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Abstract

Modern science often requires the execution of large-scale, multi-stage simulation and data analysis pipelines to enable the study
of complex systems. The amount of computation and data involved in these pipelines requires scalable workflow management
systems that are able to reliably and efficiently coordinate and automate data movement and task execution on distributed compu-
tational resources: campus clusters, national cyberinfrastructures, and commercial and academic clouds. This paper describes the
design, development and evolution of the Pegasus Workflow Management System, which maps abstract workflow descriptions onto
distributed computing infrastructures. Pegasus has been used for more than twelve years by scientists in a wide variety of domains,
including astronomy, seismology, bioinformatics, physics and others. This paper provides an integrated view of the Pegasus system,
showing its capabilities that have been developed over time in response to application needs and to the evolution of the scientific
computing platforms. The paper describes how Pegasus achieves reliable, scalable workflow execution across a wide variety of
computing infrastructures.
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1. Introduction

Modern science often requires the processing and analysis of
vast amounts of data in search of postulated phenomena, and
the validation of core principles through the simulation of com-
plex system behaviors and interactions. The challenges of such
applications are wide-ranging: data may be distributed across
a number of repositories; available compute resources may be
heterogeneous and include campus clusters, national cyberin-
frastructures, and clouds; and results may need to be exchanged
with remote colleagues in pursuit of new discoveries. This is
the case in fields such as astronomy, bioinformatics, physics,
climate, ocean modeling, and many others. To support the
computational and data needs of today’s science applications,
the growing capabilities of the national and international cy-
berinfrastructure, and more recently commercial and academic
clouds need to be delivered to the scientist’s desktop in an ac-
cessible, reliable, and scalable way.

Over the past dozen years, our solution has been to develop
workflow technologies that can bridge the scientific domain
and the available cyberinfrastructure. Our approach has always
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been to work closely with domain scientists—both in large col-
laborations such as the LIGO Scientific Collaboration [1], the
Southern California Earthquake Center (SCEC) [2], and the Na-
tional Virtual Observatory [3], among others, as well as individ-
ual researchers—to understand their computational needs and
challenges, and to build software systems that further their re-
search.

The Pegasus Workflow Management System, first developed
in 2001, was grounded in that principle and was born out by the
Virtual Data idea explored within the GriPhyN project [4, 5, 6].
In this context, a user could ask for a data product, and the sys-
tem could provide it by accessing the data directly, if it were al-
ready computed and easily available, or it could decide to com-
pute it on the fly. In order to produce the data on demand, the
system would have to have a recipe, or workflow, describing
the necessary computational steps and their data needs. Pega-
sus was designed to manage this workflow executing on poten-
tially distributed data and compute resources. In some cases
the workflow would consist of simple data access, and in others
it could encompass a number of interrelated steps. This paper
provides a comprehensive description of the current Pegasus ca-
pabilities and explains how we manage the execution of large-
scale workflows running in distributed environments. Although
there are a number of publications that focused on a particular
aspect of the workflow management problem and showed quan-
tative performance or scalability improvements, this paper pro-
vides a unique, intergrated view of Pegasus system today and
describes the system features derived from research and work
with application partners.
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The cornerstone of our approach is the separation of the
workflow description from the description of the execution
environment. Keeping the workflow description resource-
independent i.e. abstract, provides a number of benefits: 1)
workflows can be portable across execution environments, and
2) the workflow management system can perform optimizations
at “compile time” and/or at “runtime”. These optimizations are
geared towards improving the reliability and performance of the
workflow’s execution. Since some Pegasus users have complex
and large-scale workflows (with O(million) tasks), scalability
has also been an integral part of the system design. One poten-
tial drawback of the abstract workflow representation approach
with compile time and runtime workflow modifications is that
the workflow being executed looks different to the user than the
workflow the user submitted. As a result, we have devoted sig-
nificant effort toward developing a monitoring and debugging
system that can connect the two different workflow representa-
tions in a way that makes sense to the user [7, 8].

Pegasus workflows are based on the Directed Acyclic Graph
(DAG) representation of a scientific computation in which tasks
to be executed are represented as nodes, and the data- and
control-flow dependencies between them are represented as
edges. This well-known, DAG based declarative approach has
been used extensively to represent computations from single
processor systems, to multi-CPU and multi-core systems, and
databases [9, 10, 11, 12, 13, 14]. Through the abstraction of
DAGs, we can apply the wealth of research in graph algo-
rithms [15, 16] to optimize performance [17, 18] and improve
reliability and scalability [6, 19]. By allowing a node to repre-
sent a sub-DAG, we apply recursion to support workflows with
a scale of O(million) individual tasks.

This paper describes the Pegasus system components, the re-
structuring that the system performs, and presents a case study
of an important earthquake science application that uses Pega-
sus for computations running on national cyberinfrastructure.
The paper is organized as follows. Section 2 provides a general
overview of Pegasus and its subsystems. Section 3 explores is-
sues of execution environment heterogeneity and explains how
Pegasus achieves portability across these environments. Sec-
tion 4 discusses the graph transformations and optmizations
that Pegasus performs when mapping a workflow onto the dis-
tributed environment ahead of the execution. At runtime, Pe-
gasus can also perform a number of actions geared towards
improving scalability and reliability. These capabilites are de-
scribed in Section 6. As with any user-facing system, usabil-
ity is important. Our efforts in this area are described in Sec-
tion 7. We then present a real user application, the CyberShake
earthquake science workflow, which utilizes a number of Pega-
sus capabilities (Section 8). Finally, Sections 9 and 10 give an
overview of related work and conclude the paper.

2. System Design

We assume that: 1) the user has access to a machine, where
the workflow management system resides, 2) the input data can
be distributed across diverse storage systems connected by wide
area or local area networks, and 3) the workflow computations

can also be conducted across distributed heterogeneous plat-
forms.

In Pegasus, workflows are described by users as DAGs,
where the nodes represent individual computational tasks and
the edges represent data and control dependencies between the
tasks. Tasks can exchange data between them in the form of
files. In our model, the workflow is abstract in that it does not
contain resource information, or the physical locations of data
and executables referred to in the workflow. The workflow is
submitted to a workflow management system that resides on a
user-facing machine called the submit host. This machine can
be a user’s laptop or a community resource. The target execu-
tion environment can be a local machine, like the submit host,
a remote physical cluster or grid [20], or a virtual system such
as the cloud [21]. The Pegasus WMS approach is to bridge the
scientific domain and the execution environment by mapping a
scientist-provided high-level workflow description, an abstract
workflow description, to an executable workflow description of
the computation. The latter needs enough information to be ex-
ecuted in a potentially distributed execution environment. In
our model it is the workflow management system’s responsi-
bility to not only translate tasks to jobs and execute them, but
also to manage data, monitor the execution, and handle fail-
ures. Data management includes tracking, staging, and acting
on workflow inputs, intermediate products (files exchanged be-
tween tasks in the workflow), and the output products requested
by the scientist. These actions are performed by the five major
Pegasus subsystems:

Mapper. Generates an executable workflow based on an ab-
stract workflow provided by the user or workflow composition
system. It finds the appropriate software, data, and computa-
tional resources required for workflow execution. The Mapper
can also restructure the workflow to optimize performance and
adds transformations for data management and provenance in-
formation generation.

Local Execution Engine. Submits the jobs defined by the
workflow in order of their dependencies. It manages the jobs
by tracking their state and determining when jobs are ready to
run. It then submits jobs to the local scheduling queue.

Job Scheduler. Manages individual jobs; supervises their exe-
cution on local and remote resources.

Remote Execution Engine. Manages the execution of one or
more tasks, possibly structured as a sub-workflow on one or
more remote compute nodes.

Monitoring Component. A runtime monitoring daemon
launched when the workflow start executing. It monitors the
running workflow, parses the workflow job, and tasks logs and
populates them into a workflow database. The database stores
both performance and provenance information. It also sends
notifications back to the user notifying him or her of events
such as failures, success, and completion of tasks, jobs, and
workflows.
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Figure 1: Pegasus WMS Architecture.

Scientists can interact with Pegasus via the command line
and API interfaces, through portals and infrastructure hubs
such as HubZero [22], through higher-level workflow compo-
sition tools such as Wings [23] and Airvata [24], or through
application-specific composition tools such as Grayson [25].
Independent of how they access it, Pegasus enables scientists
to describe their computations in a high-level fashion indepen-
dent of the structure of the underlying execution environment,
or the particulars of the low-level specifications required by
the execution environment middleware (e.g. HTCondor [26],
Globus [27], or Amazon Web Services [28]). Figure 1 provides
a high level schematic illustrating how scientists interface with
Pegasus and subsystems to execute workflows in distributed ex-
ecution environments. In the remaining of this Section, we de-
scribe the Pegasus workflow structure, and give more details
about the main system components.

2.1. Abstract Workflow Description for Pegasus

The abstract workflow description (DAX, Directed Acyclic
graph in XML) provides a resource-independent workflow de-
scription. It captures all the tasks that perform computation,
the execution order of these tasks represented as edges in a
DAG, and for each task the required inputs, expected outputs,
and the arguments with which the task should be invoked. All
input/output datasets and executables are referred to by logical
identifiers. Pegasus provides simple, easy to use programmatic
API’s in Python, Java, and Perl for the DAX generation [29].
Figure 2 shows a Python DAX generator code of a simple ”hello
world” program that executes two jobs in a serial order: hello
and world. The corresponding DAX generated by running this
program is shown in Figure 3. In this example, the first job
with ID0000001 refers to an executable called hello identified
by the tuple (namespace, name, version). It takes an input file

identified by a logical filename (LFN) f.a, and generates a sin-
gle output file identified by the LFN f.b. Similarly, the second
job takes as input file f.b and generates an output file f.c.

