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Abstract—Since 2001 the Pegasus Workflow Management System has evolved into a robust and scalable system that automates the
execution of a number of complex applications running on a variety of heterogeneous, distributed high-throughput, and
high-performance computing environments. Pegasus was built on the principle of separation between the workflow description and
workflow execution, providing the ability to port and adapt the workflow based on the target execution environment. Through its
user-driven research and development it has adapted to the needs of a number of scientific communities, utilizing and developing novel
algorithms and software engineering solutions. This paper describes the evolution of Pegasus over time and provides motivations
behind the design decisions. The paper concludes with selected lessons learned.
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1 INTRODUCTION

TODAY’S computational and data science applications
process vast amounts of data (from remote sensors,

instruments, etc.) and conduct large-scale simulations of
underlying science phenomena. These applications com-
prise thousands of computational tasks and process large
datasets, which are often distributed and stored on het-
erogeneous resources. Scientific workflows have emerged
as a flexible representation that declaratively express the
complexity of such applications with data and control de-
pendencies. They have become mainstream in domains such
as astronomy, physics, climate science, earthquake science,
biology, and others [1]–[4]. Workflows can be cyclic or
acyclic, hierarchical (a workflow within a workflow), and
form workflow ensembles (sets of interrelated workflows).
Different semantics can be associated with the workflow
graph, resulting in different types of execution [4]: in some
cases, the nodes of the graph are standalone executables
while in other cases, the nodes are long-lived services.

Workflows enable scientists to think about a sequence of
analysis that needs to be performed on the data they col-
lected. Workflows also enable scientists to analyze a series
of simulations that can model our physical world or predict
new systems behavior. There are a number of community
codes that have been developed within various science do-
mains, including but not limited to astronomy, bioinformat-
ics, ecology, and material science. Scientific workflows allow
scientists to chain these codes together to solve problems
of greater complexity and scale. Individual codes can be
developed by experts in a particular domain, resulting in
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workflows that can be used as a multi-disciplinary research
instruments. Workflows do not examine the internals of
these codes but rather treat them as black boxes with
specific inputs, parameters, and outputs. The challenge in
building workflows is to connect the right components
together based on their capabilities and the data they require
and produce. Sometimes, additional components (called
shims [5], [6]) need to be added to execute the workflows
correctly. Because of the high level of abstraction they
provide, workflows give access to sophisticated analysis
and simulations to non-developers. Since they explicitly
state the “recipe” for the computation, they can be used to
evaluate the quality of the scientific result and can foster
reproducibility.

In this paper, we describe the Pegasus workflow man-
agement system [7], [8], which is being used in a number
of scientific domains. Since 2001, Pegasus has been cre-
ated and enhanced in response to the needs of scientists
to conduct complex computations on heterogeneous and
distributed cyberinfrastructures. We describe how Pegasus
was conceptualized, how it benefited from advances in
Computer Science and how the professional software de-
velopment approach has contributed to the adoption and
sustainability of the software. Pegasus is grounded in the
challenging and ever-increasing needs of a multitude of
scientific applications and thus continuously innovates and
enhances its capabilities. Pegasus delivers robust automa-
tion capabilities to researchers studying seismic phenom-
ena [9], to astronomers seeking to understand the structure
of the universe [10], to material scientists developing new
drug delivery methods [11], and to students seeking to
understand human population migration [12]. This paper
describes the challenges of developing cyberinfrastructure
capabilities that have an impact on scientific discovery and
innovate in the changing cyberinfrastructure landscape.
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2 FROM THE VIRTUAL DATA CONCEPTS TO SCI-
ENTIFIC WORKFLOWS

In 2000, the National Science Foundation funded the Grids
Physics Network (GriPhyN) project [13], which was aimed
at developing solutions to support a number of physics
applications executing across a distributed platform, the
Grid [14]. Among the target physics were two high-energy
projects: CMS [15] and ATLAS [16] experiments at the Large
Hadron Collider, an astrophysics project called the Laser
Interferometer Gravitational-wave Observatory (LIGO) [17],
[18], and the astronomy effort, the Sloan Digital Sky Survey
(SDSS) [19] The main idea of the GriPhyN project was
to extend the database concept of view materialization to
distributed environments. GriPhyN aimed to develop a
“Virtual Data Grid,” which would deliver data products
in response to a user’s request. The requested data could
already exist somewhere in the distributed environment, or
it would have to be derived.

