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Abstract 
Many Physics experiments today generate large 
volumes of data. That data is then processed in a 
variety of ways in order to achieve the understanding 
of fundamental physical phenomena. The goal of the 
NSF-funded GriPhyN project (Grid Physics Network) 
is to enable scientists to seamlessly access data 
whether it is raw experimental data or a data product 
which is a result of further processing.  GriPhyN 
provides a new degree of transparency in how data-
handling and processing capabilities are integrated 
to deliver data products to end-users or applications, 
so that requests for such products are easily mapped 
into computation and/or data access at multiple 
locations. GriPhyN refers to the set of all data 
products available to the user as Virtual Data. 
Among the physics applications participating in the 
project is the Laser Interferometer Gravitational-
wave Observatory (LIGO), which is being built to 
observe the gravitational waves predicted by general 
relativity. In this paper, we describe our initial design 
and prototype of a Virtual Data Grid for LIGO. 

1. Introduction 

GriPhyN (Grid Physics Network, 
www.griphyn.org) is a NSF-funded project which 
aims to support large-scale data management in 
physics experiments such as high-energy physics, 
astronomy and gravitational wave physics. GriPhyN 
puts data both raw and derived under the umbrella of 
Virtual Data[1]. A user or application can ask for data 
using application-specific metadata without needing 
to know whether the data is available on some 
storage system or if it needs to be computed. To 
satisfy the request, GriPhyN will schedule the 
necessary data movements and computations to 
produce the requested results. GriPhyN uses the 
Globus toolkit (www.globus.org) as the basic grid 
infrastructure and builds on top of it high-level 
services, which can support virtual data requests. 
Some of these services are request planning, request 
execution, replica selection, etc.  

In this paper we describe the work we have done 
within the context of one of the experiments in 



GriPhyN, namely the Laser Interferometer 
Gravitational-wave Observatory (LIGO), 
www.ligo.caltech.edu. Using LIGO, we explore the 
concepts of Virtual Data via a prototype. This 
prototype has been built within the larger framework 
of the GriPhyN architecture [2] and demonstrated at 
SC’01. Our contributions encompass three areas:  

• Request planning. 
• Transparency of Virtual Data requests with 

respect to data location and materialization. 
• Integration of Globus security and resource 

management with the existing LIGO Data 
Analysis System (LDAS, ldas-
sw.ligo.caltech.edu), which is the production 
environment for data processing in LIGO. 

We describe the request management system, 
which takes the application-specific metadata and 
maps it to an abstract representation of the necessary 
transformations and the data required by them. That 
abstract representation, in the form of a directed 

acyclic graph (DAG), is taken by the request planner 
and transformed into a concrete DAG which includes 
the commands for necessary data movements, 
computations, etc. The plan also includes registering 
new data products in the replica catalog [3] to 
indicate the availability of the data.   

Once the user makes the request, the user does 
not need to know whether the data is available on 
some storage system or whether it needs to be 

computed. The planner provides that transparency 
and places the desired data in a user-defined location.   

In order to be able to execute requests, 
authentication and authorization need to be 
performed. All the operations set up by the planner 
(in the concrete DAG), are executed on the user’s 
behalf by the request executor using the user’s proxy 
credentials. 

To frame this work in a context relevant to the 
LIGO application, we have used the LDAS system, 
developed by the LIGO Laboratory and being used 
widely within the LIGO Scientific Collaboration, as 
an execution platform. LDAS can perform a wide 
range of sophisticated and computationally intensive 
data analysis. To achieve integration of LDAS into 
the Grid environment, we have designed Globus [4] 
interfaces both for data staging (via GridFTP [5], a 
Globus Security Infrastructure-based data transfer 
protocol) and computation scheduling (via GRAM  
(Globus Resource Allocation Manager)) . 

2. Related work 

Many projects both in the US and in Europe are 
building and deploying data grids. The majority are 
focused on designing higher-level services on top of 
the basic Globus infrastructure. Some of the services 
being developed are: replica management, which 
combines replica cataloging with file transfer, replica 

 

Figure 1: Virtual Data System 



selection, which chooses the “best” replica with 
respect to network and storage performance, and 
broker services, which seek out available resources to 
schedule jobs. Among the data-grid-centric projects 
are the Particle Physics Data Grid (PPDG, 
www.ppdg.net), the European Data Grid (www.eu-
datagrid.org), and the National Virtual Observatory 
(www.us-vo.org/).  Another project, Gridlab 
(www.gridlab.org), is concerned with developing 
support for adaptive applications on the grid. The 
main difference between the projects mentioned 
above and GriPhyN is that the latter is the only one 
that supports the concept of Virtual Data and 
specifically provides transparency with respect to 
materialization. 