The Pegasus workflow can also be defined in a hierachical
way, where a node of a DAX represents another DAX. The abil-
ity to define workflows of workflows helps the user construct
more complex structures. In addition, it can also provide better
scalability. As users started running larger workflows through
Pegasus, the size of the DAX file increased correspondingly.
For instance, the XML representation for a Cybershake work-
flow [30] developed in 2009 approached 1GB and containing
approximately 830,000 tasks. Because many of the optimiza-
tions that Pegasus applies requires the whole graph in memory,
Pegasus needs to parse the entire DAX file before it can start
mapping the workflow. Even though we employ state of the
art XML parsing techniques [31], for large workflows the Map-
per can be inefficient and consumed large amounts of mem-
ory. Structuring the workflow in a hierarchical fashion solves
this problem. The higher-level DAX has a smaller workflow to
map. The lower-level DAX is managed by another instance of
Pegasus at runtime as explained further in Section 5.1.

2.2. Workflow Mapping

In order to automatically map (or plan) the abstract work-
flow onto the execution environment, Pegasus needs informa-
tion about the environment, such as the available storage sys-
tems, available compute resources and their schedulers, the lo-
cation of the data and executables, etc. With this information,
Pegasus transforms the abstract workflow into an executable
workflow, which includes computation invocation on the tar-
get resources, the necessary data transfers, and data registra-
tion. The executable workflow generation is achieved through
a series of graph refinement steps performed on the underlying
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Figure 2: Python DAX generator code for Hello World DAX.

Figure 3: Hello World DAX (Directed Acyclic graph in XML).

DAG, successively transforming the user’s abstract workflow to
the final executable workflow. As part of this process, Pegasus
can also optimize the workflow. We describe this process of
compile time workflow restructuring in detail in Section 4.

To find the necessary information, Pegasus queries a variety
of catalogs. It queries a Replica Catalog to look up the loca-
tions for the logical files referred to in the workflow, a Trans-
formation Catalog to look up where the various user executa-
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Figure 4: Translation of a simple Hello World DAX to an Executable Workflow

bles are installed or available as stageable binaries, and a Site
Catalog that describes the candidate computational and storage
resources that a user has access to. For example, in the hello
world example in Figure 4, the Mapper will look up the Replica
Catalog for files f.a, f.b, f.c, and the Transformation Cata-
log for executables identified by tuples (hello world, hello,
1.0), (hello world, world, 1.0). For the sake of brevity, we
will not focus on the details of the different catalogs in this pub-
lication. Pegasus supports various catalog implementations, in-
cluding file-based and database based implementation [29].

Once the Mapper decides where to execute the jobs and
where to retrieve the data from, it can generate an executable
workflow. The abstract tasks nodes are transformed into nodes
containing executable jobs. Data management tasks are added,
they represent data staging of the required input data, staging
out the output products back to user specified storage systems,
and cataloging them for future data discovery. Additionally, the
workflow is also transformed and optimized for performance
and reliability, as described in the following sections. Figure 4
shows an executable workflow with the nodes added by the
Mapper for a simple hello world DAX.

2.3. Workflow Execution
After the mapping is complete, the executable workflow is

generated in a way that is specific to the target workflow en-
gine. It is then submitted to the engine and its job scheduler
on the submit host. By default, we rely on HTCondor DAG-
Man [26] as the workflow engine and HTCondor Schedd as the
scheduler. In this case the executable workflow is a HTCon-
dor DAG describing the underlying DAG structure. Each node
in the DAG is a job in the executable workflow and is asso-
ciated with a job submit file that describes how each job is to
be executed. It identifies the executable that needs to be in-
voked, the arguments with which it has to be launched, the en-
vironment that needs to be set before the execution is started,
and the mechanism of how the job is to be submitted to lo-
cal or remote resources for execution. When jobs are ready to
run (their parent jobs have completed) DAGMan releases jobs
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to a local Condor queue that is managed by the Schedd dae-
mon. The Schedd daemon is responsible for managing the jobs
through their execution cycle. HTCondor supports a number
of different universes, which is a HTCondor term for execution
layouts. By default, jobs run in the local HTCondor pool, but
with the help of an extendable built-in job translation interface,
the Schedd can interface with various remote job management
protocols such as Globus GRAM [32], CREAM CE [33], and
even SSH to submit jobs directly to remote resource managers
such as SLURM [34], PBS [35], LSF [36], and SGE [37].

3. Portability

The abstract format used by Pegasus enables workflow shar-
ing and collaboration between scientists. It also allows users to
leverage the ever changing computing infrastructures for their
workflows, without having to change the workflow description.
It is Pegasus’ responsibility to move workflows between differ-
ent execution environments, and set them up to match the mode
that the execution environment supports. This matching also
takes into account how the data is managed on the target sites,
such as the tools and file servers used to stage in the data to the
site. In this section we focus on the different execution envi-
ronments that Pegasus supports, the various remote execution
engines used to run in these environments, and the supported
data management strategies.

3.1. Execution Environment

A challenge for workflow management systems is to flexibly
support a wide range of execution environments, yet provide
optimized execution depending on the environment targeted.
This is important as different scientists have access to differ-
ent execution environments. In addition, we have seen over the
years that Pegasus WMS has been developed that the type of ex-
ecution environments and how they access them changes over
time. Our users have used local clusters, a variety of distributed
grids, and more recently computational clouds.

In the simplest case, the workflow can be executed locally,
using a specialized, lightweight execution engine that simply
executes the jobs in serial order on the submit host. This
lightweight, shell-based engine does not rely on HTCondor to
be installed or configured on the submit host. If users want to
leverage the parallelism in the workflow while running locally,
they can execute their workflow using HTCondor DAGMan and
Schedd configured for local execution. These two modes enable
users to easily port their pipelines to Pegasus WMS and develop
them without worrying about remote execution. It is important
to note that once a user’s workflow can be executed locally us-
ing Pegasus WMS, users don’t have to change their codes or
DAX generators for remote execution. When moving to remote
execution, Pegasus relies on HTCondor DAGMan as the work-
flow execution engine, but the Schedd is configured for remote
submissions. The Mapper leverages, extends, and fine-tunes
existing HTCondor functionality to make the workflow exe-
cute efficiently on remote resources. Currently, the most com-
mon execution environments for Pegasus WMS workloads are

campus HTCondor pools, High Performance Computing (HPC)
clusters, distributed computing infrastructures, and clouds.

3.1.1. HTCondor Pool
The most basic execution environment for a Pegasus work-

flow is a HTCondor pool. A set of local machines, which may
or may not be in the same administrative domain, and one or
more submit machines, are brought together under a common
central HTCondor manager. The advantage of this execution
environment is that it is very easy to use, with no extra cre-
dentials or data management components required. Authentica-
tion and authorization are handled by the operating system, and
data management is either handled directly on top of a shared
filesystem or internally with HTCondor doing the necessary file
transfers. HTCondor is a very flexible and extensible piece of
software, and can be used as a scheduler/manager for setups
described in the following sections on distributed and cloud ex-
ecution environments.

3.1.2. HPC Cluster Environment
The HPC cluster execution environment is made up of

a remote compute cluster with interfaces for job control
and data management. Common interfaces include Globus
GRAM/GridFTP, CreamCE, and Bosco [38] if only SSH ac-
cess is provided to the cluster. The cluster is usually config-
ured for parallel job execution. The cluster usually also has
a shared filesystem which Pegasus WMS can use to store in-
termediate files during workflow execution. Examples of HPC
clusters include campus clusters, and HPC infrastructures such
as XSEDE [39] in the U.S. and EGI [40] in Europe.

3.1.3. Distributed Execution Environment
Whereas the HPC cluster provides a fairly homogenous and

centralized infrastructure, distributed computing environments
like the Open Science Grid (OSG) [41] provide access to a
somewhat heterogeneous set of resources, geographically dis-
tributed, and owned and operated by different projects and in-
stitutions. Executing a workflow in distributed environments
presents a different set of challenges than the HPC cluster en-
vironment, as the distributed environment does not typically
provide a shared filesystem, which can be used to share files
between tasks. Instead, the workflow management system has
to plan data placement and movements according to the tasks’
needs. The preferred job management in distributed systems
is through the HTCondor glideins, pilot jobs used to execute
workflow tasks. Systems such as GlideinWMS [42] overlay a
virtual HTCondor pool over the distributed resources to allow a
seamless distribution of jobs.

3.1.4. Cloud Execution Environment
Cloud infrastructures are similar to the distributed infrastruc-

tures, especially when it comes to data management. When
executing workflows in the cloud, whether a commercial cloud
such as Amazon Web Services (AWS) [43], or science clouds
like FutureGrid [44], or private cloud infrastructures such as
those managed for example by OpenStack [45], the workflow
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will have to handle dynamic changes to the infrastructure at run-
time. Examples of these changes could be adding or removing
virtual machine instances. Pegasus WMS can be configured to
use clouds in many different ways, but a common way is to run
an HTCondor pool across the virtual machine instances, and
use a cloud provided object storage service, such as Amazon
S3, for intermediate file storage. With a strong focus on re-
aliability, HTCondor is particularly good at handling resources
being added and removed, and the object storage services pro-
vide a centralized, yet scalable, data management point for the
workflows.