Science, as exemplified by the above applications, is
often distributed in nature. Collaborators work at different
institutions and have access to a variety of heterogeneous
resources on campus and to resources that are part of
Department of Energy (DOE) laboratories. Scientists also
utilize resources from national cyberinfrastructures such as
the Open Science Grid (OSG) [20], XSEDE [21], and commer-
cial and academic clouds [22]–[25]. Workflows, as designed
by scientists, can also be very heterogeneous and require
a varied set of computational resources to execute (e.g.,
simple clusters, high-performance computing resources, vi-
sualization clusters). Datasets are also distributed in the
environment among different community archives, project
storage systems, and local disks. Scientific workflows need
to operate across all these resources to access data and lever-
age the available resources . The Grid aimed at bridging
the heterogeneous and distributed resources by providing
standardized authentication, job scheduling, data transfer,
and information services [26], [27]. However, the workflow
management system needed to build on these capabilities to
coordinate job submission, data transfers, and the like.

Initially, we pursued the use of artificial intelligence (AI)
planning technologies to create a plan based on the user’s
request (goal). Using such technologies, we assisted LIGO
by developing planner rules for the LIGO pulsar search [28].
We designed a web-based interface to help the user specify
the request in terms of application-specific parameters, such
as the time frame in which the search should be conducted.
Based on the request, the system would determine whether
the data was already instantiated and if not, the system
would then determine how to compute the data. Next, the
system would plan the data movements and computations
required to obtain the results and would then execute that
plan. The plan was based on the workflow described by
the scientists, shown below in Fig. 1. The user would fill
out a web form with metadata characterizing the desired
result and the system would develop the plan and provide
the results on the fly. Unfortunately, the LIGO scientists did
not like our approach. The request representation (metadata
entered via a web interface) was too abstract and the users
preferred to manipulate the science workflows (like the one
in Fig. 1) directly. Additionally, we ran into scalability issues

with the underlying Prodigy AI planner [29]. The LIGO
workflows were expected to have at least tens of thousands
of tasks with hundreds of thousands of files. AI planning
techniques could not effectively reason about and arrive at
a viable plan at that scale. As a result, we focused on facil-
itating explicit workflow design and efficient and scalable
workflow management in distributed environments.

Working with the GriPhyN applications, we found that
they had common workflow challenges. These challenges
included the need to describe complex workflows in a
simple way, the ability to access distributed, heterogeneous
data, and the ability to compute resources that may change
over time (in terms of software and hardware). Conse-
quently, we identified the separation between workflow
description and workflow execution and the resulting map-
ping of the workflow description onto the available dis-
tributed resources as a key aspect of our work. In Pegasus,
the workflow description is abstract in that it uses logical
names for transformations (tasks) and for files (task input
and output data). The workflow management system then
maps the abstract workflow to the resources based on their
availability, performance, and the availability of input data
at the resource, among others. The abstract workflow de-
scription itself is described in a simple XML-based format
called the DAX (Directed Acyclic Graph in XML) [7]. To
construct and run DAXes, scientists interact with Pegasus
through the command line and API interfaces (in Java, Perl,
Python, and R), through Jupyter Notebook [30], through
portals and infrastructure hubs such as CyVerse [31] and
HUBzero [32], through higher-level workflow composition
tools such as Wings [6], or through application-specific
composition tools (e.g., OpenSees [33]). Although creating a
Pegasus workflow is easy (can be done in less than one day),
the challenge of the workflow creation lies in the conceptual
workflow design. The workflow components also have to be
codes that are portable across different environments. For
example, the workflow components cannot contain hard-
coded paths. In cases where users want to submit the
workflows to remote resources, these resources need to be
able to accept incoming jobs, which may require interactions
with the resource providers.

By focusing on the separation of the abstract and exe-
cutable workflows, Pegasus can map and execute a work-
flow across heterogeneous platforms (such as campus and
high-performance clusters and clouds). The user’s workflow
can also be migrated between platforms as the platform
hardware and software change over time. This paradigm
is especially powerful as it has allowed users to migrate and
adapt to the changing computing landscape over the past 20
years without many changes to their workflow description.
Users have been able to take advantage of improvements
both in data management and computing infrastructure to
scale the performance and throughput of their workflows,
thus improving their scientific productivity.

3 BUILDING ON PROVEN ABSTRACTIONS AND
TECHNOLOGIES

From the beginning, Pegasus’ philosophy was to rely on
existing research in graph theory, databases (virtual data),
and compilers (data re-use) and to augment and adapt
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Fig. 1. A sequence of data processing steps and resulting products for the LIGO pulsar search. Raw instrumental data is stored in an archive. Short
duration frames are cleaned/calibrated, combined into longer duration frames, and transposed to the time-frequency spectrum. Gravitational-wave
templates are compared to the time frequency image and potential gravitational-wave events are stored in a database.

that research to the concept of workflows and the target
cyberinfrastructure. Pegasus builds on the foundation of
abstractions of directed acyclic graphs (DAGs), fundamen-
tal constructs (recursion), and scalable algorithms (graph
traversals, graph node clustering).