3. Request Management System Design 

Our system is designed to deliver data requested 
by the user/application at a user specified location. 
The user is provided with a customized GUI to input 
the desired metadata attribute values. This request is 
formatted into XML and sent to the application-
specific request interpreter (see Figure 1). 

The interpreter takes the XML request and 
translates it into an abstract directed acyclic, task 
graph (aDAG). The aDAG specifies the computations 
which need to take place (transformations) and the 
data needed for the computation without specifying 
the physical location of the data. Figure 2 (left) 
shows an aDAG which represents the sequence of 
operations needed to extract a channel of data from a 
frame file (a standard data structure in LIGO). The 
necessary operations are that the input file 
(“frame1.F”) needs to be sent to the processing 
location “X”, yet to be determined, then the 
transformation “extract”, with the parameters, 
“channelA” (a specific channel requested by the user) 
needs to be performed at some location “X” and then 
the resulting data needs to be placed at the user-
specified location, here  “isi.edu” 

3.1. Planning 

The abstract DAG representation is sent to the 
planner, which combines information gathered about 
the data location(s), location(s) where the 
transformations can take place and constructs a 
concrete DAG.  

The planner consults various services, described 
below, to determine the locations of the data, the 
locations of the transformations, and the state of the 
Grid—the availability of the resources.  

The replica catalog [3, 6], which is a Globus 
service, allows users to register files as logical 

collections and provides mappings between logical 
names for files and collections and the storage system 
locations of file replicas. The catalog registers three 
types of entries:  logical collections, locations, and 
logical files.  A logical collection is a user-defined 
group of files. Collections allow users and 
applications to register and manipulate groups of files 
as a collection, rather than requiring that every file be 
registered and manipulated individually. Location 
entries in the replica catalog contain the information 
required for mapping a logical collection to a 
particular physical instance of that collection. Each 
location entry represents a complete or partial copy of 
a logical collection on a storage system.  The planner 
consults the replica catalog to determine the locations 
of the data specified in the aDAG. 

The transformation catalog [7] maps a logical 
transformation to a physical instance of the 
transformation. Logical transformations represent an 
abstract view of the transformation and can have one 
or more instances. A physical transformation is an 
instance of a logical transformation and refers to the 
physical location of the machine on which the 
transformation exists and the full path on that 
machine.  The physical instantiations of the 
transformation can be installed, binary, or source. 
The latter two types of transformations can be moved 
to an appropriate system and executed. 

Using the transformation catalog, the request 
manager can check for the presence of a requested 
transform, find the appropriate transformation for a 
given architecture and find the location of the 
transformation (URL). The transformation catalog 
can also provide necessary information to run the 
executable (for example, shared libraries) or compile 
from source (Makefile), as well as provide validation 
information for transformation (digital signature). 

The Network Weather Service (NWS) [8] is a 
distributed system that periodically monitors and 
dynamically forecasts the performance that various 
network and computational resources can deliver 
over a given time interval. NWS forecasts process-to-
process network performance (latency and 
bandwidth) and available CPU percentage for each 
machine that it monitors.  This information can be 
used by the planner to evaluate which replicas should 
be accessed in the computations.  
   The Globus Metacomputing Directory Service 
(MDS)  can provide information about the resources 
available in the Grid (within the scope of a Virtual 
Organization (VO) ).  It can also provide detailed 
information about the physical characteristics of a 
resource—the number of processors, memory, and 
disk space available, etc.  This information can be 



used by the planner to choose the most appropriate 
resources.  

Since the input data files can be replicated at 
several locations and the transformations can be 
performed on a variety of systems, it is the planner’s 
responsibility to find the “optimum” plan. The 
evaluation of what is optimal can be varied and can 
depend on a wide range of criteria. The simplest 
strategy is to find a feasible plan.  

One possible solution to this planning problem is 
to use a general-purpose AI planner, such as 
Blackbox [9] or FF [10].   An AI planner uses 
sophisticated search techniques to find a path from 
the initial state of the system to the goal state, based 
on the domain knowledge—the planner’s 
understanding of how various, predefined actions 
affect the state of the system.  In the context of the 
GriPhyN project, the initial state of the system is 
determined by the resources available, both compute 
and storage, as well as the available transformations 
and data files.  

