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Abstract—Task clustering has been proven to be an effective 
method to reduce execution overhead and increase the 
computational granularity of workflow tasks executing on 
distributed resources. However, a job composed of multiple 
tasks may have a greater risk of suffering from failures than a 
job composed of a single task. Our theoretic analysis and 
simulation results demonstrate that failures can have a 
significant impact on the runtime performance of workflows 
that use existing clustering policies that ignore failures. We 
therefore propose two general failure modeling frameworks 
(task failure model and job failure model) to address these 
performance issues. We show the necessity to consider the fault 
tolerance in the task failure model. Based on the task failure 
model, we propose three methods to improve the workflow 
performance in dynamic environments. A simulation-based 
evaluation is performed and it shows that our approach can 
improve the workflow makespan significantly for two 
important applications.     
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I.  INTRODUCTION  
Scientific workflows can be composed of thousands of 

fine computational granularity tasks and the runtime of these 
tasks may be even shorter than the system overhead, which is 
the period time during which miscellaneous work other than 
the user’s computation is performed by the system. If the 
overhead is large, the workflow execution inefficient. Task 
clustering [2] is a technique that merges several short tasks 
into a single job so that the job runtime is increased and the 
total system overhead is decreased. However, existing 
clustering strategies ignore or underestimate the impact of 
the occurrence of failures on system behavior, despite the 
current and increasing importance of failures in large-scale 
distributed systems, such as Grids [3], Clouds [4] and 
dedicated clusters. Many researchers [5][12][13][14][15] 
have emphasized the importance of fault tolerance design 
and indicated that the failure rates in modern distributed 
systems are significant. Among all possible failures, in our 
work we focus on transient failures because they are 
expected to be more prevalent than permanent failures [5]. 
For example, denser integration of semiconductor circuits 
and lower operating voltage levels may increase the 
likelihood of bit-flips when circuits are bombarded by 
cosmic rays and other particles [5]. Based on their 
occurrence, we divide the transient failures into two 
categories: task failure and job failure. In task clustering, a 

clustered job consists of multiple tasks. If the transient 
failure occurs to the computation of a task (task failure), 
other tasks within the job do not necessarily fail. If the 
transient failure occurs to the clustered job (job failure), all 
of its tasks fail. Accordingly, we have two models. In the 
task failure model (TFM), the failure of a task is a random 
event that is independent of the workflow characteristics and 
execution environment. The task failure rate is the average 
occurrence rate of task failures. Similarly we can define the 
job failure rate as the average occurrence rate of job failures 
and a job failure model (JFM) in which job failure is a 
random event.  

In a faulty environment, there are several options for 
managing workflow failures. First, one can simply retry the 
entire job when its computation is not successful as in the 
Pegasus framework [7]. However, some of the tasks within 
the job may have completed successfully and it could be a 
waste of time and resources to retry all of the tasks. Second, 
the application process can be periodically checkpointed so 
that when a failure occurs, the amount of work to be retried 
is limited. However, the overheads of checkpointing can 
limit its benefits [5]. Third, tasks can be replicated to 
different nodes to avoid location-specific failures. However, 
inappropriate clustering (and replication) parameters may 
cause severe performance degradation if they create long-
running clustered jobs. As we will show, a long-running job 
that consists of many tasks has a higher job failure rate even 
when the overall task failure rate is low.    

We propose three methods to improve the existing 
clustering techniques (with job retry and task replication) in 
a faulty environment if the transient failures satisfy the task 
failure model. The first solution dynamically adjusts the 
clustering factor according to the detected task failure rate. 
The second technique retries the failed tasks within a job. 
And the last solution is a combination of the first two 
approaches. We further improve our methods to be able to 
handle the situations where task failure rate is not fully 
independent of workflow characteristics or execution 
environment. Samak [18] et al. have analyzed 1,329 real 
workflow executions across six distinct applications and 
concluded that the type and the host id of a job are among 
the most significant factors that impacted failures. Task 
specific failure is a type of failure that only occurs to some 
specific types of tasks. Location specific failure only occurs 
to some specific execution nodes. What is more, we present 



two refinements to handle the situation when there are fewer 
jobs than available resources.  

