
Fault Tolerant Clustering in Scientific Workflows

Weiwei Chen
Information Sciences Institute

University of Southern California
Marina del Rey, CA, USA

E-mail: wchen@isi.edu

Ewa Deelman
Information Sciences Institute

University of Southern California
Marina del Rey, CA, USA
E-mail: deelman@isi.edu

Abstract—Task clustering has been proven to be an effective
method to reduce execution overhead and increase the
computational granularity of workflow tasks executing on
distributed resources. However, a job composed of multiple
tasks may have a greater risk of suffering from failures than a
job composed of a single task. Our theoretic analysis and
simulation results demonstrate that failures can have a
significant impact on the runtime performance of workflows
that use existing clustering policies that ignore failures. We
therefore propose two general failure modeling frameworks
(task failure model and job failure model) to address these
performance issues. We show the necessity to consider the fault
tolerance in the task failure model. Based on the task failure
model, we propose three methods to improve the workflow
performance in dynamic environments. A simulation-based
evaluation is performed and it shows that our approach can
improve the workflow makespan significantly for two
important applications.

Keywords-workflow; clustering; fault tolerance; task failure;

I. INTRODUCTION
Scientific workflows can be composed of thousands of

fine computational granularity tasks and the runtime of these
tasks may be even shorter than the system overhead, which is
the period time during which miscellaneous work other than
the user’s computation is performed by the system. If the
overhead is large, the workflow execution inefficient. Task
clustering [2] is a technique that merges several short tasks
into a single job so that the job runtime is increased and the
total system overhead is decreased. However, existing
clustering strategies ignore or underestimate the impact of
the occurrence of failures on system behavior, despite the
current and increasing importance of failures in large-scale
distributed systems, such as Grids [3], Clouds [4] and
dedicated clusters. Many researchers [5][12][13][14][15]
have emphasized the importance of fault tolerance design
and indicated that the failure rates in modern distributed
systems are significant. Among all possible failures, in our
work we focus on transient failures because they are
expected to be more prevalent than permanent failures [5].
For example, denser integration of semiconductor circuits
and lower operating voltage levels may increase the
likelihood of bit-flips when circuits are bombarded by
cosmic rays and other particles [5]. Based on their
occurrence, we divide the transient failures into two
categories: task failure and job failure. In task clustering, a

clustered job consists of multiple tasks. If the transient
failure occurs to the computation of a task (task failure),
other tasks within the job do not necessarily fail. If the
transient failure occurs to the clustered job (job failure), all
of its tasks fail. Accordingly, we have two models. In the
task failure model (TFM), the failure of a task is a random
event that is independent of the workflow characteristics and
execution environment. The task failure rate is the average
occurrence rate of task failures. Similarly we can define the
job failure rate as the average occurrence rate of job failures
and a job failure model (JFM) in which job failure is a
random event.

In a faulty environment, there are several options for
managing workflow failures. First, one can simply retry the
entire job when its computation is not successful as in the
Pegasus framework [7]. However, some of the tasks within
the job may have completed successfully and it could be a
waste of time and resources to retry all of the tasks. Second,
the application process can be periodically checkpointed so
that when a failure occurs, the amount of work to be retried
is limited. However, the overheads of checkpointing can
limit its benefits [5]. Third, tasks can be replicated to
different nodes to avoid location-specific failures. However,
inappropriate clustering (and replication) parameters may
cause severe performance degradation if they create long-
running clustered jobs. As we will show, a long-running job
that consists of many tasks has a higher job failure rate even
when the overall task failure rate is low.

We propose three methods to improve the existing
clustering techniques (with job retry and task replication) in
a faulty environment if the transient failures satisfy the task
failure model. The first solution dynamically adjusts the
clustering factor according to the detected task failure rate.
The second technique retries the failed tasks within a job.
And the last solution is a combination of the first two
approaches. We further improve our methods to be able to
handle the situations where task failure rate is not fully
independent of workflow characteristics or execution
environment. Samak [18] et al. have analyzed 1,329 real
workflow executions across six distinct applications and
concluded that the type and the host id of a job are among
the most significant factors that impacted failures. Task
specific failure is a type of failure that only occurs to some
specific types of tasks. Location specific failure only occurs
to some specific execution nodes. What is more, we present

two refinements to handle the situation when there are fewer
jobs than available resources.