The domain is composed of actions which are 
defined in the system. One such action is data 
transfer. The preconditions of the transfer of data “A” 
from location “X” to location “Y” is that “X” and 

“Y” are storage locations and that “A” is present at 
location “X” and not at location “Y”. The result or 

post-condition of the transfer is that “A” is present at 
“Y”.    

The goal state of the system is determined by the 
user’s request.  In the simple example above, the goal 
state could be: “A” at location “Y”. We have 
evaluated two planners: Blackbox and FF.  The 
inputs to the Blackbox and FF planners are provided 
in PPDL (Planning Domain Definition Language), 
which describes the possible actions in a particular 
domain, their preconditions and effects.  

The Blackbox planner finds all the paths between 
the initial state and goal state and then checks to see 
if they satisfy the constraints of the problem. For 
instance, it may be unfeasible to do computations on 
an LDAS system that has no memory available.   

The FF planner uses heuristics to find a plan that 
satisfies the constraints without initially generating an 
exhaustive set of plans, thus making it faster than the 
Blackbox planner.  We have been able to define our 
prototype domain in both planners and obtain feasible 
plans to satisfy the user’s request.   

We plan to incorporate performance estimates as 
well as reliability measures to guide the planning 
process. Incorporating modules within or outside of 
the planner that would allow us to find plans that are 

optimal for cost, performance, and reliability are 
subjects of our current research.    

 

Figure 2: Planner transforming an abstract DAG into a concrete DAG 

 



Evaluating the performance will take into 
account factors such as network, disk and compute 
resource performance. Basic information can be 
gathered from MDS and NWS. The expected 
performance of the plan can be obtained by 
evaluating the cost of each of the nodes in the 
concrete DAG. 

Reliability measures will need to account not 
only for simple faults, such as lack of disk space or 
network partitioning, but also more complex events, 
such as “system is up and functioning, but your job is 
999th in the queue and will not complete any time 
soon”.  The difficulty lies in capturing the latter 
effect, because, even though the system is not faulty, 
the application which relies on that system 
experiences unquantifiable delays.  

Currently, the planner does not provide the user 
feedback regarding the expected execution time of 
the request. However, providing this type of 
information to the user is important. It is possible that 
the virtual data requested results in access to many 
data files and large amounts of computation. Given 
this information, the user might want to refine the 
request. 

Another important feedback to the user is an 
indication of the amount of resource usage needed to 

satisfy the request.  It is possible that the best 
performance, from the point of view of fulfilling the 
request, is to perform the computation on a massively 
parallel machine. However, if the user has a limited 
allocation on that machine, a network of workstations 
might be a more suitable alternative. Although the 
issues of accounting and policy-based resource usage 
are important, they are not addressed in the current 
work. 

As the result of the planner, we have a concrete 
DAG (shown on the right in Figure 2), where each 
node contains a fully specified command—here a 
globus_url_copy of the input and output files for data 
staging in and out—and the extract transformation 
which will be performed at Caltech. 

3.2. Execution 

Once the concrete DAG is generated by the 
planner, it is submitted to a Condor-G server which 
starts a DAGMan . DAGMan analyses the DAG and 
then submits jobs in the manner in which they are 
defined in the DAG making sure that the 
dependencies between the nodes are observed. These 
jobs may run locally or on a Condor pool or via a 
GRAM interface to a resource, where Globus is 
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Figure 3: LIGO’s Virtual Data. 

 



available. 
As the jobs in the plan finish they write the exit 

status of the job to a log file, which is parsed 
continuously by the request manager. If any of the 
tasks in the plan fail then the execution of the DAG is 
halted and the error is reported to the user via the web 
interface.  Condor-G has a restart facility available by 
which a job can be resubmitted and it can continue 
from the point where it stopped, but this feature is 
currently not being used. If all the jobs in a plan 
succeed then the output file is generated and the 
replica catalog is updated to reflect the availability of 
the data at the new location (in the example in Figure 
2, isi.edu). 

If another request for the same data is made, the 
planner finds out (by consulting the replica catalog), 
that the data is already materialized and available at a 
given location (isi.edu, in Figure 2) and will only do a 
data movement if it is necessary to satisfy the request.  

Clearly this type of system can improve the use 
of computational resources and provide a better 
response time to the users by identifying available 
virtual data and materializing data if necessary. 