In this paper, we assume that failures can be observed 
from the outputs or logs of a job. We only focus on transient 
failures and we assume that after a finite number of retries 
these jobs can be completed successfully.  

Our contributions include two models to classify 
transient failures. We present three methods that can improve 
the runtime performance of workflows when transient 
failures occur to the tasks in a workflow. We evaluate our 
methods with two workflows in a simulation-based 
approach.  

II. FAILURE MODELS  

A. Workflow Model 
We model workflows as Directed Acyclic Graphs 

(DAGs), where jobs represent users’ computation to be 
executed and directed edges represent data or control flow 
dependencies between the jobs. An unclustered job contains 
only one task that has one process or computation. A 
clustered job contains multiple tasks to be executed in a 
sequence or in parallel. In our models and experiments, tasks 
within a job are executed in a sequential order. However, the 
conclusions that we draw also apply to the case of parallel 
execution since parallelization only reduces the overall 
runtime in a linear scale, while our results will show that the 
influence of task failures are at an exponential scale. 
Oftentimes, once a job fails, the job will be retried with the 
same configurations.  

 
Figure 1 Original Workflow (Left) and Workflow after horizontal 

clustering (Right). The clustering factor is 3 in this example.  

In task clustering, the clustering factor (k) is an important 
parameter to influence the performance. We define it as the 
number of tasks in a clustered job. The reason why task 
clustering can help improve the performance is that it can 
reduce the scheduling cycles that workflow tasks go through 
since the number of jobs has decreased. The result is a 
reduction in the scheduling overhead and possibly other 
overheads as well [17]. Additionally, in the ideal case 
without any failures, the clustering factor is usually equal to 
the number of all the parallel tasks divided by the number of 
available resources. Such a naïve setting assures that the 
number of jobs is equal to the number of resources and the 
workflow can utilize the resources as much as possible. 

However, when transient failures exist, we claim that the 
clustering factor should be set based on the failure rates 
especially the task failure rate. Intuitively speaking, if the 
failure rate is high, the clustered jobs may need to retry more 
times compared to the case without clustering. Such 
performance degradation will counteract the benefits of 
reducing scheduling overheads.  

In this paper we only discuss the horizontal clustering 
[2], which clusters tasks on the same horizontal level in the 
DAGs. Figure 1 shows a simplified Montage workflow, 
which has 9 levels but we mainly focus on the major three 
levels (mProjectPP, mDiffFit, and mBackground). There are 
many other clustering methods such as vertical clustering, 
label clustering, and so on. Our approach can be extended to 
apply to them as well.  

B. Task Failure Model and Job Failure Model 
 The target is to reduce the estimated finish time (ttotal) of 

n tasks in case the failure rate for a clustered job (denoted by 
β) or for a task (denoted by α) is known. ttotal includes the 
runtime of the clustered job and its subsequent retry jobs if 
the first try fails. The time to run a single task once is t. k is 
the clustering factor indicating the number of tasks in a 
clustered job. For a clustered job, let the expectation of retry 
times be N. The process to run (and retry) a job is a Bernoulli 
trial with only two results: success or failure. Once a job 
fails, it will be retried until it is eventually completed 
successfully because we assume the failures are transient. By 
definition we have, N=1/γ=1/(1-β), while γ is the success 
rate of a job. 

Below we show how to estimate ttotal. r is the number of 
available resources. d is the time delay between jobs and it is 
assumed to be the same for all jobs. It is a simplification of 
workflow overheads. We assume that n >> r, but n/k is not 
necessarily much larger than r. Normally at the beginning of 
workflow execution, n/k > r, which means there are more 
clustered jobs than available resources. To try all n tasks 
once, irrespective of whether they succeed or fail, one needs 
approximately n/(rk) execution cycle(s) since at each 
execution cycle we can execute at most r jobs. Therefore, the 
time to execute all n tasks once is n(kt+d)/(rk). And the time 
to complete them successfully in a faulty environment is 
Nn(kt+d)/(rk)=n(kt+d)/(rkγ) since each job requires N retries 
on average.   