In this paper, we assume that failures can be observed
from the outputs or logs of a job. We only focus on transient
failures and we assume that after a finite number of retries
these jobs can be completed successfully.

Our contributions include two models to classify
transient failures. We present three methods that can improve
the runtime performance of workflows when transient
failures occur to the tasks in a workflow. We evaluate our
methods with two workflows in a simulation-based
approach.

II. FAILURE MODELS

A. Workflow Model
We model workflows as Directed Acyclic Graphs

(DAGs), where jobs represent users’ computation to be
executed and directed edges represent data or control flow
dependencies between the jobs. An unclustered job contains
only one task that has one process or computation. A
clustered job contains multiple tasks to be executed in a
sequence or in parallel. In our models and experiments, tasks
within a job are executed in a sequential order. However, the
conclusions that we draw also apply to the case of parallel
execution since parallelization only reduces the overall
runtime in a linear scale, while our results will show that the
influence of task failures are at an exponential scale.
Oftentimes, once a job fails, the job will be retried with the
same configurations.

Figure 1 Original Workflow (Left) and Workflow after horizontal

clustering (Right). The clustering factor is 3 in this example.

In task clustering, the clustering factor (k) is an important
parameter to influence the performance. We define it as the
number of tasks in a clustered job. The reason why task
clustering can help improve the performance is that it can
reduce the scheduling cycles that workflow tasks go through
since the number of jobs has decreased. The result is a
reduction in the scheduling overhead and possibly other
overheads as well [17]. Additionally, in the ideal case
without any failures, the clustering factor is usually equal to
the number of all the parallel tasks divided by the number of
available resources. Such a naïve setting assures that the
number of jobs is equal to the number of resources and the
workflow can utilize the resources as much as possible.

However, when transient failures exist, we claim that the
clustering factor should be set based on the failure rates
especially the task failure rate. Intuitively speaking, if the
failure rate is high, the clustered jobs may need to retry more
times compared to the case without clustering. Such
performance degradation will counteract the benefits of
reducing scheduling overheads.

In this paper we only discuss the horizontal clustering
[2], which clusters tasks on the same horizontal level in the
DAGs. Figure 1 shows a simplified Montage workflow,
which has 9 levels but we mainly focus on the major three
levels (mProjectPP, mDiffFit, and mBackground). There are
many other clustering methods such as vertical clustering,
label clustering, and so on. Our approach can be extended to
apply to them as well.

B. Task Failure Model and Job Failure Model
 The target is to reduce the estimated finish time (ttotal) of

n tasks in case the failure rate for a clustered job (denoted by
β) or for a task (denoted by α) is known. ttotal includes the
runtime of the clustered job and its subsequent retry jobs if
the first try fails. The time to run a single task once is t. k is
the clustering factor indicating the number of tasks in a
clustered job. For a clustered job, let the expectation of retry
times be N. The process to run (and retry) a job is a Bernoulli
trial with only two results: success or failure. Once a job
fails, it will be retried until it is eventually completed
successfully because we assume the failures are transient. By
definition we have, N=1/γ=1/(1-β), while γ is the success
rate of a job.

Below we show how to estimate ttotal. r is the number of
available resources. d is the time delay between jobs and it is
assumed to be the same for all jobs. It is a simplification of
workflow overheads. We assume that n >> r, but n/k is not
necessarily much larger than r. Normally at the beginning of
workflow execution, n/k > r, which means there are more
clustered jobs than available resources. To try all n tasks
once, irrespective of whether they succeed or fail, one needs
approximately n/(rk) execution cycle(s) since at each
execution cycle we can execute at most r jobs. Therefore, the
time to execute all n tasks once is n(kt+d)/(rk). And the time
to complete them successfully in a faulty environment is
Nn(kt+d)/(rk)=n(kt+d)/(rkγ) since each job requires N retries
on average.