Recognizing the importance of the separation of con-
cerns and the benefits of re-use of robust software solutions,
Pegasus built on top of the HTCondor task management
system [34] and its DAGMan workflow engine, described
below. The collaboration with the HTCondor team has
lasted throughout the years, bringing mutual benefits to the
two projects by addressing common challenges from differ-
ent points of view (planning and scheduling) and delivering
solutions that work well together for the scientists.

Initially, Pegasus had 3 main components: the mapper,
the workflow engine, and the job scheduler. With time, other
capabilities have been added. Fig. 2 shows the develop-
ment of key Pegasus capabilities over time and indicates
the main applications that have driven the development
of these Pegasus capabilities (LIGO and SCEC—a major
earthquake science project described in Section 7. In 2005,
we started developing the first remote workflow execution
engine to support task clustering and in 2009, we started
developing web-based monitoring capabilities, augmenting
our command-line interfaces. This brought our main sys-
tem components to five. They are illustrated in Fig 3 and
described in greater detail in Section 4.

The main Pegasus components are:

1) Mapper: Generates an executable workflow based
on an abstract workflow. It finds the appropriate
software, data, and computational resources re-
quired for workflow execution. The Mapper may
restructure the workflow to improve performance
and adds data management and provenance cap-
ture jobs to the workflow. To support the mapping,
Pegasus uses two types of catalogs: a site catalog
to discover resources and their properties: and a

transformation catalog to discover the location and
resource needs of codes and a replica catalog to dis-
cover data location. These catalogs can be provided
by the user or the cyberinfrastructure.

2) Local Workflow Execution Engine (provided by DAG-
Man [35]): Submits and tracks the execution of the
jobs defined in the executable workflow according
to their dependencies and constraints on number of
queued jobs.

3) Job Scheduler (provided by HTCondor sched [36]):
Manages individual jobs, supervises their execution
on local and remote resources, and provides task-
level reliability.

4) Remote Workflow Execution Engine: Manages the ex-
ecution of tasks, which can be structured as a sub-
workflow, on remote resources. The Remote Work-
flow Execution Engine is scheduled with the sub-
workflow to the remote resource.

5) Monitoring Component: Monitors the progress of the
workflow, parses jobs and task logs, and populates
the jobs and task logs into a database. The database
stores both performance and provenance informa-
tion. It also sends notifications back to the user
about events such as failure, success, and comple-
tion of tasks, jobs, and workflows, as well as user-
defined events. The database provides information
to the dashboard, which displays real-time monitor-
ing information and helps with debugging.

3.1 Mapper and Data Reuse

To support the concept of virtual data, one of the earlier
capabilities that we developed was data reduction and reuse
that the Mapper applies when generating an executable
workflow from the abstract workflow. The information
about the input and output files used and generated by
tasks in the abstract workflow is coupled with the location
information of existing datasets discovered in data catalogs.
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Fig. 2. Pegasus development and releases over time. The bottom rows indicate the key developments driven by the LIGO and SCEC applications.
Selected capabilities that were released at particular times are highlighted and their importance and relevance to the two key applications are
described below.

Fig. 3. Pegasus with its components in context of user interfaces and cyberinfrastructure.

Based on the existence of the files named in the workflow,
the Mapper reuses the existing data and reduces (prunes)
the workflow to compute only the necessary results. The
underlying algorithm [8] is similar to “make” functional-
ity while building software. It works bottom up for each
task whose output locations exist in the data catalog. If
the outputs exist, the task is removed and the operation
gets applied to task’s immediate parents, marking them for
deletion (unless they are required to derive some other data
product in that workflow). In a degenerate case where the
final outputs of a workflow already exist, all the compute
jobs in the workflow will be deleted. In that case, the
Mapper will only add the data movement nodes that copy
the final outputs from their existing locations recorded in
the data catalog to the location the user requested.

This is a particularly powerful concept and has proved
useful for collaborating groups and for workflow-level
checkpointing. When intermediate results are saved and
a fatal failure occurs during execution, the user can re-
submit the abstract workflow and the system will reduce the
workflow to include only the remaining tasks and map only
those. In addition to abstract workflow-level checkpointing,

which provides fault tolerance at the mapper level, building
on top of HTCondor allowed us to leverage its resilience ca-
pabilities such as checkpointing at the level of the executable
workflow and job retries at the scheduler level.