On the other side, at the end of the workflow execution, 
since n is decreasing with the process of workflow, it is 
possible that n/k < r, which means there are fewer jobs than 
the available resources. One needs just one execution cycle 
to execute these tasks once. The time to complete all n tasks 
successfully is N(kt+d)=(kt+d)/γ.  

Below we discuss how we estimate γ in TFM and JFM. 
In JFM, we have assumed that job failure is an independent 
event and thereby we only need to collect the failure records 
of jobs. γ=(1-β). In sum, in JFM,  
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In TFM, a clustered job succeeds only if all of its tasks 
succeed. Therefore the success rate of a clustered job is γ = 
(1 - α)k, and β = (1 - γ). The task failure is independent and 
the job failure rate β is dependent on α. In sum, in TFM, 
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To find the minimal value of ttotal
* in Eq. (1), we have 

! 

k* =
n
r

  , 

! 

ttotal
* =

(kt + d)
"

                                        (3) 

k* is the optimal clustering factor and ttotal
* is the minimal 

runtime of these n tasks. Eq. (3) shows that in JFM, the job 
failure rate has no influence on the choice of clustering 
factor. In another word, in JFM we just need to set the k to be 
k*, which is a fixed value irrespective of the job failure rate. 

To find the minimal value of ttotal
* in Eq. (2), let  
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C. Discussion  
To discuss the relationship between the variables 

mentioned before, we show an example workflow with 
n=1000, t=5 sec, d=5 sec, and r=20. These parameters are 
close to the level of mProjectPP in the Montage workflow 
that we simulate in Section IV.  

 
Figure 2 Job Failure Model 

Figure 2 shows the relationship between the expected 
runtime ttotal

* and the clustering factor k in Eq. (1). We can 
see that the optimal clustering factor (in this example it is 50) 
does not change with different job failure rates. In 
comparison with TFM in Figure 3, the optimal clustering 
factor (in this example it is 5) is not equal to n/r. This 
conclusion is consistent with our previous claim since a 
clustered job has a higher chance to fail when the task failure 
rate is higher. 

 
Figure 3 Task Failure Model   

 
Figure 4 Task failure rate and optimal clustering factor.   

Figure 4 shows the relationship between the task failure 
rate and the optimal clustering factor as indicated in Eq. (4). 
We can see that when the task failure rate is high (α>0.03), it 
is better to use no clustering at all (k<2).  We can also see 
that the optimal clustering factor k* decreases with the 
increase in the task failure rate.  

Below we discuss to determine which model a faulty 
environment follows if there is no knowledge about the 
cause of failures (transient or permanent, task or job). By 
analyzing the relationship between expected runtime and 
clustering factor we can tell whether it tends to be TFM or 
JFM.  There are two criteria: 1) whether the execution 
runtime has an exponential increase (TFM) or linear increase 
(JFM) when k is large enough; 2) whether the optimal 
clustering factor is influenced by the failure rates (If yes, 
TFM; otherwise JFM). 

Also, we assume that the jobs in this workflow and the 
resources are homogeneous. In section IV.E and section 
IV.F, we extend this model to consider task specific failures 
and location specific failures. The job-scheduling algorithm 



is First-Come-First-Serve, while one may use more complex 
algorithms such as HEFT [9] or Min-Min [8]..  

From this theoretic analysis, we conclude that 1) the 
lower the task failure rate is, the better runtime performance 
the task clustering has; 2) in TFM, adjusting the clustering 
factor according to the detected task failure rate can improve 
the runtime performance; 3) in JFM, we just need to set 
k=n/r. For the rest of our paper, we will only focus on the 
TFM. 

III. FAULT TOLERANT CLUSTERING  
As indicated in Section II, inappropriate clustering may 

increase the makespan of a workflow. To improve the fault 
tolerance from the point of view of clustering, we propose 
three methods: Dynamic Clustering (DC), Selective 
Reclustering (SR) and Dynamic Reclustering (DR).  

A. Dynamic Clustering (DC) 
Dynamic Clustering adjusts the clustering factor 

according to the task failure rates measured from jobs that 
have already been completed, either successfully or failed. 
Currently we use the average value of task failure records.  