On the other side, at the end of the workflow execution,
since n is decreasing with the process of workflow, it is
possible that n/k < r, which means there are fewer jobs than
the available resources. One needs just one execution cycle
to execute these tasks once. The time to complete all n tasks
successfully is N(kt+d)=(kt+d)/γ.

Below we discuss how we estimate γ in TFM and JFM.
In JFM, we have assumed that job failure is an independent
event and thereby we only need to collect the failure records
of jobs. γ=(1-β). In sum, in JFM,

!

ttotal =

Nn(kt + d)
rk

=
n(kt + d)
rk"

, if
n
k
r

N(kt + d) =
(kt + d)
"

, if
n
k

< r

$

%
&

'
&

 (1)

In TFM, a clustered job succeeds only if all of its tasks
succeed. Therefore the success rate of a clustered job is γ =
(1 - α)k, and β = (1 - γ). The task failure is independent and
the job failure rate β is dependent on α. In sum, in TFM,

!

ttotal =

Nn(kt + d)
rk

=
n(kt + d)
rk(1"#)k

, if
n
k
$ r

N(kt + d) =
(kt + d)
(1"#)k

, if
n
k

< r

%

&
'

(
'

 (2)

To find the minimal value of ttotal
* in Eq. (1), we have

!

k* =
n
r

 ,

!

ttotal
* =

(kt + d)
"

 (3)

k* is the optimal clustering factor and ttotal
* is the minimal

runtime of these n tasks. Eq. (3) shows that in JFM, the job
failure rate has no influence on the choice of clustering
factor. In another word, in JFM we just need to set the k to be
k*, which is a fixed value irrespective of the job failure rate.

To find the minimal value of ttotal
* in Eq. (2), let

!

dttotal
dk

= 0

We get

!

k* =
"d + d2 "

4d
ln(1"#)

2t
, if n >> r

ttotal
* =

n(k*t + d)
rk(1"#)k

*

 (4)

C. Discussion
To discuss the relationship between the variables

mentioned before, we show an example workflow with
n=1000, t=5 sec, d=5 sec, and r=20. These parameters are
close to the level of mProjectPP in the Montage workflow
that we simulate in Section IV.

Figure 2 Job Failure Model

Figure 2 shows the relationship between the expected
runtime ttotal

* and the clustering factor k in Eq. (1). We can
see that the optimal clustering factor (in this example it is 50)
does not change with different job failure rates. In
comparison with TFM in Figure 3, the optimal clustering
factor (in this example it is 5) is not equal to n/r. This
conclusion is consistent with our previous claim since a
clustered job has a higher chance to fail when the task failure
rate is higher.

Figure 3 Task Failure Model

Figure 4 Task failure rate and optimal clustering factor.

Figure 4 shows the relationship between the task failure
rate and the optimal clustering factor as indicated in Eq. (4).
We can see that when the task failure rate is high (α>0.03), it
is better to use no clustering at all (k<2). We can also see
that the optimal clustering factor k* decreases with the
increase in the task failure rate.

Below we discuss to determine which model a faulty
environment follows if there is no knowledge about the
cause of failures (transient or permanent, task or job). By
analyzing the relationship between expected runtime and
clustering factor we can tell whether it tends to be TFM or
JFM. There are two criteria: 1) whether the execution
runtime has an exponential increase (TFM) or linear increase
(JFM) when k is large enough; 2) whether the optimal
clustering factor is influenced by the failure rates (If yes,
TFM; otherwise JFM).

Also, we assume that the jobs in this workflow and the
resources are homogeneous. In section IV.E and section
IV.F, we extend this model to consider task specific failures
and location specific failures. The job-scheduling algorithm

is First-Come-First-Serve, while one may use more complex
algorithms such as HEFT [9] or Min-Min [8]..