The Pegasus WMS Mapper can also plan a workflow to exe-
cute on a mix of different execution environments. This is par-
ticularly useful when the workflow contains jobs with mixed
requirements, for example some single core high-throughput
jobs and some parallel high-performance jobs, with the for-
mer requiring a high-throughput resource like the Open Science
Grid, and the latter requiring a high performance resource like
XSEDE. Another common job requirement is software avail-
ability, where certain software is only available on a set of re-
sources and another set of software is available on a disjoint
set. Software availability is expressed in the Transformation
Catalog, and the Mapper will map jobs to the correct execution
environment, and add data management jobs to make sure data
is moved to where it is needed.

3.2. Remote Workflow Execution Engines
The mapping between the abstract workflow tasks and the ex-

ecutable workflow jobs is many to many. As a result a job that
is destined for execution (that is managed by the local work-
flow engine and the local job scheduler) can be composed of
a number of tasks, and their dependencies. These tasks need
to be managed on the remote resource: executed in the right
order, monitored, and potentially restarted in case of failures.
Depending on the execution environment’s layout and the com-
plexity of the jobs that need to be handled, we have developed
different remote execution engines for managing such jobs.

3.2.1. Single Core Execution Engine
The simplest execution engine is Pegasus Cluster, which is

capable of managing a job with a set of tasks runing on a re-
mote resource. It can be used in all the supported execution
environments. It is particulary useful when managing a set of
fine-grained tasks as described in Section 4.3. Pegasus Clus-
ter is a single-threaded execution engine, which means it runs
only one task at the time, and that the input to the engine is just
an ordered list of tasks. The execution order is determined by
the Mapper by doing a topological sort on the associated task
graph for the clustered job. The advantage of using the Pegasus
Cluster execution engine is twofold: 1) more efficient execution
of short running tasks, and 2) it can reduce the number of data
transfers if the tasks it manages have common input or interme-
diate data.

3.2.2. Non-Shared File System Execution Engine
The PegasusLite [46] workflow engine was developed for the

case in which jobs are executed in a non-shared filesystem en-

vironment. In such deployments, the worker nodes on a cluster
do not share a file system between themselves or between them
and the data staging server. Hence, before a user task can be
executed on a worker node, the input data needs to be staged
in and similarly the task’s outputs need to be staged back to
the staging server when a task finishes. In this case, the Mapper
adds data transfer nodes to the workflow to move input data to a
data staging server associated with the execution site where the
jobs execute. PegasusLite is then deployed on demand when
the remote cluster scheduler schedules the job onto a worker
node. PegasusLite discovers the best directory to run the job
in, retrieves the inputs from the data staging server, executes
the user’s tasks, stages out the outputs back to the data staging
server and removes the directory that it created when it started.
All the tasks are executed sequentially by PegasusLite. For
more complex executions that utilize multiple cores, we pro-
vide an MPI-based engine, PMC described below.

3.2.3. MPI/Shared File System Execution Engine
We primarily developed Pegasus MPI Cluster (PMC) [47]

to execute large workflows on Petascale systems such as
Kraken [48] and Blue Waters [49] where our traditional ap-
proach of using Condor Glideins [50] did not work. These
Petascale systems are highly optimized for running large,
monolithic, parallel jobs, such as MPI codes and use special-
ized environments, such as the Cray XT System Environment.
The nodes in the Cray environment have a very minimal ker-
nel with almost no system tools available, no shared libraries,
and only limited IPv4/6 networking support. The networking
on these nodes is usually limited to system-local connections
over a custom, vendor-specific interconnect. These differences
significantly limited our ability to rely on HTCondor Glideins,
as they depend on a basic set of system tools and the ability to
make outbound IP network connections, and this PMC is good
solution for these machines.

The PMC workflow execution engine targets HPC architec-
ture, leverages MPI for communication and the Master-Worker
paradigm for for execution. PMC takes in a DAG-based for-
mat very similar to HTCondor DAGMan’s format and starts a
single master process and several worker processes, a standard
Master-Worker architecture. The Master distributes tasks to the
worker processes for execution when their DAG dependencies
are satisfied. The Worker processes execute the assigned tasks
and return the results to the Master. Communication between
the Master and the Workers is accomplished using a simple text-
based protocol implemented using MPI Send and MPI Recv.
PMC considers cores and memory to be consumable resources,
and can thus handle mixes of single core, multi-threaded, and
large memory tasks, with the only limitation being that a task
has to have lower resource requirements than a single compute
node can provide. Similar to DAGMan, PMC generates a res-
cue log, which can be used to recover the state of a failed work-
flow when it is resumed.

3.3. Data Management During Execution
The separation between the workflow description and the ex-

ecution environment also extends to data. Users indicate the
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Figure 5: Data flow for a Pegasus Workflows planned with non-shared filesystem mode, running on the Open Science Grid.

needed inputs and the outputs generated by the workflow us-
ing logical file names. The Mapper can then decide where to
access the input data from (many scientific collaborations repli-
cate their data sets across the wide area for performance and
reliability reasons) and how to manage the results of the com-
putations (where to store the intermediate data products). In the
end the results are staged out to the location indicated by the
user (either the submit host or another data storage site).

Having the ability to move workflows between execution re-
sources requires a certain degree of flexibility when it comes to
data placement and data movement. Most workflows require a
data storage resource close to the execution site in order to ex-
ecute in an efficient manner. In an HPC cluster, the storage re-
source is usually a parallel filesystem mounted on the compute
nodes. In a distributed grid environment, the storage resource
can be a GridFTP or SRM server, and in a cloud environment,
the storage resource can be an object store, such as Amazon S3
or OpenStack data services.

The early versions of Pegasus WMS only supported execu-
tion environments with a shared filesystem for storing interme-
diate data products that were produced during workflow exe-
cution. With distributed and cloud systems emerging as pro-
duction quality execution environments, the Pegasus WMS data
management internals were reconsidered and refactored to pro-
vide a more open-ended data management solution that allows

scientists to efficiently use the infrastructure available to them.
The criteria for the new solution were:

1. Allow for late binding of tasks and data. Tasks are mapped
to compute resources at runtime based on resource avail-
ability. A task can discover input data at runtime, and pos-
sibly choose to stage the data from one of many locations.

2. Allow for an optimized static binding of tasks and data if
the scientist has only one compute resource selected, and
there is an appropriate filesystem to use.

3. Support access to filesystems and object stores using a va-
riety of protocols and security mechanisms.

As a result, Pegasus 4.0 introduced the ability to not only
plan workflows against a shared filesystem resource, but also
remote object stores resources. Consider a job to be executed
on Amazon EC2 with a data dependency on an object existing
in Amazon S3. The job will have data transfers added to it
during the planning process so that data is staged in/out to/from
the working directory of the job. The three user selectable data
placement approaches are:

Shared Filesystem. Pegasus uses a shared filesystem on a com-
pute resource for intermediate files. This is an efficient ap-
proach but limits the execution of the workflow to nodes, which
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have the shared filesystem mounted. It can also have scalability
limitations for large-scale workflows.

Non-shared Filesystem. Each job is its own small workflow
managed by the PegasusLite engine. It manages data staging of
inputs and outputs, to and from where the job is executed. This
approach provides a flexible solution when executing work-
flows in a distributed environment, and enables late binding, or
decision making at runtime (see Section 3.2.2). Because jobs
are not limited to run where the data already is located, these
jobs can be started across different execution environments and
across different infrastructures, and can still retrieve the neces-
sary input data, execute the tasks, and stage out the output data.
Supported remote files systems include iRODS [51], Amazon
S3 [52] and compatible services, HTTP [53], GridFTP [54],
SRM [55], and SSH [56].

HTCondor I/O. HTCondor jobs are provided a list of inputs
and outputs of the job, and HTCondor manages data staging.
The advantages of this approach is that it is simple to set up as
no additional services and/or credentials are required, and data
transfer status/failures are tied directly to job execution. The
downside is a more limited number of protocols than the non-
shared filesystem case can provide, and less flexibility in the
data placement decisions.

Figure 5 illustrates a Pegasus WMS workflow running on the
Open Science Grid in the non-shared filesystem mode. To the
left in the Figure is the submit host, where Pegasus maps the
abstract workflow to an executable workflow. During execu-
tion, data is staged into a central object store, such as a SRM,
GridFTP, or iRODS server. When a job starts on a remote com-
pute resource, PegasusLite detects an appropriate working di-
rectory for the task, pulls in the input data for the task from
the storage element, runs the task, stages out products of the
task and cleans up the working directory. The workflow also
contains tasks to clean up the storage element as the workflow
progresses and to stage the final output data to a long-term stor-
age site.

The main concept in the new data management approach is
to be able to place the data staging element anywhere in the
execution environment. In the previous Open Science Grid ex-
ample, the data storage element was an SRM/GridFTP/iRODS
server placed near the compute resources. Let’s consider the
same workflow, but this time running on an HPC cluster with a
shared filesystem (Figure 6).
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Figure 6: Data management on a shared filesystem resource (only the remote
execution environment is shown).

In this example, the data storage element has moved inside
the compute resource that is provided by the shared filesystem.
By changing the data staging approach to Shared Filesystem,
Pegasus will optimize the data access patterns by eliminating
staging to/from the staging element and set up the workflow
tasks to do POSIX based I/O directly against the shared filesys-
tem.

