), 2001.

[12] E. Deelman, C. Kesselman, R. Williams, A.
Lazzarini, T. Prince, J. Romano, and B. Allen,
"A Virtual Data Grid for LIGO," presented at
HPCN 2001, Amsterdam, 2000.

[13] B. Allen, E. Deelman, C. Kesselman, A.
Lazzarini, T. Prince, J. Romano, and R.
Williams, "LIGO's Virtual Data Requirements,"
LIGO technical report T000135-00-D, 2001.

[14] A. Abramovici, W. E. Althouse, R. W. P.
Drever, Y. Gursel, S. Kawamura, F. J. Raab, D.
Shoemaker, L. Sievers, R. E. Spero, K. S.
Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb,
and M. E. Zucker, "LIGO: The Laser
Interferometer Gravitational-Wave Observatory
(in Large Scale Measurements)," Science, vol.
256, pp. 325-333, 1992.

[15] B. C. Barish and R. Weiss, "LIGO and the
Detection of Gravitational Waves," Physics
Today, vol. 52, pp. 44, 1999.

[16] R. Williams, "XSIL: Java/XML for Scientists,"
California Institute of Technology.

[17] I. Foster, C. Kesselman, G. Tsudik, and S.
Tuecke, "A Security Architecture for
Computational Grids," in ACM Conference on
Computers and Security, 1998, pp. 83-91.

[18] J. Novotny, S. Tuecke, and V. Welch, "An
Online Credential Repository for the Grid:
MyProxy.," presented at the Tenth International
Symposium on High Performance Distributed
Computing (HPDC-10), 2001.