From this theoretic analysis, we conclude that 1) the
lower the task failure rate is, the better runtime performance
the task clustering has; 2) in TFM, adjusting the clustering
factor according to the detected task failure rate can improve
the runtime performance; 3) in JFM, we just need to set
k=n/r. For the rest of our paper, we will only focus on the
TFM.

III. FAULT TOLERANT CLUSTERING
As indicated in Section II, inappropriate clustering may

increase the makespan of a workflow. To improve the fault
tolerance from the point of view of clustering, we propose
three methods: Dynamic Clustering (DC), Selective
Reclustering (SR) and Dynamic Reclustering (DR).

A. Dynamic Clustering (DC)
Dynamic Clustering adjusts the clustering factor

according to the task failure rates measured from jobs that
have already been completed, either successfully or failed.
Currently we use the average value of task failure records.

Figure 5 Dynamic Clustering

Failure records contain the information about the number
of failed tasks, the type of tasks, the resource id, and a
timestamp. The type of tasks is used to detect the task
specific failures and the resource id is used to detect location
specific failures. Then we calculate the average task failure
rate and the average job failure rate. Figure 5 shows an
example where the initial clustering factor is 4 and thereby
there are four tasks in a clustered job at the beginning.
During execution, three out of these tasks fail. TFM suggests
an optimal clustering factor to be 2, then this job will be split
into two clustered jobs while each has two tasks and the two
clustered jobs are then submitted for retry. DC is not aware
that there are only three failed tasks.

According to Eq. (4), an estimation of the minimal
makespan in DC can be simplified as:

ttotal,DC
* =

n(k*t + d)
rk*(1!!)k

* (5)

B. Selective Reclustering (SR)
In DC, one knows the average task failure rate but the

information about which tasks have failed is not available. In
practice, it may be hard to identify the failed tasks, but if it is
supported, we can further improve the performance with

Selective Reclustering that selects the failed tasks in a
clustered job and clusters them into a new clustered job, or
treats them individually. SR is different to the naïve job retry
in that the latter method retries all tasks of a failed job even
though some of the tasks have succeeded. SR requires
collecting the task ids in failure records.

Figure 6 shows an example of SR. At the beginning,
there are four tasks and three of them have failed. One task
succeeds and exits. Only the three failed tasks are merged
again into a new clustered job and the job is retried. This
approach does not intend to adjust the clustering factor,
although the clustering factor will be smaller and smaller
naturally after each retry since there are less and less tasks in
a clustered job. In this case, the clustering factor has reduced
from 4 to 3.

Figure 6 Selective Reclustering.

C. Dynamic Reclustering (DR)
Selective Reclustering does not analyze the failure rate

rather, it uses a natural way to reduce the clustering factor if
the failure rate is too high. However, it requires a special
ability to select the failed tasks, while DC does not. We then
propose the third method, Dynamic Reclustering, which is a
combination of SR and DC to see whether using both
strategies can improve workflow performance. In DR, only
failed tasks are merged into new clustered jobs and the
clustering factor is also adjusted according to the detected
task failure rates.

Figure 7 Dynamic Reclustering

Figure 7 shows the steps of DR. At the last scheduling
cycle, three tasks within a clustered job have failed.
Therefore we have only three tasks to retry and further we
need to adjust the clustering factor (in this case it is 2)
according to the task failure rate.

IV. EXPERIMENTS AND DISCUSSSION
In this section, we evaluate our methods with two

workflows, whose runtime information is gathered from a
real execution traces. The simulation-based approach allows
us to control system parameters such as task failure rate in a
continuous way so as to clearly demonstrate the performance
of the algorithms. Our methods can also be applied to real
workflow management systems as long as they support
failure logging.