Pegasus WMS has a clean separation between the Map-
per deciding what files need to be transferred when, and how
those transfers are executed. The execution is handled by
a data management component called pegasus-transfer.
pegasus-transfer can be executed anywhere in the sys-
tem, such as on the submit host in case of transfers to/from
remote resources, or on the remote resource to pull/push
data from there. The Mapper provides pegasus-transfer

with a list of transfers to complete, and a set of creden-
tials required to authenticate against remote storage services.
pegasus-transfer then detects the availability of command
line tools to carry out the transfers. Examples of such standard
tools are globus-url-copy for GridFTP transfers, wget for
HTTP transfers, or Pegasus internal tools such as pegasus-s3 to
interact with Amazon S3. Transfers are then executed in a man-
aged manner. In the case of the source and destination protocols
being so different that not one tool can transfer from the source
directly to the destination, pegasus-transfer will break the
transfer up into two steps: using one tool for the transfer from
the source to a temporary file, and another tool for the trans-
fer from the temporary file to the destination. This flexibility
allows the Mapper to concentrate on planning for the overall
efficiency of the workflow, without worrying about transfer de-
tails, which can come up at runtime.

3.4. Job Runtime Provenance

Workflow and job monitoring are critical to robust execu-
tion and essential for users to be able to follow the progress
of their workflows and to be able to decipher failures. Be-
cause the execution systems have different job monitoring ca-
pabilities and different ways of reporting the jobs status, we de-
veloped our own uniform, lightweight job monitoring capabil-
ity: pegasus-kickstart [57] (kickstart). The Pegasus Map-
per wraps all jobs with kickstart, which gathers useful runtime
provenance and performance information about the job. The in-
formation is sent back to the submit host upon job completion
(whether it is successful or not) and is integrated into a larger
view of the workflow status and progress, as described in Sec-
tion 7.2.

4. Compile Time Workflow Restructuring

As mentioned in the previous section, the flexibility and
portability in terms of the supported execution environments
and data layout techniques is achieved by having a separation
between the user’s description of the workflow and the work-
flow that is actually executed. The Mapper achieves this by
performing a series of transformations of the underlying DAG
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shown in Figure 7. During this process the Mapper also per-
forms a number of transformations to improve the overall work-
flow performance. The Mapper has a pluggable architecture
that allows Pegasus WMS to support a variety of backends and
strategies for each step in the refinement pipeline.

In order to better explain the refinement steps, Figure 8 shows
a diamond-shaped six node input workflow and the correspond-
ing final executable workflow generated by the Mapper. The
following subsections detail this process.

4.1. Data Reuse/Workflow Reduction

Pegasus originated from the concept of virtual data. As a re-
sult, when Pegasus receives a workflow description, it checks
whether the desired data are already computed and available.
The Mapper queries a Replica Catalog to discover the locations
for these files. If any of these files exist, then the Mapper can
remove the jobs that would generate that data from the work-
flow. The Mapper can also reason, whether removal of a node
in the workflow results in a cascaded removal of the other parent
nodes, similar to the tool “make” [58] used to compile executa-
bles from source code.

In the case where the workflow outputs are already present
somewhere, the Mapper will remove all the compute nodes in
the workflow, and just add a data stageout and registration node
to the workflow. These jobs will result in transfers of the output
to the user-specified location. In the example shown in Fig-
ure 8, the Mapper discovers that the file f.d exists somewhere,
and is able to reason that Task D and by extension Task B do

not need to be executed. Instead, there is a node added to the
workflow to stage f.d (during the replica selection stage). Task
A still needs to execute because file f.a is needed by Task C.
Data reuse is optional. In some cases it is actually more efficient
to recompute the data than access it.

4.2. Site Selection
In this phase, the Mapper looks at the reduced workflow and

passes it to a Site Selector that maps the jobs in the reduced
workflow to the candidate execution sites specified by the user.
The Mapper supports a variety of site selection strategies such
as Random, Round Robin, and HEFT [59]. It also allows to
plug in external site selectors using a standard file-based inter-
face [29], allowing users to add their own algorithms geared
towards their specific application domain and execution envi-
ronment.

During this phase, the Mapper is also able to select sites that
don’t have user executables pre-installed as long as the user has
stageable binaries cataloged in the Transformation Catalog and
the executable is compatible with the execution site’s architec-
ture. This is a fairly common use case, as Pegasus users execute
workflows on public computing infrastructure [41, 60], where
users executables may not be preinstalled, or they want to use
the latest version of their codes.

4.3. Task Clustering
High communication overhead and queuing times at the

compute resource schedulers are common problems in dis-
tributed computing platforms, such as cloud computing infras-
tructures and grids [61]. The execution of scientific workflows
on these platforms significantly increases such latencies, and
consequently increases the slowdown of the applications. In
Pegasus, the task clustering technique is used to cope with the
low performance of short running tasks, i.e. tasks that run for a
few minutes or seconds [62, 63]. These tasks are grouped into
coarse-grained tasks to reduce the cost of data transfers when
grouped tasks share input data, and save queuing time when re-
sources are limited. This technique can improve as much as
97% of the workflow completion time [64].

Pegasus currently implements level-, job runtime-, and label-
based clustering. In the following, we give an overview of these
techniques.

Level-based horizontal clustering. This strategy merges mul-
tiple tasks within the same horizontal level of the workflow,
in which the horizontal level of a task is defined as the fur-
thest distance from the root task to this task. For each level
of the workflow, tasks are grouped by the site on which they
have been scheduled by the Site Selector. The clustering gran-
ularity, i.e. the number of tasks per cluster in a clustered
job, can be controlled using any of the following parame-
ters: clusters.size, which specifies the maximum number
of tasks in a single clustered job; and clusters.num, which
specifies the allowed number of clustered jobs per horizon-
tal level and per site of a workflow. Figure 9 illustrates how
the clusters.size parameter affects the horizontal clustering
granularity.
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Job Runtime-based horizontal clustering. Level-based clus-
tering is suitable for grouping tasks with similar runtimes.
However, when the runtime variance is high, this strategy may
perform poorly, e.g. all smaller tasks get clustered together,
while larger tasks are grouped into another clustered job. In
such cases, runtime-based task clustering can be used to merge
tasks into clustered jobs that have a smaller runtime variance.
Two strategies have been recently added for balanced runtime
clustering. The first one groups tasks into a job up to the up-
per bounded by a maxruntime parameter and employs a bin
packing strategy to create clustered jobs that have similar ex-
pected runtimes [29]. The second strategy allows users to group
tasks into a fixed number of clustered jobs and distributes tasks
evenly (based on job runtime) across jobs, such that each clus-
tered job takes approximately the same amount of time. The
effectiveness of this balanced task clustering method has been
evaluated in [65, 66]. Task runtime estimates are provided by
the user or a runtime prediction function [63].

Label-based clustering. In label-based clustering, users label
tasks to be clustered together. Tasks with the same label are
merged by the Mapper into a single clustered job. This allows
users to create clustered jobs or use a clustering technique that
is specific to their workflows. If there is no label associated with
a task, the task is not clustered and is executed as is. Thus, any
clustering scheme can be implemented using an appropriate la-
beling program. Figure 10 illustrates how workflow is executed
using Pegasus MPI Cluster as a remote workflow execution En-
gine. The Mapper clusters the sub graph with same label into
a single clustered job in the executable workflow. This job ap-
pears as a single MPI job requesting n nodes and m cores on the
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remote cluster.

4.4. Replica Selection and Addition of Data Transfer and Reg-
istration Nodes

One of the main features of Pegasus is its ability to manage
the data for the scientist’s workflows. The Mapper in this phase
looks up the Replica Catalog to discover the location of input
datasets and adds data stage-in jobs. The replica catalog can
be a simple file that has the logical-to-physical filename map-
ping, it can be a database, or a fully distributed data registration
system, such as the one used in LIGO [67]. The stage-in jobs
transfer input data required by the workflow from the locations
specified in the Replica Catalog to a directory on the data stag-
ing site associated with the job. Usually the data staging site is
the shared filesystem on the execution site or in some cases can
be a file server close to the execution site such as SRM server
when executing on OSG, or S3 when executing workflows on
the Amazon cloud. The data stage-in nodes can also symlink
against existing datasets on the execution sites.

In the case where multiple locations are specified for the
same input dataset in the Replica Catalog, the location from
where to stage the data is selected using a Replica Selector. Pe-
gasus supports a variety of replica selection strategies such as
preferring datasets already present on the target execution site,
preferring sites that have good bandwidth to the execution site,
randomly selecting a replica, or using a user provided rank-
ing for the URLs, which match a certain regular expression.
Again, the scientist has the option of using Pegasus-provided
algorithms or supplying their own.

Additionally, in this phase Pegasus also adds data stageout
nodes to stage intermediate and output datasets to user speci-
fied storage location. The intermediate and final datasets may
be registered back in the Replica Catalog to enable subsequent
data discovery and reuse. Data registration is also represented
explicitly by the addition of a registration node to the workflow.

It is worthwhile to mention that the added data stage-in or
stage-out nodes to the workflow don’t have a one-to-one map-
ping with the compute jobs. The Mapper by default creates
a cluster of data stage-in or stage-out nodes per level of the
workflow. This is done to ensure that for large workflows, the
number of transfer jobs executing in parallel don’t overwhelm
the remote file servers by opening too many concurrent connec-
tions. In the Mapper, the clustering of the data transfer nodes is
configurable and handled by a Transfer Refiner.

4.5. Addition of Directory Creation and File Removal Nodes

Once the Mapper has added the data transfer nodes to the
workflow, it proceeds to add directory creation and file removal
nodes to the underlying DAG. All the data transfer nodes added
by the Mapper are associated with a unique directory on a data
staging site. In the case where the workflow is executing on the
shared filesystem of an execution site, this directory is created
on the filesystem.