 
Figure 5 Dynamic Clustering 

Failure records contain the information about the number 
of failed tasks, the type of tasks, the resource id, and a 
timestamp. The type of tasks is used to detect the task 
specific failures and the resource id is used to detect location 
specific failures. Then we calculate the average task failure 
rate and the average job failure rate. Figure 5 shows an 
example where the initial clustering factor is 4 and thereby 
there are four tasks in a clustered job at the beginning. 
During execution, three out of these tasks fail. TFM suggests 
an optimal clustering factor to be 2, then this job will be split 
into two clustered jobs while each has two tasks and the two 
clustered jobs are then submitted for retry.  DC is not aware 
that there are only three failed tasks.  

According to Eq. (4), an estimation of the minimal 
makespan in DC can be simplified as: 

ttotal,DC
* =

n(k*t + d)
rk*(1!!)k

*                                             (5) 

B. Selective Reclustering (SR) 
In DC, one knows the average task failure rate but the 

information about which tasks have failed is not available. In 
practice, it may be hard to identify the failed tasks, but if it is 
supported, we can further improve the performance with 

Selective Reclustering that selects the failed tasks in a 
clustered job and clusters them into a new clustered job, or 
treats them individually. SR is different to the naïve job retry 
in that the latter method retries all tasks of a failed job even 
though some of the tasks have succeeded. SR requires 
collecting the task ids in failure records.  

Figure 6 shows an example of SR. At the beginning, 
there are four tasks and three of them have failed. One task 
succeeds and exits. Only the three failed tasks are merged 
again into a new clustered job and the job is retried. This 
approach does not intend to adjust the clustering factor, 
although the clustering factor will be smaller and smaller 
naturally after each retry since there are less and less tasks in 
a clustered job. In this case, the clustering factor has reduced 
from 4 to 3. 

 
Figure 6 Selective Reclustering. 

C. Dynamic Reclustering (DR) 
Selective Reclustering does not analyze the failure rate 

rather, it uses a natural way to reduce the clustering factor if 
the failure rate is too high. However, it requires a special 
ability to select the failed tasks, while DC does not. We then 
propose the third method, Dynamic Reclustering, which is a 
combination of SR and DC to see whether using both 
strategies can improve workflow performance. In DR, only 
failed tasks are merged into new clustered jobs and the 
clustering factor is also adjusted according to the detected 
task failure rates. 

 
Figure 7 Dynamic Reclustering 

Figure 7 shows the steps of DR. At the last scheduling 
cycle, three tasks within a clustered job have failed. 
Therefore we have only three tasks to retry and further we 
need to adjust the clustering factor (in this case it is 2) 
according to the task failure rate.  



IV. EXPERIMENTS AND DISCUSSSION 
In this section, we evaluate our methods with two 

workflows, whose runtime information is gathered from a 
real execution traces. The simulation-based approach allows 
us to control system parameters such as task failure rate in a 
continuous way so as to clearly demonstrate the performance 
of the algorithms. Our methods can also be applied to real 
workflow management systems as long as they support 
failure logging.  

A. Experiments Setup and Workflows Used 
We use a real trace of the Montage workflow [1] and the 

Periodogram 1 application to evaluate our models and 
optimization methods. The reason why we chose Montage 
and Periodogram is that they represent two different types of 
workflows. As shown in Figure 1, Montage has complex 
data dependencies between tasks/jobs while Periodogram is 
simply a bag-of-tasks. Montage is an astronomy application 
used to construct large image mosaics of the sky.  Runtime 
data are collected from real runs under the Pegasus 
Workflow Management System (WMS) [7]. We ran the 
Montage workflow with a size of 8 degree squares of sky. 
The workflow has 10,422 tasks and 57GB of overall data. 
The workflow was run on a cluster with 20 nodes. The 
Periodogram application is also developed by IPAC 
(Caltech) to identify periodic signals from light curves that 
arise from transiting planets and stellar variability. The 
Periodogram workflow we ran has ~216,600 tasks and 19GB 
input data. The Periodogram workflow has only one level of 
tasks.  