A. Experiments Setup and Workflows Used
We use a real trace of the Montage workflow [1] and the

Periodogram 1 application to evaluate our models and
optimization methods. The reason why we chose Montage
and Periodogram is that they represent two different types of
workflows. As shown in Figure 1, Montage has complex
data dependencies between tasks/jobs while Periodogram is
simply a bag-of-tasks. Montage is an astronomy application
used to construct large image mosaics of the sky. Runtime
data are collected from real runs under the Pegasus
Workflow Management System (WMS) [7]. We ran the
Montage workflow with a size of 8 degree squares of sky.
The workflow has 10,422 tasks and 57GB of overall data.
The workflow was run on a cluster with 20 nodes. The
Periodogram application is also developed by IPAC
(Caltech) to identify periodic signals from light curves that
arise from transiting planets and stellar variability. The
Periodogram workflow we ran has ~216,600 tasks and 19GB
input data. The Periodogram workflow has only one level of
tasks.

With these runtime information and file size, we use
CloudSim [6] to simulate the workflows in a controlled
environment. CloudSim is a framework for modeling and
simulation of cloud computing infrastructures and services.
Internally, workflow execution is divided into four steps:
first, the workflow engine releases tasks based on the
dependencies between tasks; second, the clustering engine
merges the released tasks into jobs; third, these jobs are
submitted to the job scheduler and are matched with
resources based on different criteria specified by users;
fourth, each job is executed by a worker node that has input
files and executable files available. Each workflow was
simulated at least 100 times to assure that standard deviation
in the workflow makespan is less than 10%.

To make the simulation consistent with the real results in
Pegasus WMS, we modified CloudSim to execute our
simulations. Figure 8 shows the system overview of our
simulation. The Workflow Engine manages tasks and jobs
based on their dependencies between jobs to assure that a job
may only be released when all of its parent jobs have
completed successfully. It also loads workflow logs that are
gathered and reconstructed from prior runs. The Clustering
Engine merges tasks on the same horizontal level into
clustered jobs according to the suggested clustering factor
(k*). The Job Scheduler is revised to match jobs to the most
reliable worker nodes and avoid or even skip a worker node

1 http://pegasus.isi.edu/workflow_gallery/gallery/periodogram/	

that has too many failures compared to others. The Failure
Generator is added to generate task failures according to the
specified average task failure rate. The Failure Monitor
serves as an agent that suggests clustering factor based on the
estimation of the task failure rate, the type of task, and the
node to be matched. Based on this information, the
Clustering Engine will adjust the clustering factor in DC or
DR approaches.

Figure 8 System Overview

B. Dynamic Performance
To evaluate the performance of TFM and DC, we first

simulated the Montage workflow with a fixed task failure
rate (α = 0.002).

Figure 9 Clustering Factor

Figure 9 shows the difference between the actual
clustering factor and the suggested clustering factor at each
scheduling interval. The scheduling cycle is a period when
the Workflow Engine releases tasks that are ready to run and
the Clustering Engine merges these tasks along with tasks
that have failed. Montage has three major horizontal levels of
tasks that require clustering, which are mProjectPP,
mDiffFit, and mBackground. At the beginning, the Failure
Monitor does not have enough failure records to identify the
task failure rate. We adopt a risky strategy in that the initial
clustering factor is set to be n/r so that all tasks will be tried
once at the beginning. That is why the actual clustering
factor at cycle 1 is approximately 25 and then it falls down
quickly. After passing 5, the actual k and the suggested k
overlap with each other since the Failure Monitor has
collected enough data to adapt to the faulty environment.
From the cycle 4 to 14, the workflow is mainly executing

mDiffFit, and during that time the suggested k and actual k
fall down to 6 eventually since our model requires some time
to run jobs first and then predict the task failure rate. The
suggested k and the actual k for mBackground fall to 3
quickly since at this step the prediction of task failure rate is
already stabilized. The reason that each type of task has
different clustering factors is that they have different runtime
on average.

 Figure 9 also reminds us that the actual k is sometimes
smaller than the suggested k, which has been explained in
cycle 1 to 3. At cycle 3, the actual k is smaller than the
suggested k because the Clustering Engine does not have
sufficient tasks to be clustered since most tasks are
completed. We will address this issue and improve the
performance in Section IV.D.