After the directory creation nodes are added, the Mapper can
optionally invoke the cleanup refiner, which adds data cleanup
nodes to the workflow. These nodes remove data from the

workflow-specific directory when it is no longer required by
the workflow. This is useful in reducing the peak storage re-
quirements of the workflow and is often used in data-intensive
workflows as explained below.

Scientific workflows [30, 68, 69, 70] often access large
amounts of input data that needs to be made available to the
individual jobs when they execute. As jobs execute new output
datasets are created. Some of them may be intermediate, i.e. re-
quired only to be present during the workflow execution and are
no longer required after the workflow finishes, while others are
the output files that the scientist is interested in and need to be
staged back from the remote clusters to a user defined location.

In case of large data-intensive workflows it is possible that
the workflows will fail because of lack of sufficient disk space
to store all the inputs, the intermediate files, and the outputs of
the workflow. In our experience, this is often the case when
scientists are trying to execute large workflows on local cam-
pus resources or shared computational grids such as OSG. One
strategy to address this is to remove all the data staged and the
outputs generated after the workflow finishes executing. How-
ever, cleaning up data after the workflow has completed may
not be effective for data-intensive workflows as the peak stor-
age used during the workflow may exceed the space available
to the user at the data staging site.

The other strategy that we developed and implemented in
Pegasus [71, 18] is to cleanup data from the data staging site
as the workflow executes and data are no longer required. To
achieve this the Mapper analyzes the underlying graph and file
dependencies and adds data cleanup nodes to the workflow to
”cleanup” data that is no needed downstream. For example,
the input data that is initially staged in for the workflow can be
safely deleted once the jobs that require this data have success-
fully completed. Similarly, we can delete the output data once
the output has been successfully staged back to the user spec-
ified location. When we initially implemented the algorithm,
it was aggressive and tried to cleanup data as soon as possible,
i.e. in the worst case each compute job can have a cleanup job
associated with it. However, this had the unintended side ef-
fect of increasing the workflow runtime, as the number of jobs
that needed to be executed doubled. In order to address this, we
implemented clustering of the cleanup jobs using level-based
clustering. This allows us to control the number of cleanup
jobs generated per level of the workflow. By default, the Map-
per adds 2 cleanup jobs per level of the workflow. The cleanup
capabilities of Pegasus as the workflow executes has greatly
helped a genomics researcher at UCLA execute large scale and
data intensive genome sequencing workflows [72] on the lo-
cal campus resource, where the per-user scratch space available
on the cluster was 15 TB. The peak storage requirement for a
single hierarchical workflow in this domain was around 50 TB
and the final outputs of the workflow were about 5-10 TB. As
with other Pegasus components, the user can provide their own
cleanup algorithm.

4.6. Remote Workflow Execution Engine Selection
At this stage, the Mapper has already identified the requisite

data management jobs (stage-in, stage-out and cleanup) for the
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workflow. The Mapper now selects a remote workflow engine
to associate with the jobs. For tasks clustered into a single job, it
associates a remote workflow engine capable of executing a col-
lection of tasks on the remote node. For example, it may select
Pegasus MPI Cluster or Pegasus Cluster to manage these tasks.
Additionally, jobs mapped to a site without a shared filesystem
get associated with the PegasusLite execution engine. It is im-
portant to note that the Mapper can associate multiple remote
workflows engines with a single job. PegasusLite can be used
to manage the data movement for the jobs to the worker node,
while the actual execution of the clustered tasks can be man-
aged by Pegasus Cluster or Pegasus MPI Cluster.

4.7. Code Generation

This is the last step of refinement process and at this point
the Mapper writes out the executable workflow in a form un-
derstandable by the local workflow execution engines. Pegasus
supports the following code generators:

HTCondor. This is the default code generator for Pegasus.
This generator writes the executable workflow as a HTCondor
DAG file and associated job submit files. The job submit files
will include code targetting the remote execution engines, sup-
porting workload delegation to the remote resources.

Shell. This code generator writes the executable workflow as a
shell script that can be executed on the submit host.

The Mapper can easily support other DAG based workflow
executors. For example, we have previously integrated Pegasus
with the GridLab Resource Management System (GRMS) [73].

5. Runtime Optimizations

The majority of the optimizations of Pegasus workflows
takes place in the mapping step, i.e. before the workflow has
been submitted to HTCondor and started to run. The advan-
tage of this is that the Mapper knows the full structure of the
workflow and can make well-informed decisions based on that
knowledge. On the other hand, there are times when knowl-
edge is acquired at runtime, and runtime decisions need to be
made. The general Pegasus solution for runtime optimizations
is to use hierarchical workflows.

5.1. Interleaving Mapping and Execution

Figure 11 shows how Pegasus mapping/planning can be in-
terleaved with the workflow execution. The top level workflow
is composed of four tasks, where task A3 is a sub-workflow,
which is in turn composed of two other sub-workflows B3 and
B4. Each sub-workflow has an explicit workflow planning
phase and a workflow execution phase. When the top level
workflow (DAX A) is mapped by the Mapper, the sub-workflow
jobs in the workflow are wrapped by Pegasus Mapper instances.
The Pegasus Mapper is invoked for sub workflows only when
the sub workflow nodes are executed by the DAGMan instance
managing the workflow containing these nodes. For example,
the mapping for the A3 sub workflow node (that refers to DAX
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Figure 11: Hierarchical Workflows. Expansion ends when a DAX with only
compute jobs is encountered.

B) only occurs when DAGMan is executing the workflow cor-
responding to DAX A and reaches the node A3. As evident in
the Figure, our implementation covers arbitrary levels of expan-
sion. The majority of workflows we see, use a single level of
expansion, where only the top level of the workflow has sub
workflow nodes (see the earthquake application workflow in
Figure 16).

5.2. Just In Time Planning

In distributed environments, resource and data availability
can change over time, resources can fail, data can be deleted,
the network can go down, or resource policy has been changed.
Even if a particular environment is changing slowly, the dura-
tion of the execution of the workflow components can be quite
large and by the time a component finishes execution, the data
locations may have changed as well as the availability of the re-
sources. Choices made ahead of time even if still feasible may
be poor.

When using hierarchical workflows, Pegasus only maps por-
tions of the workflow at a time. In our example, jobs A1, A2,

A4 will be mapped for execution, but the sub-workflow con-
tained in A3 will be mapped only when A1 finishes execution.
Thus, a new instance of Pegasus will make just-in-time deci-
sions for A3. This allows Pegasus to adapt the sub-workflows
to other execution environments, if during execution of a long
running workflow, additional resources come online, or previ-
ously available resources dissapear.

5.3. Dynamic Workflow Structures

In some cases, the workflow structure cannot be fully deter-
mined ahead of time, and hierarchical workflows can provide
a solution, where part of the workflow needs to generated dy-
namically. A common occurance of this is in workflows, which
contain a data discovery step, and what data is found will deter-
mine the structure of the reminding parts of the workflow. For
example, in order to construct the workflow description for the
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Galactic Plane astronomy mosaicking workflow [74], a super-
workflow of a set of 1,001 Montage [69] workflows is created.
The top-level workflow queries a datafind service to get a list
of input FITS images for the region of the sky the mosiaic is
requested for. Once the top-level workflow has the list of input
images, a Montage sub-workflow is created to process those
images. Figure 12 shows the structure of the workflow.

6. Reliability

Even with just-in-time planning, when running on distributed
infrastructures, failures are to be expected. In addition to infras-
tructure failures such as network or node failures, the applica-
tions themselves can be faulty. Pegasus dynamically handles
failures at multiple levels of the workflow management system
building upon reliability features of DAGMan and HTCondor.
The various failure handling strategies employed are described
below.

Job Retry. If a node in the workflow fails, then the corre-
sponding job is automatically retried/resubmitted by HTCondor
DAGMan. This is achieved by associating a job retry count with
each job in the DAGMan file for the workflow. This automatic
resubmit in case of failure allows us to automatically handle
transient errors such as a job being scheduled on a faulty node
in the remote cluster, or errors occurring because of job discon-
nects due to network errors.

Data Movement Reliability. As described earlier, low-level
transfers are handled by the pegasus-transfer subsys-
tem/command line tool. pegasus-transfer implements
file transfer retries and it can vary the grouping of the
given transfers, and the command line arguments given to
protocol-specific command line tools. For example, when
using globus-url-copy for a non-third party transfer (a trans-
fer from a GridFTP to a local file for example), in the ini-
tial attempt pegasus-transfer will pass -parallel 6 to
globus-url-copy to try to use parallel transfers for better per-
formance. The downside to parallel connections is that they can
easily fail if there are firewalls in the way. If the initial trans-
fer fails, pegasus-transfer will remove the -parallel 6

argument for subsequent transfers and try the safer, but slower
single connection transfer.

Failed Workflow Recovery/Rescue DAGs. If the number of
failures for a job exceeds the set number of retries, then the job
is marked as a fatal failure that leads the workflow to eventually
fail. When a DAG fails, DAGMan writes out a rescue DAG that
is similar to the original DAG but the nodes that succeeded are
marked done. This allows the user to resubmit the workflow
once the source of the original error has been resolved. The
workflow will restart from the point of failure. This helps han-
dle errors such as incorrectly compiled codes, faulty application
executables, remote clusters being inaccessible either because
of network links being down, or the compute cluster being un-
available because of maintenance or downtime.