4 PEGASUS THROUGH THE YEARS: USER-
DRIVEN DESIGN

Since its inception, Pegasus was designed based on the
user’s needs. We worked closely with our collaborators
to understand their workflow needs and tried to abstract
their needs to general concepts and challenges that could
be solved using new algorithms and software solutions.
Some of the main concepts implemented over the years are
described below.

Since many of our users have access to a variety of
heterogeneous and distributed environments, Pegasus al-
lows scientists to submit locally and run globally. Scientists
can deploy Pegasus in their local environment, requiring
no support from a site administrator and eliminating any
impact on the remote cyberinfrastructure. A collaboration
can deploy Pegasus on a shared submit host to send jobs
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Fig. 4. A typical environment available to today’s scientists. Local resources include a workflow description, a local compute resources, data storage,
and potentially a data collection capability. Pegasus resides on a “submit host” managed by a user or collaboration. The tasks and data movement
are managed from that host across the heterogeneous, distributed resources.

to the distributed resources (a local resource is shown in
Fig 4). Because of the various types of data and compute
resources available to scientists, we have developed special-
ized workflow execution engines and data transfer tools that
can operate seamlessly in varied infrastructures as described
below. Pegasus also capitalizes on remote job submission
interfaces that are available today, primarily provided by
HTCondor.

Over the years we have developed and refined a number
of capabilities to meet the needs of our users. In this section,
we describe the developments in a chronological order (see
Fig. 3) and explain the motivation behind them.

4.1 Support for Replica Catalog: Automated Data Se-
lection and Management
LIGO and other projects store and potentially replicate their
data across a number of storage systems and archives. As
a result, the workflow management system needs to locate
and select the data to be accessed. In some cases, the col-
laborations maintain their own catalogs and in other cases,
they rely on Pegasus’ built-in capabilities. Based on the
catalog information, Pegasus selects and stages the data to
the computations, moves the results to the user-specified lo-
cation, registers data into user-indicated repositories, cleans
up data from the execution sites when it is no longer needed
downstream, and provides performance and provenance
information for the results.

Because the data files flow through the workflow ex-
ecution, Pegasus needs to deliver these data files to the
workflow jobs. The workflow jobs can run on shared or non-
shared filesystem setups. When running on a shared filesys-
tem setup, Pegasus uses the file system for communication
between tasks running on that resource. When running on
non-shared filesystem setups, Pegasus needs to pull the
data to local storage and push the results back out to a
remote location. This is done using a specialized remote ex-
ecution engine called PegasusLite. In non-shared filesystem
deployments, Pegasus also enforces integrity checking for

datasets that are staged to a compute node before a user
task is launched by PegasusLite. For raw input data, users
can specify the sha256 checksums in the replica catalog,
or let Pegasus compute them as part of the data transfer
tasks that place data to the data staging server. When a
user task completes, sha256 checksums are automatically
computed for the output files created by the task, recorded
in the provenance record for task, and then populated in the
Pegasus monitoring database on the submit host.

4.2 Data Cleanup, Data Footprint Management
Around 2003, LIGO wanted to extend its workflow execu-
tion platform. Thus, LIGO targeted Grid2003, the precursor
to the Open Science Grid. The amount of shared space avail-
able to the user on the compute sites making up Grid2003
was on the order of 100’s of MB, whereas the size of the
data sets analyzed and generated by LIGO workflow was
on the order of a TB. This resulted in a mismatch between
the capacity of the execution system to store the needed data
and the workflow data sizes. To minimize the workflow data
footprint within an execution site, we developed algorithms
that schedule the workflow tasks based on the storage ca-
pacity of execution sites [37] and complimentary algorithms
that reduce the data footprint on an execution site based
on the usage patterns of data within a workflow. The latter
analyzed the entire workflow to determine when the data
was used for computations and was no longer needed by the
downstream tasks. When it was determined that it was safe
to delete the data from the execution site, “clean up” nodes
were automatically added to the workflow. As a result, some
applications were able to reduce their data footprint by as
much as 50