C. Performance of different Optimization Methods

TABLE I WORKFLOW MAKESPAN (MONTAGE, UNIT: SECOND)

α
Optimization Methods

NOOP DC SR DR

0.002 9827 9010 8168 8633

0.004 11390 9224 8174 8687

0.006 13625 9430 8181 8771

0.008 16989 9590 8191 8818

0.01 22026 9709 8202 8856

0.02 169075 10218 8242 8930

0.04 44099753 10853 8316 9153

0.06 N/A2 11488 8387 9344

0.08 N/A 11951 8461 9734

TABLE II WORKFLOW MAKESPAN (PERIODOGRAM, UNIT: SECOND)

α
Optimization Methods

NOOP DC SR DR

0.002 17180 15141 13824 15052

0.004 18197 15272 13853 15106

0.006 18930 15360 13883 15130

0.008 19344 15464 13911 15159

0.01 19668 15566 13941 15176

0.02 19889 16081 14086 15363

0.04 21407 17141 14376 15712

0.06 24147 18283 14681 16109

0.08 26597 19511 15010 16478

We compare the workflow makespan when running the
workflow with DC, SR, DR and No Optimization (NOOP)
with task failure rate in a range between 0.2% and 8%.
Researchers [14] show that a transient failure rate is not

2	 N/A means the workflow runs longer than the simulator can support	

usually more than 10%; otherwise such a system does not
have much practical usage. If the task failure rate is lower
than 0.1%, one doe not need to apply our methods.

Figure 10 Workflow Makespan (Periodogram)

We present the workflow makespan improvement of
Montage in TABLE I and the results of Periodogram in
TABLE II and Figure 10. Both improvements are significant
particularly with SR since it is able to identify the failed
tasks. Even though DC has optimized the clustering factor
according to a prediction of task failure rate, the jobs to be
retried still contain both failed tasks and successful tasks. DR
performs better than DC as we have expected. Both SR and
DR exclude the successful tasks and only retry the failed
tasks within a job. However, they require the ability to
identify tasks that have failed in a clustered job, which DC
does not. These tables also show that the improvement is
more significant when the task failure rate is higher, which is
consistent to our previous claim. Particularly for Montage,
we reduce the growth of makespan from a near-exponential
increase (in NOOP) to a near-linear increase, which is a giant
leap for task clustering. What is more, SR performs better
than DR in the two workflows, which shows that there is still
a gap between dynamically adjusting the clustering factor
based on task failure rate and naturally retrying failed tasks.
This might be caused by the simplification of our models and
it suggests us to investigate the performance issues further.

D. Refinements to Dynamic Clustering
As indicated in last section, the actual clustering factor is

not consistent with the suggested clustering factor in some
particular cases and n >> r may not hold. When the
workflow is almost done and there are not sufficient tasks
available, our simplification of model may no longer be
effective. To solve this problem, we propose three methods.

The Default method tries to follow the clustering factor
strictly.

!

kactual = k* . When there are insufficient tasks, they
are clustered into less number of jobs than the available

resources (

!

n jobs =
ntask
k

< r).

The Replicative method tries to follow the clustering
factor too (

!

kactual = k*) but it replicates the jobs so as to

utilize idle resources (

!

n jobs = r) by
r

ntask / k .

The Even method tries to adjust the clustering factor (

!

kactual =
ntask
r

) so as the number of jobs is equal to the

number of resources (

!

n jobs = r). The resource utilization is
improved too.

Figure 11 shows the performance of three refinements
with the Montage workflow. We can see that the Replicative
method can reduce the runtime by up to 19% compared to
the Default method while the Even method does not improve
the performance much. The reason is that adjusting the
clustering factor would cause performance degradation
although resource utilization is improved.

Figure 11 Performance of different refinements (Montage)

E. Task Specific Failures

TABLE III PERFORMANCE WITH TASK SPECIFIC FAILURE DETECTION
(MONTAGE, UNIT:SECOND).