4. Realizing Virtual Data 

Building on the basic request management 
infrastructure described above, we have prototyped a 
system that can support Virtual Data by providing the 
user with transparency with respect to data location 
and data materialization. First, we briefly describe 
LIGO and its Virtual Data[11-13]. 

4.1. LIGO 

LIGO (Laser Interferometer Gravitational-Wave 
Observatory, www.ligo.caltech.edu) [14, 15] is a 
distributed network of three-km-scale interferometers 
occupying two sites in the U.S. The construction 
project was funded by NSF and jointly built by 
Caltech and MIT. The LIGO Scientific Collaboration 
(LSC, www.ligo.org) is the scientific body organized 
to use the instrumentation as a national resource. The 
observatory’s mission is to detect and measure 
gravitational waves predicted by general relativity, 
Einstein's theory of gravity, in which gravity is 
described as due to the curvature of the fabric of time 
and space. One well-studied source of gravitational 
waves is the motion of dense, massive astrophysical 
objects such as neutron stars or black holes. Other 

signals may come from supernova explosions, quakes 
in neutron stars, and pulsars.  

Gravitational waves interact extremely weakly 
with matter, and the measurable effects produced in 
terrestrial instruments by their passage is expected to 
be miniscule. In order to  establish a confident 
detection or measurement, a large amount of 
auxiliary data will be acquired (including data from 
seismometers, microphones, etc.) and analyzed (for 
example, to eliminate noise) along with the strain 
signal that measures the passage of gravitational 
waves  The raw data collected during experiments is 
a collection of continuous time series at various 
sample rates.  The amount of data that will be 
acquired and cataloged each year is on the order of 
tens to hundreds of terabytes.  The gravitational wave 
strain channel is less than 1% of all data collected. 
Analysis on the data is performed in both time and 
Fourier domains. Requirements are to be able to 
perform single channel analysis over a long period of 
time as well as multi-channel analysis over a short 
time period.   

4.2. LIGO’s Virtual Data  

The goal of GriPhyN and the idea behind Virtual 
Data is to enable scientists to think of their data in 
terms of metadata and not in terms of file names and 
location or in terms of the processing that needs to be 
done on a concrete piece of data. 

Thus, the first step in building a Virtual Data 
Grid for an experiment is to understand the problem 
domain and capture the data analysis processes. 
Initially, we focused on a specific LIGO problem, the 
pulsar search, which can be implemented as a 
pipeline depicted in Figure 3. The data needed to 
conduct the search is a long stretch (~4 months, 
2x1011 points) of a single channel—the gravitational 
wave strain channel.  The power spectra of the small 
segments are stacked to make a large frequency-time 
image, perhaps 4x105 on each side. The pulsar search 
consists of searching for coherent signals in this 
image. A source would appear on the frequency-time 
image as a wavering line, whose frequency might be 
1 kHz, but modulated by a few parts in 106 over 
periods of 1 day and a few parts in 104 over periods 
of 1 year. In addition, if the source exhibits any 
secular variations due to slowing down of its 
rotational period, these will be encoded in the data as 
well.  



The first element in Figure 3 is data archiving as 
instrumental data is stored into an archive. Next, 
since, the raw data comes from the instrument as 
short (1 second duration) Frames (a data structure 
used in the gravitational wave community) with all 
the channels, some processing geared towards the 
removal (cleaning) of certain instrumental signatures 
needs to be done. For example, naturally occurring 
seismic vibration can be subtracted from the data 
using the channels from the sensitive seismometer 
that is part of the LIGO data stream.  For the pulsar 
search, the gravitational wave strain channel is 
extracted. The short-duration, single channel frames 
are then combined into much longer frames in a 
transpose operation, and further data conditioning 
filters are applied.  

The pulsar search is conducted in the frequency 
domain; thus, Fourier Transforms, in particular Short 
Fourier Transforms (SFTs), are performed on the 
long duration time frames. Since the pulsars are 
expected to be found in a small frequency range, the 
frequency interval of interest is extracted from the 
STFs.  The resulting power spectra are used to build 
the time-frequency image, which is analyzed for the 

presence of pulsar signatures. If a candidate signal 
with a good signal to noise ratio is found, it is placed 
in LIGO’s event database. 

In Figure 3, each of the elements of the pipeline 
is a Virtual Data product. The user can address each 
of them using domain-specific metadata. For 
example, the short Fourier transform (SFT) can be 
described by the time interval of interest and the 
channel over which the transform is to be computed. 