4.3 Task Clustering
In some cases, the workflows designed by scientists consist
of a large number of short running tasks [38]. These tasks
incur large scheduling overheads as compared to their run-
time as each task needs to wait in the execution queue at the
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remote site. When workflows have thousands of tasks, these
overheads can overwhelm the computations. Clustering
“small” tasks into “larger”, more compute-intensive jobs can
reduce the overhead incurred by the overall workflow. We
have explored various task clustering algorithms that can
take into account the availability of resources, the potential
parallelism in the workflow, and the overheads incurred
when scheduling tasks onto distributed resources. In the
case of an astronomy application, the performance of the
workflow was improved by over 90% compared to the
default configuration when appropriate task clustering was
used [38]. Failures in distributed environments are also a
common issue faced by applications. Thus, we developed
fault-tolerant task clustering algorithms that explored the
tradeoff between the size of the clusters and the need of
task cluster rescheduling in case of failures. As the size of
the task cluster grew, so did the cost of fault recovery. We
also developed algorithms that dynamically adjusted cluster
size based on the observed failures in the environment [39].

4.4 Workflow Partitioning, Just-in-time Planning

As the users started to push the scale of the workflows they
ran through Pegasus, we started exploring the benefits of
scheduling portions of a workflow at a time. Additionally,
resource availability in a distributed environment could
change while the workflow was executing. Task clustering
could help reduce the size of the workflow that was mapped
onto the resources. However, to address the dynamic nature
of the resources, it was best to do the mapping of the abstract
workflow to the resources “just-in-time”. In order to support
this model, we developed three different approaches: 1)
workflow partitioning, 2) hierarchical workflow description,
and 3) the specialized PegasusLite engine. Workflow parti-
tioning algorithms divide the workflow graph into smaller
portions so that Pegasus can operate on the workflow a
partition at a time [8], [40]. Dependencies between the
partitions reflect the dependencies in the original workflow.
This allows Pegasus to map and execute the partitions in
order of their dependencies. Hierarchical workflows allow
for a definition of a workflow within a workflow. As a result,
they can help with scalability and just-in-time planning by
having the workflow management system work on one
subworkflow at a time. However, hierarchical workflows
also support dynamic execution since they can be used to
represent loops and conditional execution. Because LIGO
was executing on HTCondor pools, the WMS did not know
exactly which resource the jobs would be scheduled to.
As a result, Pegasus could not stage data ahead of the
job execution. Thus, we developed the PegasusLite remote
workflow engine, which is staged with the job and has the
functionality to discover the appropriate directory to run
the job in, locate the input data, and to stage the input data
dynamically to the computing resource. Then, PegasusLite
remote workflow engine runs the job, stages the data out
to a repository, and cleans up the directory on the remote
node. This workflow engine also turned out to be useful
in 2008, when we started running on clouds, and more
recently to setup the application container if required for
a user’s task. Pegasus currently supports both Docker [41]
and Singularity [42].

4.5 Pegasus MPI Cluster: A Remote Workflow Execu-
tion Engine

In some cases, workflows, such as SCEC, have large num-
bers of data-intensive single core tasks that should be co-
located with large-scale parallel computations. As a result,
these workflows? need to be executed on HPC systems. It is
impossible to schedule hundreds of thousands of single core
tasks to an HPC scheduler. Thus, we developed the Pegasus
MPI Cluster (PMC) [43] workflow engine. The PMC uses
MPI [44], a high-performance communication messaging
library, and the master-worker paradigm to execute large,
fine-grained workflows. In case of failure, PMC generates a
rescue log which can be used to recover the state of a failed
workflow when it is resumed.

4.6 Online Monitoring

Our initial work with applications highlighted an impor-
tant but often overlooked aspect of workflow execution
and management: comprehensive monitoring. Because the
workflows can be large and contain millions of tasks, scala-
bility and reliability are critical, implying the need for multi-
level monitoring, fault detection, and debugging tools. With
this goal in mind, we developed and hardened our monitor-
ing infrastructure, which takes logs of a running workflow
and populates them into a relational datastore [45]. The
monitoring infrastructure then uses this information for
various visualizations. We also developed debugging and
performance statistics tools that pull information from this
datastore and allow users to debug their workflows and
gain insights into their performance in terms of resources
used [46].

5 SOFTWARE DEVELOPMENT PROCESSES

To sustain Pegasus software over time, make it reusable,
and sustain the scientific methods that depend on Pegasus,
it is necessary to make the software easy to compile, install,
configure, and modify. Over the years, we adopted specific
engineering processes to support the code development:

• Employment of professional developers to develop
code and support users; these developers have been
on the project since 2001. Students also participate in
the project by developing new algorithms and evalu-
ating the algorithms’ performance on real world ap-
plications. Promising algorithms are integrated into
Pegasus.