Workflow Replanning. In case of workflow failures, users also
have an option to replan the workflow and move the remaining
computation to another resource. Workflow replanning lever-
ages the feature of data reuse explained earlier, where the out-
puts are registered back in the data catalog as they are gener-
ated. The data reuse algorithm prunes the workflow (similar
to what “make” does) based on existing output and intermedi-
ate files present in the data catalog. The intermediate files are
shipped to the new cluster/location by the data stage-in nodes
added by the planner during the replanning phase. Workflow re-
planning also helps in the case where a user made an error while
generating the input workflow description such as wrong argu-
ments for application codes, incorrect underlying DAG struc-
ture resulting in jobs being launched when not all its inputs are
present, etc., that led to the workflow failing.

In hierarchical workflows, when a sub-workflow fails and it
is automatically retried, the mapping step is automatically exe-
cuted and a new mapping is performed.

7. Usability

Over the years, as Pegasus has matured and increased its user
base, usability has become a priority for the project. Usability
touches on various aspects of the software. In our case we want
to be able to provide the user with an easy way of composing,
monitoring and debugging workflows. In this section we focus
on Pegasus’ capabilities in these areas and the software engi-
neering practises applied to reach our usability goals.
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7.1. Workflow Composition

We have chosen to rely on the expressiveness and power of
higher level programming languages to aid the user in describ-
ing their workflows. To achieve this, we have focused on pro-
viding simple, easy to use DAX APIs in major programming
languages used by scientists such as Java, Python and Perl. We
have taken great care to keep the format simple and resisted the
urge to introduce complicated constructs.

While it can be argued that providing a graphical workflow
composition interface would make it easier to create workflows
in Pegasus, we believe that a GUI would make complex work-
flows more difficult to compose and maintain. Graphical work-
flow tools provide constructs such as foreach loops, which can
be used to generate a large number of tasks, but if those con-
structs are not what the scientist needs, new constructs have to
be defined, which usually includes writing custom code. Be-
cause Pegasus is just an API on top of well-established pro-
gramming languages, the scientist can leverage the constructs
in those programming languages across the whole workflow
composition, not only in the complex areas as in the case of
the graphical workflow composition interface.

The level of difficulty of workflow composition depends on
how well the codes and executables of the tasks are defined.
Scientific users often develop code that is structured to run
in their local environments. They make assumptions about
their environment, such as hard-coded paths for input and out-
put datasets and where dependent executables are installed.
This results in their code failing when run remotely as part
of a scientific workflow. Based on our interactions with users
over the years, we developed a series of guidelines for writing
portable scientific code [29] that can be easily deployed and
used with Pegasus. Though most of the guidelines are simple
such as propagating exitcode from wrapper scripts, providing
arguments for input and output file locations, etc., making them
available to scientists allows them to write code that can be eas-
ily integrated into portable workflows.

7.2. Monitoring and Debugging

Pegasus provides users with the ability to track and moni-
tor their workflows, without logging on to remote nodes, where
the jobs ran or manually going through job and workflow logs.
It collects and automatically processes information from three
different distinct types of logs that provide the basis for the run-
time provenance of the workflow and the of jobs:

Pegasus Mapper log. Because of the workflow optimizations
the Mapper performs, there is often not a one to one mapping
between the tasks and the jobs [75]. Thus, there needs to be
information collected to help relate the executable workflow to
the original workflow submitted by the user. The Mapper cap-
tures the information about the input abstract workflow, the jobs
in the executable workflow and how the input tasks map to the
jobs in the executable workflow. This information allows us to
correlate user-provided tasks in the input workflow to the jobs
that are launched to execute them. The Mapper logs this infor-
mation to a local file in the workflow submit directory. With

the detailed logs, Pegasus can generate the provenance of the
results, referring to the original workflow. Pegasus can also
provide the provenance of the mapping process itself, in case
that needs to be inspected [8, 76].

Local Workflow Execution Engine Logs (DAGMan log). Dur-
ing the execution of a workflow, HTCondor DAGMan writes
its log file (dagman.out) in near real-time. This file contains
the status of each job within the workflow, as well as the pre-
execute and post-execute scripts associated with it.

Job Logs (Kickstart records). Regardless of the remote ex-
ecution engine, all the jobs that are executed through
Pegasus are launched by the lightweight C executable
pegasus-kickstart [57] that captures valuable runtime
provenance information about the job. This information is
logged by pegasus-kickstart as an XML record on its std-
out and is brought back to the workflow submit directory by
HTCondor as each job in the executable workflow completes.
These job log files accumulate in the submit directory on the
submit host and capture fine-grained execution statistics for
each task that was executed. Some of this information includes:

• the arguments a task was launched with and the exitcode
with which it exited;
• the start time and duration of the task;
• the hostname of the host on which the task ran and the

directory in which it executed;
• the stdout and stderr of the task;
• the environment that was set up for the job on the remote

node;
• the machine information about the node that the job ran on,

such as architecture, operating system, number of cores on
the node, available memory, etc.

Together, all this information contains the provenance for the
derived data products. The data from the DAGMan workflow
log and the raw kickstart logs from the running jobs are nor-
malized and populated to a relational database by a monitoring
daemon called pegasus-monitord [75]. It is launched automati-
cally whenever a workflow starts execution and by default pop-
ulates to SQLite database in the workflow submit directory. We
support other SQL backends, such as MySQL, but we chose
SQLite as our default as we did not want the setup of a fully
featured database such as MySQL to be a prerequisite for run-
ning workflows through Pegasus. In the future, we plan to pro-
vide support for exporting the runtime provenance stored in our
relational datastore, into a format conformant to the provenance
community standard [77], provenance data model.

Automatic population of system logs into a database has en-
abled us to build a debugging tool called pegasus-analyzer that
allows our users to diagnose failures. Its output contains a brief
summary section, showing how many jobs have succeeded and
how many have failed. For each failed job, it prints informa-
tion showing its last known state, information from the kickstart
record along with the location of its job description, output, and
error files. It also displays any application stdout and stderr

that was captured for the job.
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Pegasus also includes a lightweight web dashboard that en-
ables easy monitoring and online exploration of workflows
based on an embedded web server written in Python. The dash-
board can display all the workflows (running and completed)
for a particular user. It allows users to browse their work-
flows. For each workflow, users can see a summary of the
workflow run including runtime statistics (snapshot displayed
in Figure 13) such as the number of jobs completed, failed, and
workflow walltime, and can browse data collected for each job
by the system. The dashboard can also generate different types
of charts such as workflow gantt charts (snapshot displayed in
Figure 14) illustrating the the progress of the workflow through
time and pie charts depicting the distribution of jobs on the ba-
sis of count and runtime.

Figure 13: Workflow Statistics displayed in pegasus-dashboard.

Figure 14: Workflow Gantt Chart and Job Distribution Pie Charts displayed in
pegasus-dashboard.

7.3. Software Engineering Practices
Initially, Pegasus releases were built as binary distributions

for various platforms on the NMI [78] build and test infras-
tructure and were made available for download on our website.

While this worked for some of our users, we realized that even
installing a binary distribution was a barrier to adoption for a
lot of scientific communities. We needed to provide Pegasus re-
leases as native RPM and DEB packages that could be included
in various platform specific repositories to increase the adop-
tion rate. This allows system administrators to easily deploy
new versions of Pegasus on their systems. In order to make Pe-
gasus available as a native package we had to move the software
to the standard FHS layout. Pegasus releases are now available
in the Debian repository and are shipped with Debian Squeeze.

Pegasus has the ability to execute workflows on a variety of
infrastructures. We found that changes made for one particular
infrastructure often broke compatibility with others. At other
times newer versions of the underlying grid middleware, such
as HTCondor and Globus, broke compatability at the Pegasus
level. It is important for us to find such errors before our users
do. In the past few years, we have setup an automated testing
infrastructure based on Bamboo [79] that runs nightly unit tests,
and end-to-end workflow tests that allow us to regularly test the
whole system.

Another area that we have focussed on is improving the soft-
ware documentation. We have worked on a detailed Pegasus
user guide [29] that is regularly updated with each major and
minor release of the software. The user guide, also includes a
tutorial that helps get started with Pegasus. The tutorial is pack-
aged as a virtual machine image with Pegasus and the depen-
dent software pre-installed and configured. This enables new
users of Pegasus to explore the capabilities Pegasus provides
without worrying about the software setup.

7.4. Incorporation of User Feedback
User feedback has been the driving force for many usability

improvements. As a result, we have streamlined the configura-
tion process, we introduced a single pegasus-transfer client
that automatically sets up the correct transfer client to stage the
data at runtime. We have also focused on providing easier se-
tups of the various catalogs that Pegasus requries. We also pro-
vided support for directory-based replica catalogs, where users
can point to the input directory on the submit host containing
the input datasets, rather than configuring a replica catalog with
the input file mappings. The Pegasus 4.x series has improved
support for automatically deploying Pegasus auxillary executa-
bles as part of the executable workflows. This enables our users
to easily run workflows in non-shared filesystem deployments
such as Open Science Grid, without worrying about installing
Pegasus auxillary executables on the worker nodes.

8. Application Study: CyberShake

Much effort has been put into making workflows executed
through Pegasus scale well. Individual workflows can have
hundreds of thousands of individual tasks [19]. In this section
we describe one of the large-scale scientific applications that
uses Pegasus.

As part of its research program of earthquake system science,
the Southern California Earthquake Center (SCEC) has de-
veloped CyberShake, a high-performance computing software
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platform that uses 3D waveform modeling to calculate physics-
based probabilistic seismic hazard analysis (PSHA) estimates
for populated areas of California. PSHA provides a technique
for estimating the probability that the earthquake ground mo-
tions at a location of interest will exceed some intensity mea-
sure, such as peak ground velocity or spectral acceleration, over
a given time period. PSHA estimates are useful for civic plan-
ners, building engineers, and insurance agencies. The funda-
mental calculation that the CyberShake software platform can
perform is a PSHA hazard curve calculation. A CyberShake
calculation produces a PSHA hazard curve for a single location
of interest. CyberShake hazard curves from multiple locations
can be combined to produce a CyberShake hazard map (see
Figure 15), quantifying the seismic hazard over a geographic
region.