The SFTs and the resulting time-frequency 
images are standard data products for the LIGO 
community and can be used by many applications. In 
addition to being structures needed to find signals of 
pulsars, gravitational wave scientists can use them to 
locate gravitational wave bursts, which can be the 
result of certain supernovae explosions.  Thus, 
building, based on user demands, a Grid of LIGO’s 
Virtual Data products will be beneficial to the entire 
LIGO community and enable efficient sharing of 
computational and storage resources. 

4.3. Prototype Demonstration 

So far we have sketched the overall design of the 
system. Here, we describe our prototype, which 
implements many components of the design. The 
goal of this implementation is two-fold: first, to 

develop initial prototypes for the Virtual Data Toolkit 
in support of the Virtual Data concepts, and, second, 
to provide a scientifically meaningful, grid-enabled 
environment for the LIGO collaboration. This 
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prototype was shown at SC’2001 in November.  At 
that time, our tested was composed of four storage 
systems at Caltech, ISI, UWM, and one on the 
showroom floor. The compute resources available 
were two compute nodes (at ISI and on the 
showroom floor) and two LDAS installations, one at 
UWM and one at Caltech.  

Initially, we populated the replica catalog with 
raw LIGO data. Figure 4 depicts the organization of 
that replica catalog. Since LIGO’s main index into 
the data is based on time, we have arranged the data 
into collections (lc) based on time intervals 
(expressed in GPS time, seconds since January 7 
1980─a time format used by the LIGO community).  
Initially, only two locations (UWM and ISI) had raw 
data captured at the instrument. As users made 
requests for derived data, new data products were 
calculated and stored at various locations (UWM, ISI 
and Caltech). 

Figure 5 depicts the overall logic and design of 
the prototype.  The user makes a request for virtual 
data via a web portal. The user is able to specify the 
channel name, the start time, where the resulting data 
should be placed, and the format of the resulting data.  
The format of the data can be XML, Frame, or 
XSIL[16] (the Extensible Scientific 
Interchange  Language, based on XML), which is a 

flexible, hierarchical, extensible, transport language 
for scientific data objects. The request is translated 

into XML and is passed to the Request Manager 
(RM). 

The Request Manager interprets the requests and 
constructs a DAG that fully represents the 
computations and data movements necessary to 
satisfy the request. Some of the subtasks of the RM 
are: 

• Authenticate user. 
• Make an optimal plan for satisfying the 

user’s request using the available resources.  
• Submit the plan to Condor-G for execution. 
• Return the status of the request and the 

location of the data to the user. 
Security in the prototype is implemented using 

Globus-GSI [17] (Grid Security Infrastructure), an 
authentication system based on SSL/TLS and X.509 
certificates, and MyProxy [18], a mechanism for 
delegating GSI credentials to applications such as 
web portals. GSI extends the traditional X.509 model 
by allowing an individual to generate short-lived 
proxy certificates that can be delegated to remote 
processes running on the user’s behalf. A remote 
process can use a delegated credential (proxy 
certificate plus private key) to act as the original user 
when authenticating to third-party servers. For 
example, a simulation process may use a delegated 
proxy credential to fetch one of the user’s files from a 

file server. The MyProxy server provides a 
mechanism to do this delegation indirectly: the user 

Desired 
Result

:

Single channel time series

HTTP
frontend

MyProxy
server

Replica
Catalog

Executor
CondorG/
DAGMan

Planner Monitoring

Transformation
Catalog

GridFTP GRAM/LDAS

LDAS at UWMGridCVS

Logs

SC floor

GridFTP

Compute
Resource

GRAM

xml

Cgi interface

G-DAG (DAGMan)

GridFTP GRAM/LDAS

LDAS at CaltechUWM

GridFTP

Replica
Selection

Frame

In integration

Prototype exclusive

Globus component

Desired 
Result

:

Single channel time series

HTTP
frontend

MyProxy
server

Replica
Catalog

Executor
CondorG/
DAGMan

Planner Monitoring

Transformation
Catalog

GridFTP GRAM/LDAS

LDAS at UWMGridCVS

Logs

SC floor

GridFTP

Compute
Resource

GRAM

xml

Cgi interface

G-DAG (DAGMan)

GridFTP GRAM/LDAS

LDAS at CaltechUWM

GridFTP

UWM

GridFTP

Replica
Selection

Frame

In integration

Prototype exclusive

Globus component

Figure 5: Prototype Overview. 



delegates a proxy credential to the MyProxy server 
and associates a password with that credential.  Later, 
an authorized application can request a delegated 
credential by presenting that same password to the 
MyProxy server (using an encrypted, mutually- 
authenticated GSI connection).  The application, here 
the request manager, can then access Grid resources 
with the end-user's privileges.  It asks the user for the 
username and password via an encrypted GSI 
connection and contacts the MyProxy server to obtain 
the user's proxy credential. 