• Use of GitHub for code version control and as
an inviting entryway for user and collaborators
to contribute to the project: https://github.com/
pegasus-isi/pegasus.

• Use of Atlassian JIRA Bug Tracking system for Bug
Tracking.

• Use of the Atlassian Bamboo system for full code
and documentation built at each code check-in. We
also automatically exercise the code via Atlassian
Bamboo, which runs an extensive test suite nightly
and at developers’ requests. Our test suite consists of
both unit tests and end-to-end workflow integration
tests.

https://github.com/pegasus-isi/pegasus
https://github.com/pegasus-isi/pegasus
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• Providing access to online documentation, VMs that
include software, tutorials, and example workflows,
and documentation of APIs used for workflow con-
struction and pluggable components (job schedulers,
data source selectors, etc).

Updates to Pegasus software are released regularly. We
have a major release approximately every 9 months and
regular minor releases in the interim. An exhaustive list
of features and fixed bugs is maintained both in JIRA
and the release notes. We also release detailed documen-
tation, tutorials, and webinars on the project website: http:
//pegasus.isi.edu.

An important component of our software is the support
that we provide to our users. The code development is
performed by research software developers that are com-
mitted to the project and the users. We provide email and
mailing-list support, one-on-one assistance, conduct hands-
on tutorials, and hold online office hours. Over the years,
we have helped provide support to scientists executing
workflows in their own environments as well as in national
cyberinfrastructures such as NSF and commercial clouds,
Open Science Grid (and its previous embodiment iVDGL),
and XSEDE (and the initial TeraGrid) among others. As new
systems come online, we request access to them and test
workflow execution with a suite of realistic test workflows.

6 CROSS-DISCIPLINE POLLINATION

An important contribution of Pegasus research and software
is cross-pollination of workflow management ideas between
science fields. Grounding our work in challenges faced
by domain scientists make our algorithms and software
relevant.

A good illustration of such cross-pollination are the
developments conducted to address the needs of LIGO
and the Southern California Earthquake Center (SCEC) [47].
Traditionally, LIGO workflows were designed as single core
workloads that targeted high-throughput infrastructures,
such as the ones provided by HTCondor. On the other
hand, SCEC’s CyberShake workflows contained a mix of
highly parallel workflow tasks (simulations) that require
high-performance computing resources and MPI for com-
munications followed by a large number of single core
post-processing tasks. CyberShake workflows calculate the
possible future seismic shaking that can be expected at
different geographic locations. This information is needed,
for example, by civil engineers to develop earthquake safe
building codes. A run of Cybershake can be composed of
336 workflows that can run for 38 days and generate 0.5 PB
of data. Because the data that needs to flow between MPI
and single core tasks is large (on the order of hundreds of
TBs), it is often beneficial to co-locate the MPI and single
core computation within the HPC system. Both LIGO and
SCEC had needs in terms of scalability (large workflows),
reliability (the need to automatically recover from failures),
and detailed performance monitoring. Because of their dif-
ferent types of workflows and different types of target cy-
berinfrastructures (high-throughput vs high-performance),
however, the types of workflow capabilities they needed
were different. Fig. 3 (above) illustrates the Pegasus devel-
opments driven by LIGO and SCEC over time.

LIGO’s needs were focused particularly on data man-
agement: workflows accessing distributed data and large
amounts of input data that needed to be processed on
potentially storage-constrained systems that supported dif-
ferent data transfer protocols. As a result, we assumed a
single logical file name space for a set of related work-
flows (also an assumption needed for the Virtual Data
paradigm), included data file discovery through the use
of replica catalogs (which maps logical files to potentially
multiple physical file locations), developed algorithms for
efficient “data cleanup”, and developed a data transfer tool
(pegasus-transfer) that supports a variety of data protocols
(GridFTP [48], iRods [49], S3 [50], GS [23], SCP, and HTTP).

On the other hand, SCEC’s workflows focused on effi-
cient simulations, and a mix of parallel and single core codes
drove requirements of efficient task execution. As a result,
we developed algorithms for task clustering and work-
flow partitioning and designed a workflow engine (Pegasus
MPI-cluster) that could efficiently manage the execution of
single-core tasks on HPC platforms.