α3
Optimization Methods

DR DR+TSFD DC DC+TSFD

0.2 10415 10412 13804 13820

0.4 11830 11839 22946 22923

0.6 14704 14688 60429 60414

0.8 23238 23229 436638 435297

In this section, we improve DR and DC with Task
Specific Failure Detection (TSFD). The Failure Monitor
module regularly collects failure records including the task id
of the failed task and then calculates the task failure rate per
task type. The Clustering Engine then adjusts the clustering
factors based on different task failure rates. In this
experiment, we set the task failure rate of mProjectPP and
mDiffFit to be 0.001 while the task failure rate of
mBackground ranges from 0.2 to 0.8. TABLE III shows the
performance of DC+TSFD and DR+TSFD. Neither of them
show significant improvement. The reason is that Montage
has almost the same number (~2,000) of mProjectPP,
mDiffFit and mBackground jobs. Therefore, the estimated

3 The task failure rate of mBackground only	

task failure rate of mBackground is one third of its real task
failure rate. Figure 3 tells that TFM is relatively robust to the
change of task failure rate when the clustering factor is
small. This conclusion also suggests that the estimation of
task failure rate does not have to be very precise.

F. Location Specific Failures
In this section, we improve DC, SR and DR with

Location Specific Failure Detection (LSFD). The Failure
Monitor remembers the resource id (worker node) where the
failure has occurred and calculates the task failure rates for
each worker node. The Job Scheduler then tries to avoid
unstable worker nodes or even skip them if the task failure
rates are higher than a threshold. Figure 12 shows an
example when two out of twenty nodes have a higher task
failure rates (from 0.2 to 0.8) while others still have a task
failure rate of 0.001. We can see that the DC+LSFD has
significant improvement of up to 62% while SR+LSFD and
DR+LSFD do not have much improvement. The reason of
the spike (DC without LSFD) is that it detects many failures
and then creates many small jobs, which increases the impact
of scheduling overhead and other possible overheads.

Figure 12 Performance with location specific failure detection (Montage).

V. RELATED WORK
Failure analysis and modeling [12] presents system

characteristics such as error and failure distribution and
hazard rates. Schroeder et al. [13] has studied the statistics of
the data, including the root cause of failures, the mean time
between failures, and the mean time to repair. Sahoo et al.
[14] analyzed the empirical and statistical properties of
system errors and failures from a network of heterogeneous
servers running a diverse workload. Oppenheimer et al. [15]
analyzed the causes of failures from three large-scale Internet
services and the effectiveness of various techniques for
preventing and mitigating service failure. McConnel [16]
analyzed the transient errors in computer systems and
showed that transient errors follow a Weibull distribution.
Benoit [19] et al. analyzed the impact of transient and fail-
stop failures on the complexity of task graph scheduling.
Based on these work, we measure the failure rates in a
workflow and then provide methods to improve task
clustering.

Task clustering [2] merges fined-grained tasks into
coarse-grained jobs. After task clustering the number of jobs
is reduced and the cumulative overhead is reduced too.

However, their clustering strategy is static and does not
consider the dynamic resource characteristics. In addition,
we discover that inappropriate clustering parameters would
damage the benefits of task clustering. Also, they did not
consider the middleware overhead that relates to the
overhead of grid middleware services, such as the time to
query resources, the time to match jobs with resources, etc.
These overheads are included in our model in the form of
constant delays and the values are set based on real traces.

Dynamic job grouping is a technique that dynamically
assembles the individual fined-grained tasks into a group of
jobs and send these coarse-grained jobs to the resources.
Muthuvelu [11] et al. has taken into account the
characteristics of jobs and the costs of resources. Liu [10] et
al. extended the work to consider the dynamic resource
characteristics and the processing capability and bandwidth
to constrain the sizes of coarse-grained jobs. Compared to
their work, our work focuses on the failure occurrence and
aims to improve the makespan of a workflow in a faulty
environment.

VI. FUTURE WORK
In the future, we plan to apply our work to a real world

framework---the Pegasus Workflow Management System
and to evaluate the performance with more applications. We
will also examine failures with different distribution, such as
for example Weibull. We will further evaluate the
robustness of our methods to the variance of failure patterns,
runtime, and overhead. The gap between DC and SR
indicates that there is still space for further improvement in
the approach of dynamically adjusting the workflow task
clustering factor.