A CyberShake hazard curve computation can be divided into
two phases. In the first phase, a 3D mesh of approximately
1.2 billion elements is constructed and populated with seismic
velocity data. This mesh is then used in a pair of wave propa-
gation simulations that calculates and outputs strain Green ten-
sors (SGTs). The SGT simulations use parallel wave propaga-
tion codes and typically run on 4,000 processors. In the sec-
ond phase, individual contributions from over 400,000 different
earthquakes are calculated using the SGTs, then these hazard
contributions are aggregated to determine the overall seismic
hazard. These second phase calculations are loosely coupled,
short-running serial tasks. To produce a hazard map for South-
ern California, over 100 million of these tasks must be executed.
The extensive heterogeneous computational requirements and
large numbers of high-throughput tasks necessitate a high de-
gree of flexibility and automation; as a result, SCEC utilizes
Pegasus-WMS workflows for execution.

0.0 0.4 0.8 1.2

CyberShake Hazard Map, RWG CVM−S 3sec SA, 2% in 50 yrs
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Figure 15: A Cybershake Hazard Map for the Southern California region, rep-
resenting the ground motion in terms of g (acceleration due to gravity) which
is exceeded with 2% probability in 50 years.

CyberShake is represented in Pegasus as a set of hierarchi-
cal workflows (Figure 16). Initially, a job is run which invokes
RunManager, an executable that updates a database at SCEC
which keeps track of the status of hazard calculations for in-
dividual locations. The first phase calculations, consisting of
large, parallel tasks, are represented as a single workflow, and
the second-phase tasks are split up into multiple workflows,
to reduce the memory requirements of planning. Both Cyber-
Shake computational phases are typically executed on large, re-
mote, high-performance computing resources. Finally, Pega-
sus transfers the output data back to SCEC storage, where a
database is populated with intensity measure information. This
intensity measure database is used to construct the target seis-
mic hazard data products, such as hazard curves or a hazard
map. Lastly, RunManager is invoked again to record that the
calculation is complete.

Originally, the first and second phases were described as dis-
crete workflows for maximum flexibility, so the two phases
could be executed on different computational resources. With
the development of computational systems, which can support
both types of calculations—large parallel tasks as well as quick,
serial ones—CyberShake now includes all phases of the cal-
culation in an outer-level workflow, with the phase one, phase
two, and database workflows as sub-workflows. Therefore, all
the jobs and workflows required to compute PSHA results for a
single location are included in the top-level workflow.

Table 1 shows the comparison of CyberShake studies done
over the past six years. The table shows how many wall clock
hours of computing a particular set of workflows took, the num-
ber of geographic sites in the study, the computing systems
used, the number of core hours that computations took, the
maximum number of cores used at one time. The table also
indirectly shows the clustering used: the number of tasks in the
original workflow and the number of jobs generated by Pega-
sus. Finally, the table specifies the number of files and their
corresponding total size that was produced during the study. In
some cases, the data was not fully captured and is indicated at
N/A.

Since the CyberShake 2.2 study, the CyberShake software
platform uses PMC to manage the execution of high-throughput
tasks on petascale resources, and PMC’s I/O forwarding fea-
ture to reduce the number of output files by a factor of 60.
Using this approach, in Spring 2013 CyberShake Study 13.4
was performed. It calculated PSHA results for 1,144 loca-
tions in Southern California, corresponding to 1,144 top-level
workflows. Approximately 470 million tasks were executed on
TACC’s Stampede system over 739 hours, averaging a through-
put of 636,000 tasks per hour. PMC’s clustering resulted in
only about 22,000 jobs being submitted to the Stampede batch
scheduler. Pegasus managed 45 TB of data, with 12 TB being
staged back for archiving on SCEC’s servers. The last, Cyber-
Shake study (CySh#14.2) used both CPUs and GPUs for the
calculations.

CyberShake workflows are important science calculations
that must be re-run frequently with improved input parame-
ters and data. A CyberShake study encompasses hundreds or
thousands of independent workflows. Overall these workflows
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Figure 16: Cybershake Hierarchical Workflow.

Study
Name Year

Geo-
graphic

Sites

Tasks
(million) Machine

Make-
span

(hours)

Max
Cores

Core
Hours

(million)
Jobs

Files
Produced
(million)

Data

CySh #0.5 2008 9 7.5 NCSA Mercury 528 800 0.44 22 (glideins) 7.5 90GB

CySh #1.0 2009 223 192 TACC Ranger 1,314 14,544 6.9

3,952
(Ranger)

3.9 million
(Condor)

190 10.6TB

CySh #1.4
2011-
2012 90 112

USC HPCC
TACC Ranger 4,824 N/A N/A N/A 112 4TB

CySh #2.2
2012-
2013 217 N/A

USC HPCC
NICS Kraken 2,976 N/A N/A N/A N/A N/A

CySh #13.4 2013 1,132
470
N/A

TACC Stampede
NCSA Blue Waters 716

17,600
128,000

1.4
10.8

21,912
N/A

16
2,264

12.3TB
43TB

CySh #14.2 2014 1,144 99.9 NCSA Blue Waters 342 295,040 15.8

29,796
(Blue Waters)

100,707
(Condor)

16 57TB

Table 1: Comparison of CyberShake Studies
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could contain up to half a billion tasks, making it impractical to
consolidate the workload into a single workflow. Our workflow
experiences so far suggest that it would simplify the manage-
ment of CyberShake studies if workflow tools supported the
concept of an ensemble, or a group of workflows, which make
up an application. If workflows could be executed and mon-
itored as a group, the benefits of automated management of
workflows could be extended to the entire ensemble of work-
flows without requiring external tools (e.g. RunManager).

9. Related Work

Many different workflow systems have been developed
for executing scientific workflows on distributed infrastruc-
tures [60, 80]. [68, 80] provide an extensive overview of many
of the most influential workflow management systems and their
characteristics. Here, we mention some of them.

Taverna [81] is a suite of tools used to design and execute
scientific workflows. A Taverna workflow specification is com-
piled into a multi-threaded object model, where processors are
represented by objects, and data transfers from the output port
of one processor to the input port of a downstream processor
are realized using local method invocations between processor
objects. One or more activities are associated to each proces-
sor. These activities may consist of entire sub-workflows, in
addition to executable software components. Galaxy [82] is
an open, web-based platform for data-intensive bioinformat-
ics research. It provides a number of build-in tools, including
common visualization tools and supports access to a number of
bioinformatics data sets. The system automatically tracks and
manages data provenance and provides support for capturing
the context and intent of computational methods. Tavaxy [83]
is a pattern-based workflow system for the bioinformatics do-
main. The system integrates existing Taverna and Galaxy work-
flows in a single environment, and supports the use of cloud
computing capabilities. These systems target a specific user
community and do not focus on issues of portability, perfor-
mance, and scalability as Pegasus does.

DIET [84] is a workflow system that can manage workflow-
based DAGs in two modes: one in which it defines a complete
scheduling of the workflow (ordering and mapping), and one in
which it defines only an ordering for the workflow execution.
Mapping is then done in the next step by the client, using a mas-
ter agent to find the server where the workflow services should
be run. Askalon [85] provides a suite of middleware services
that support the execution of scientific workflows on distributed
infrastructures. Askalon workflows are written in an XML-
based workflow language that supports many different looping
and branching structures. These workflows are interpreted to
coordinate data flow and task execution on distributed infras-
tructures including grids, clusters and clouds. Moteur [86] is a
workflow engine that uses a built-in language to describe work-
flows that targets the coherent integration of: 1) a data-driven
approach to achieve transparent parallelism; 2) arrays manipu-
lation to enable data parallel application in an expressive and
compact framework; 3) conditional and loop control structures
to improve expressiveness; and 4) asynchronous execution to

optimize execution on a distributed infrastructure. These sys-
tems provide conditional and loop functionalities that are not
provided by Pegasus, however the complexity of their workflow
language can limit scalability and adoption.

Kepler [87] is a graphical system for designing, executing,
reusing, evolving, archiving, and sharing scientific workflows.
In Kepler, workflows are created by connecting a series of
workflow components called Actors, through which data are
processed. Each Actor has several Ports through which input
and output Tokens containing data and data references are sent
and received. Each workflow has a Director that determines
the model of computation used by the workflow, and Kepler
supports several Directors with different execution semantics,
including Synchronous Data Flow and Process Network direc-
tors. Triana [88] is a graphical problem solving environment
that enables users to develop and execute data flow workflows.
It interfaces with a variety of different middleware systems for
data transfer and job execution, including grids and web ser-
vices. Pegasus does not provide a graphical interface, instead it
provides flexible APIs that support complex workflow descrip-
tions. It also provides resource-independent workflow defini-
tion.

The Nimrod toolkit [89, 90] is a specialized parametric mod-
eling system that provides a declarative parametric modeling
language to express parametric experiments, and automates
the formulation, execution, monitoring, and verification of the
results from multiple individual experiments using many-task
computing (MTC). Nimrod/K [91] is a workflow engine for the
Nimrod toolkit built on the Kepler workflow engine. The en-
gine has special Kepler actors that enables enumeration, frac-
tional factorial design, and optimization methods through an
API. Although the toolkit is flexible and workflows can be de-
fined and controlled in a programmatic way, it does not provide
task clustering, nor all the sophisticated data layouts and the
portability that Pegasus supports.