The power of this Pegasus-enabled capability to submit
locally and run globally combined with the user-driven
research and development process was on clear display in
2015 and 2016, when data streaming from the advanced
LIGO detectors indicated the possibility of a gravitational
wave detection. Time was of the essence, and the collab-
oration was looking to maximize their high-throughput
computing (HTC) capacity. In addition to the traditional re-
sources used by LIGO, the collaboration decided to use OSG
and XSEDE. Because Pegasus supported an abstract work-
flow description (devoid of resources information) and be-
cause we developed the specialized MPI-based engine (for
SCEC), LIGO scientists only needed to provide information
about the OSG and XSEDE resources. Pegasus then mapped
LIGO’s workflows onto these resources and managed the
flow of data and computations [51]. Additionally, Pegasus
automatically generated the job submit files for the given
infrastructures. It discovered the data locations, moved data
to the computational resources, and moved the results back
to LIGO archives, all without LIGO having to change its
workflows. For the gravitational wave detection, LIGO used
23,405 workflows. Each of these workflows contained 60,000
computational tasks accessing 5,000 files (10GB total) and
generating 60,000 output files (60GB total). Pegasus’ ability
to represent the workflow in an abstract way and its ability
to truthfully translate the abstract workflow to an executable
workflow were critical to scientific productivity and re-
producibility. Since workflows developed by scientists are
carefully validated, sometimes over a period of months (as
is the case in LIGO), scientists cannot afford to change
these workflows as the infrastructure and middleware are
changing. Modifications would result in the need to re-
validate the analysis.

Not all applications are as demanding as LIGO’s,
SCEC’s, or other large-scale computing projects. However,
all of these applications face at least some of the challenges
described above. Thus, they directly benefit from the algo-
rithms and software solutions we have designed for these
cutting-edge workflows.

http://pegasus.isi.edu
http://pegasus.isi.edu
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Fig. 5. Data Footprint of a single SoyKB workflow on Wrangler. Bot-
tom curve shows the data footprint when executing the workflow with
Cleanup. The top curve shows the data footprint when executing the
workflow with No Cleanup.

7 EXAMPLES OF PEGASUS APPLICATIONS

Since January 2013, when we first started optionally collect-
ing anonymous metrics of Pegasus usage, we have recorded
approximately 1.5 million workflows with 1.2 billion jobs.
This usage is primarily spread over 770 unique submit host
domains, where each host supports a collaboration. These
hosts are spread across 89 countries.

In addition to the LIGO and SCEC workflows described
earlier in the paper, Pegasus is extensively used in pro-
duction to achieve scientific results in a variety of domains
such as astronomy, bioinformatics, civil engineering, climate
modeling, earthquake science, and molecular dynamics. We
describe a few of the applications here. One of the earliest
adopters of Pegasus was the Montage project [52]. Montage
delivers science-grade mosaics of the sky on demand. Mon-
tage workflows greatly benefitted from our task clustering
algorithms and ability to run on a variety of infrastructures,
eventually supplanting the in-house MPI-based code [53].
Montage workflows served as a basis for a project to create
a 16-wavelength infrared Atlas of the Galactic Plane [10] at a
common spatial sampling of 1 arcsec, processed so that they
appear to have been measured with a single instrument. For
this effort, the astronomers used the concept of hierarchical
workflows to create 900 image tiles, with each tile being
a resultant output of the execution of a 5 degree Montage
workflow. Overall, 18 million input files were processed,
and all the execution was done on cloud resources provided
by Amazon.

The ability to effectively work and distribute large
datasets makes Pegasus an appealing workflow system
for bioinformatics applications. An example is the OSG-
GEM [54] workflow that processes DNA sequencing files to
produce a Gene Expression Matrix (GEM), which contains
quantified gene expression values across tens to thousands
of samples. Due to storage and memory constraints on
available compute nodes, the workflow splits raw input
files into small pieces to process in parallel and merges
intermediate output files. Demonstrating the portability of
Pegasus workflows, OSG-GEM is configured to run on both
the OSG and Jetstream [55], an academic cloud infrastruc-
ture. Other bioinformatics applications, such as those that

run a variety of plant sequencing workflows in Cyverse [31]
and SoyKB [56], use Pegasus for their work. The SoyKB
workflow, which sequences large sets of crop germplasm
and generates whole genome scale structural variations
and genotypic data, usually executes on WRANGLER, an
HPC cluster with Pegasus managing the data transfers
between Cyverse data stores and Wrangler’s flash based
scratch filesystem. This workflow benefits from Pegasus
data cleanup capabilities that minimize the workflow data
footprint on the scratch filesystems. For SoyKB pipelines,
this reduces the peak workflow footprint from 3TB to 1.8TB
as illustrated in Fig. 5.