ACKNOWLEDGMENT
This work is supported by NFS under grant number IIS-

0905032. We thank the Pegasus Team for their help.

REFERENCES

[1] G. B. Berriman, etc., "Montage: A Grid Enabled Engine for
Delivering Custom Science-Grade Mosaics On Demand," presented
at SPIE Conference 5487: Astronomical Telescopes, 2004.

[2] G. Singh, et al., Workflow Task Clustering for Best Effort Systems
with Pegasus, Mardi Gras Conference, Baton Rouge, LA, Jan 2008.

[3] C. Catlett, et al., The philosophy of TeraGrid: building an open,
extensible, distributed TeraScale facility, CCGRID2002, 2002.

[4] Amazon.com, “Elastic Compute Cloud (EC2)”;
http://aws.amazon.com/ec2.

[5] Y. Zhang, etc., Performance Implications of Failures in Large-Scale
Cluster Scheduling, In 10th Workshop on Job Scheduling Strategies
for Parallel Processing, June 2004.

[6] Rodrigo N. Calheiros, et al., CloudSim: A Toolkit for Modeling and
Simulation of Cloud Computing Environments and Evaluation of
Resource Provisioning Algorithms, Software: Practice and
Experience, Volume 41, Number 1, Pages: 23-50, ISSN: 0038-0644,
Wiley Press, New York, USA, January 2011.

[7] E. Deelman, et al., Pegasus: Mapping scientific workflows onto the
Grid. Lecture Notes in Computer Science: Grid Computing, pp. 11–
20, 2004

[8] J. Blythe,S. Jain,E. Deelman, et al. Task Scheduling Strategies for
Workflow-Based Applications in Grids. CCGrid, 2005.

[9] G.C. Sih and E.A. Lee. A Compile-Time Scheduling Heuristic for
Interconnection Constrained Heterogeneous Processor Architecture.
IEEE Transactions on Parallel and Distributed Systems, 4(2), pp. 175-
187, 1993.

[10] Quan Liu, Yeqing Liao, Grouping-based Fine-grained Job
Scheduling in Grid Computing, First International Workshop on
Education Technology and Computer Science, 2009.

[11] Nithiapidary Muthuvelu, et. al., A Dynamic Job Grouping-Based
Scheduling for Deploying Applications with Fine-Grained Tasks on
Global Grids, AusGrid 2005, newcastle, Australia.

[12] Dong Tang, et al., Failure Analysis and Modeling of a VAXcluster
System, FTCS-20, 1990.

[13] B. Schroeder, et al., A large-scale study of failures in high-
performance computing systems, DSN 2006, Philadelphia, PA, USA,
Jun 2006.

[14] R. K. Sahoo, et al., Failure Data Analysis of a Large-Scale
Heterogeneous Server Environment, DSN 2004, Florence, Italy, Jul
2004.

[15] David Oppenheimer, et al., Why do Internet services fail, and what
can be done about it?, USITS’03, Seattle, USA, Mar 2003.

[16] S.R. McConnel, D.P. Siewiorek, and M.M. Tsao, "The Measurement
and Analysis of Transient Errors in Digital Compute Systems,'' Proc.
9th Int. Symp. Fault-Tolerant Computing, pp. 67-70, 1979.

[17] Weiwei Chen, Ewa Deelman, Workflow Overhead Analysis and
Optimizations, The 6th Workshop on Workflows in Support of Large-
Scale Science, Seattle, USA, Nov 2011.

[18] Taghrid Samak, et al., Failure Prediction and Localization in Large
Scientific Workflows, The 6th Workshop on Workflows in
Suppporting of Large-Scale Science, Seattle, USA, Nov 2011

[19] Anne Benoit, et al., On the complexity of task graph scheduling with
transient and fail-stop failures, Research report, LIP, Jan 2010