In order for the planner to determine if the 
requested data exists, or if the necessary input data 
exists (in case materialization needs to be performed), 
the planner consults the replica catalog.  In the 
example shown in Figure 2, the planner has consulted 
the replica catalog, did not find the file needed to 
satisfy the user request, but found that logical file 
“Frame1.F” is available at “phys.uwm.edu/…”. This 
file is a full frame file, a file with all the channels, 
and is needed to extract the channel specified by the 
user’s request─channelA. 

At the time of the demo, the transformation 
catalog was not yet fully integrated into the system. 
Transformations were assumed to be available at all 
the compute sites. 

In our current implementation, if any processing 
on the data needs to be done, the planner will select a 
execution location which is “close” to the input data 
needed for the computation. Currently, “close” is 
defined as having a high bandwidth between the data 
and compute locations. In our example, caltech.edu 
was “close”.  To complete the user’s request, the 
planner needs to move the result from caltech.edu to 
the user specified location—isi.edu. The concrete 
DAG on the right side of Figure 2 is the result of the 
planning process (although details of the commands 
are omitted here for clarity.) 

The RM sends the concrete DAG to Condor-G. 
In our prototype the DAG can contain LDAS 
commands, GridFTP [5] commands, arbitrary 
analysis pipeline commands, and updates to the 
Replica Catalog. Condor-G executes the specified 
data movements, submits jobs to LDAS via a GRAM  
interface, and updates the replica catalog.  LDAS or 
another analysis system performs computation.  Data 
is moved to the user-specified location and the user is 
then notified of the request’s completion and the 
updates performed to the catalog.  

5. Globus/LDAS Interface 

In the original LDAS system, users submitted 
jobs by sending commands to a port on a machine 
running the LDAS ManagerAPI. The Globus GRAM 

interface to LDAS was accomplished by adding a 
new Globus GRAM service to an existing Globus 
1.1.4 resource manager on a machine on the same 
network as the LDAS ManagerAPI. The new service 
jobmanager-ldas translates the requests sent by 
Condor-G to appropriate LDAS commands and sends 
them to the LDAS ManagerAPI. Note that the actual 
Globus jobmanager program globus-jobmanager was 
not changed. Instead a new service was added by 
simply defining new submit, poll, queue, and rm 
scripts for the new service. The jobmanager-ldas also 
sends the name of the machine on which the Globus 
GRAM service is running along with the port on 
which an agent is listening. The agent listening on the 
Globus service machine receives all communications 
about the job that was submitted and other 
information from LDAS. The received information is 
parsed and written as appropriate so that the scripts 
globus-script-ldas-poll, -submit, -queue, and rm can 
read the information and communicate back via 
callbacks as necessary and standard as part of the 
GRAM protocol. Currently LDAS only reports when 
a job is finished, and it is not possible to query LDAS 
to determine the state of a submitted job, so the 
Globus jobmanager-ldas service only reports that jobs 
are either running or completed. Development is 
currently underway that will allow direct queries of 
job status, and we plan to incorporate this into the 
jobmanager-ldas service in the coming months. 

One of the major accomplishments of the 
GRAM/LDAS interface is the integration of the GSI 
security within the LDAS framework. Previously, 
LDAS used an unencrypted username/password 
scheme for authentication. 

6. Conclusions and Future Work 

Some projects, such as the Particle Physics Data 
Grid and the European Data Grid, address issues of 
the Data Grid by providing transparent access to 
existing data (transparency with respect to location); 
however, GriPhyN is the only project that aims to 
provide transparency with respect to materialization.   

Although we have taken the first steps in the area 
of Virtual Data by allowing the user to specify the 
data product in terms of the relevant metadata, these 
are only the initial steps in building the Virtual Data 
Grid. In the near future, we will focus on developing 
more sophisticated planners, which can take into 
account performance and reliability as well as 
provide feedback to the user (for example, about how 
long it will take to obtain the desired data products), 
so that the  user can decide whether to go ahead with 
a request.  
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