Pegasus is also used in the field of human population
genomics. For example, Pegasus was used to infer the demo-
graphic history of Ashkenazi Jews [12]. This workflow was a
large set of independent simulations (100,000s to millions of
tasks), followed by a set of merge and data summarization
tasks. Overall, Pegasus managed approximately 3 million
tasks, using more than 7 million CPU hours on the OSG.
The PAGE project (Population Architecture using Genomics
and Epidemiology) [57] has used Pegasus for imputation
of 50,000 subjects genotyped in 20 different genome-wide
association studies. Modelling the imputation pipeline as a
Pegasus workflow enabled PAGE scientists to process data
coming from new studies with minimal user intervention.

Over the years, Pegasus has been incorporated in a
number of web portals targeting different scientific commu-
nities. One of the earliest uses of Pegasus in a portal was
in astronomy, where Pegasus was used to launch montage
workflows [58]. In recent years, Pegasus has been used
in the bioinformatics domain to power phenotypic data
curation systems for genomic consortiums [57] and for NIH
data repositories such the NIMH Repository and Genomics
Resource [59]. The repository plays a key role in facilitating
psychiatric genetic research by providing a collection of over
150,000 well characterized, high-quality patient and control
samples for a wide-range of mental disorders. These funded
studies are required to submit their phenotypic data to the
NIHM repository via a web-based quality control system
powered by Pegasus. Upon submission of new datasets,
automated quality control workflows are launched by Pega-
sus that ensure data submitted is in accordance with study-
specific requirements.

Pegasus is also used extensively in the modelling envi-
ronment ranging from ecological models to seismic ones.
As part of the MINT [60] project, Pegasus powers work-
flows that integrate heterogeneous models from separate
disciplines, including geosciences, agriculture, economics,
and social sciences. As part of the Simcenter CENTER
project [61], Pegasus is used to manage large scale pipelines
that execute on XSEDE and simulate the impact of natu-
ral hazards, such as earthquakes, on building structures.
Pegasus also powers the Titan2D Hazard Map Workflow
tool available on VHUB [62], which allows for simulation of
volcanic flows. Scientists at ORNL have developed a SNS
workflow [63] to characterize nanodiamonds that enhance
the dynamics of tRNA in the presence of water. The work-
flow, enacted by Pegasus, calculates the model parameters
that best match experimental data. These workflows use
almost 400,000 CPU hours of time on DOE leadership class
systems.
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8 CONCLUSIONS

In this paper, we described the origins of the Pegasus
workflow management system that is used in a number of
scientific domains. Since its inception, Pegasus was driven
by the needs of scientific applications executing in hetero-
geneous and often distributed computational environments.
However, the needs specific to a group of scientists had to be
balanced against the needs of other applications. Although
there is a tendency to sometimes add new software compo-
nents, providing more functionality can also lead to a more
complex system, so it is important to carefully consider de-
cisions about new features. Additionally, it is also important
to abstract users’ needs to general concepts applicable across
domains to maximize return on investment.

Developing production quality software that the scien-
tists can rely on takes time: not only to develop and harden
the software but also to build the users’ trust in the software
and in the technical support they rely on. Releasing software
open source with a permissive license also helps foster that
trust. Although students have greatly contributed to the
research agenda by developing new algorithms and testing
their effectiveness and performance, the core software has
been developed and supported by professional develop-
ers. Paying attention to good documentation, release notes,
and nightly testing with realistic workloads and providing
backward compatibility have also proven very useful for
working with existing and new users.

In our work, we collaborated with domain scientists
but also with computer scientists to look at the problems
from different perspectives and experiences. In particular,
we collaborated with experts in AI planning [28], semantic
technologies [64], compilers [65], machine learning [46],
cybersecurity, and networking [66] in addition to other dis-
tributed and high-performance computing researchers [39],
[67]. The broad collaborations also helped us sustain fund-
ing for workflow management related research and software
development (from NSF, DOE, NIH, and DARPA).

Looking into the future, we see a growing demand
for automation and a convergence between the comput-
ing cyberinfrastructure. The HPC systems are becoming
more complex, heterogeneous (CPUs, GPUs, FPGAs), and
faulty and include specialized, multi-level data storage.
Distributed systems have software defined capabilities (to
set up dedicated network paths, for example) and special-
ized data storage attached to high-performance networks.
Additionally, their performance is continuously increas-
ing. Finally, clouds, with their virtualization technologies,
provide a new platform for science. However, they can
be very heterogeneous, providing a multitude of various
virtual machine types. Not to mention, commercial clouds
can be costly. In order to perform cutting edge science,
researchers need to navigate this computing landscape with
more sophisticated workflow systems and other automation
technologies that allow one to provision and manage these
resources on behalf of the users.
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