Makeflow [92] represents workflows using a file format very
similar to the one used by the Make tool [58]. In Makeflow the
rules specify what output data is generated when a workflow
component is executed with a given set of input data and pa-
rameters. Like Make and Pegasus, Makeflow is able to reduce
the workflow if output data already exists. It also maintains
a transaction log to recover from failures. Makeflow supports
many different execution environments, including local execu-
tion, HTCondor, SGE, Hadoop and others. Makeflow, unlike
Pegasus, provides only simple shared file system data manage-
ment capabilities.

Wings [23] is a workflow system that uses semantic reason-
ing to generate Pegasus workflows based on ontologies that de-
scribe workflow templates, data types, and components.

Among these workflow systems, Pegasus distinguishes it-
self with combination of features such as portability across a
wide range of infrastructures, scalability (hundreds of millions
of tasks), sophisticated data management capabilities, compre-
hensive monitoring, complex workflow restructuring, etc.

In addition to workflow systems that target HPC and HTC
resources, some systems such as Tez [93] and Ozzie [94] are
designed for MapReduce types of models and environments.
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10. Conclusions and Future Directions

To-date Pegasus has been used in a number of scientific do-
mains. We enable SCEC to scale up to almost a million tasks
per workflow and provide the bridge to run those workflows on
national high-end computing resources. We provide LIGO with
technologies to analyze large amounts of gravitational wave
data. As a result LIGO passed a major scientific milestone, the
blind injection test [95, 96]. We supported astronomers in pro-
cessing Kepler mission data sets [97, 98]. And, we helped indi-
vidual researchers advance their science [99, 100, 101]. In the
coming years, we hope to help to automate more of the scien-
tific processes, potentially exploring the automation from data
collection to the final analysis and result sharing.

Pegasus is an ever evolving system. As scientists are de-
veloping new, more complex workflows, and as the computa-
tional infrastructure is changing, Pegasus is challenged to han-
dle larger workflows, manage data more efficiently, recover
from failures better, support more platforms, report more statis-
tics, and automate more work. We are currently working on
a service that will help users manage ensembles of workflows
more efficiently, and make it easier to integrate Pegasus into
other user-facing infrastructures, such as science gateways. We
are also investigating many new data management techniques,
including techniques to help Pegasus track and discover data at
runtime, support disk usage guarantees in storage-constrained
environments, and improve data locality on clusters. Finally,
we are improving support for new platforms such as clouds and
exascale machines by developing task resource estimation and
provisioning capabilities [63], and improving the efficiency and
scalability of remote workflow execution.
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E. Deelman, Wings: Intelligent workflow-based design of computational
experiments, IEEE Intelligent Systems 26 (1) (2011) 62–72.

[24] S. Marru, L. Gunathilake, C. Herath, P. Tangchaisin, M. Pierce,
C. Mattmann, R. Singh, T. Gunarathne, E. Chinthaka, R. Gardler,
A. Slominski, A. Douma, S. Perera, S. Weerawarana, Apache airavata:
A framework for distributed applications and computational workflows,
in: Workshop on Gateway Computing Environments, GCE ’11, 2011.
doi:10.1145/2110486.2110490.

[25] Steven Cox, GRAYSON Git/README, https://github.com/

stevencox/grayson.
[26] D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice:

The condor experience, Concurrency and Computation: Practice and
Experience 17 (2-4) (2005) 323–356. doi:10.1002/cpe.v17:2/4.

[27] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the grid: En-
abling scalable virtual organizations, International Journal of High Per-
formance Computing Applications 15 (3) (2001) 200–222. doi:10.

1177/109434200101500302.
[28] Amazon.com, Inc., Elastic Compute Cloud (EC2), http://aws.

amazon.com/ec2.
[29] Pegasus 4.3 user guide, http://pegasus.isi.edu/wms/docs/4.

3/.
[30] R. Graves, T. Jordan, S. Callaghan, E. Deelman, E. Field, G. Juve,

C. Kesselman, P. Maechling, G. Mehta, K. Milner, D. Okaya, P. Small,
K. Vahi, Cybershake: A physics-based seismic hazard model for south-
ern california, Pure and Applied Geophysics 168 (3-4) (2011) 367–381.
doi:10.1007/s00024-010-0161-6.

[31] Sax xerces java parser.
URL http://xerces.apache.org/xerces2-j/

[32] K. Czajkowski, I. T. Foster, N. T. Karonis, C. Kesselman, S. Martin,
W. Smith, S. Tuecke, A resource management architecture for meta-
computing systems, in: Proceedings of the Workshop on Job Scheduling
Strategies for Parallel Processing, 1998.

[33] P. Andreetto, S. A. Borgia, A. Dorigo, A. Gianelle, M. Marzolla,
M. Mordacchini, M. Sgaravatto, S. Andreozzi, M. Cecchi, V. Cias-
chini, T. Ferrari, F. Giacomini, R. Lops, E. Ronchieri, G. Fiorentino,
V. Martelli, M. Mezzadri, E. Molinari, F. Prelz, CREAM: A simple, grid-
accessible, job management system for local computational resources,
in: Conference on Computing in High Energy Physics (CHEP), 2006.

[34] Simple Linux Utility for Resource Management.
URL http://slurm.schedmd.com/

[35] A. Bayucan, R. L. Henderson, C. Lesiak, B. Mann, T. Proett, D. Tweten,
Portable batch system: External reference specification, in: Technical
report, MRJ Technology Solutions, Vol. 5, 1999.

[36] IBM Platform Computing Template: LSF.
URL http://www.platform.com/Products/platform-lsf

[37] Oracle Grid Engine.
URL http://www.oracle.com/us/products/tools/

oracle-grid-engine-075549.html

[38] D. Weitzel, I. Sfiligoi, B. Bockelman, F. Wuerthwein, D. Fraser,
D. Swanson, Accessing opportunistic resources with bosco, in: Com-
puting in High Energy and Nuclear Physics, 2013.

[39] Extreme science and engineering discovery environment (xsede).
URL http://www.xsede.org

[40] European grid infrastructure (egi).
URL http://www.egi.eu

[41] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy, P. Av-
ery, K. Blackburn, T. Wenaus, F. Würthwein, et al., The open sci-
ence grid, in: Journal of Physics: Conference Series, Vol. 78, 2007,
p. 012057.

[42] I. Sfiligoi, glideinwms—a generic pilot-based workload management
system, Journal of Physics: Conference Series 119 (6) (2008) 062044.
URL http://stacks.iop.org/1742-6596/119/i=6/a=062044

[43] Amazon.com, Inc., Amazon Web Services (AWS), http://aws.

amazon.com.
[44] Futuregrid.

URL https://www.futuregrid.org/

[45] Openstack.
URL https://www.openstack.org/

[46] K. Vahi, M. Rynge, G. Juve, R. Mayani, E. Deelman, Rethinking
data management for big data scientific workflows, in: IEEE Interna-
tional Conference on Big Data, 2013. doi:10.1109/BigData.2013.
6691724.

[47] M. Rynge, S. Callaghan, E. Deelman, G. Juve, G. Mehta, K. Vahi, P. J.
Maechling, Enabling large-scale scientific workflows on petascale re-
sources using mpi master/worker, in: 1st Conference of the Extreme
Science and Engineering Discovery Environment: Bridging from the
eXtreme to the Campus and Beyond, XSEDE ’12, 2012, pp. 49:1–49:8.
doi:10.1145/2335755.2335846.

[48] Kraken.
URL http://www.nics.tennessee.edu/

computing-resources/kraken

[49] Blue Waters: Sustained Petascale Computing.
URL https://bluewaters.ncsa.illinois.edu/

[50] M. Rynge, G. Juve, G. Mehta, E. Deelman, G. Berriman, K. Larson,
B. Holzman, S. Callaghan, I. Sfiligoi, F. Wurthwein, Experiences using
glideinwms and the corral frontend across cyberinfrastructures, in: E-
Science (e-Science), 2011 IEEE 7th International Conference on, 2011,
pp. 311–318. doi:10.1109/eScience.2011.50.

[51] A. Rajasekar, R. Moore, C.-Y. Hou, C. A. Lee, R. Marciano, A. de Torcy,
M. Wan, W. Schroeder, S.-Y. Chen, L. Gilbert, P. Tooby, B. Zhu, iRODS
primer: Integrated rule-oriented data system, Synthesis Lectures on
Information Concepts, Retrieval, and Services 2 (1) (2010) 1–143.
doi:10.2200/S00233ED1V01Y200912ICR012.
URL http://dblp.uni-trier.de/rec/bibtex/series/

synthesis/2010Rajasekar.xml

[52] Amazon simple storage service.
URL http://aws.amazon.com/s3/

[53] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
T. Berners-Lee, Hypertext transfer protocol – http/1.1 (1999).

[54] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu,
I. Raicu, I. Foster, The globus striped GridFTP framework and server,
SC ’05, IEEE Computer Society, Washington, DC, USA, 2005, p. 54–.
doi:10.1109/SC.2005.72.
URL http://dx.doi.org/10.1109/SC.2005.72

[55] A. Lana, B. Paolo, Storage resource manager version 2.2: design, imple-
mentation, and testing experience., Proceedings of International Confer-
ence on Computing in High Energy and Nuclear Physics (CHEP 07).

[56] T. Ylonen, C. Lonvick, Rfc 4254 - the secure shell (ssh) connection pro-
tocol (2006).
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