With these runtime information and file size, we use 
CloudSim [6] to simulate the workflows in a controlled 
environment.  CloudSim is a framework for modeling and 
simulation of cloud computing infrastructures and services. 
Internally, workflow execution is divided into four steps: 
first, the workflow engine releases tasks based on the 
dependencies between tasks; second, the clustering engine 
merges the released tasks into jobs; third, these jobs are 
submitted to the job scheduler and are matched with 
resources based on different criteria specified by users; 
fourth, each job is executed by a worker node that has input 
files and executable files available. Each workflow was 
simulated at least 100 times to assure that standard deviation 
in the workflow makespan is less than 10%.  

To make the simulation consistent with the real results in 
Pegasus WMS, we modified CloudSim to execute our 
simulations.  Figure 8 shows the system overview of our 
simulation. The Workflow Engine manages tasks and jobs 
based on their dependencies between jobs to assure that a job 
may only be released when all of its parent jobs have 
completed successfully. It also loads workflow logs that are 
gathered and reconstructed from prior runs. The Clustering 
Engine merges tasks on the same horizontal level into 
clustered jobs according to the suggested clustering factor 
(k*). The Job Scheduler is revised to match jobs to the most 
reliable worker nodes and avoid or even skip a worker node 

                                                
1 http://pegasus.isi.edu/workflow_gallery/gallery/periodogram/	  

that has too many failures compared to others. The Failure 
Generator is added to generate task failures according to the 
specified average task failure rate. The Failure Monitor 
serves as an agent that suggests clustering factor based on the 
estimation of the task failure rate, the type of task, and the 
node to be matched. Based on this information, the 
Clustering Engine will adjust the clustering factor in DC or 
DR approaches. 

 
Figure 8  System Overview 

B. Dynamic Performance 
To evaluate the performance of TFM and DC, we first 

simulated the Montage workflow with a fixed task failure 
rate (α = 0.002).   

 
Figure 9 Clustering Factor 

Figure 9 shows the difference between the actual 
clustering factor and the suggested clustering factor at each 
scheduling interval. The scheduling cycle is a period when 
the Workflow Engine releases tasks that are ready to run and 
the Clustering Engine merges these tasks along with tasks 
that have failed. Montage has three major horizontal levels of 
tasks that require clustering, which are mProjectPP, 
mDiffFit, and mBackground. At the beginning, the Failure 
Monitor does not have enough failure records to identify the 
task failure rate. We adopt a risky strategy in that the initial 
clustering factor is set to be n/r so that all tasks will be tried 
once at the beginning. That is why the actual clustering 
factor at cycle 1 is approximately 25 and then it falls down 
quickly. After passing 5, the actual k and the suggested k 
overlap with each other since the Failure Monitor has 
collected enough data to adapt to the faulty environment. 
From the cycle 4 to 14, the workflow is mainly executing 



mDiffFit, and during that time the suggested k and actual k 
fall down to 6 eventually since our model requires some time 
to run jobs first and then predict the task failure rate. The 
suggested k and the actual k for mBackground fall to 3 
quickly since at this step the prediction of task failure rate is 
already stabilized. The reason that each type of task has 
different clustering factors is that they have different runtime 
on average.  

  Figure 9 also reminds us that the actual k is sometimes 
smaller than the suggested k, which has been explained in 
cycle 1 to 3. At cycle 3, the actual k is smaller than the 
suggested k because the Clustering Engine does not have 
sufficient tasks to be clustered since most tasks are 
completed. We will address this issue and improve the 
performance in Section IV.D.  

C. Performance of different Optimization Methods 

TABLE I WORKFLOW MAKESPAN (MONTAGE, UNIT: SECOND)  

α 
Optimization Methods 

NOOP DC SR DR 

0.002 9827 9010 8168 8633 

0.004 11390 9224 8174 8687 

0.006 13625 9430 8181 8771 

0.008 16989 9590 8191 8818 

0.01 22026 9709 8202 8856 

0.02 169075 10218 8242 8930 

0.04 44099753 10853 8316 9153 

0.06 N/A2 11488 8387 9344 

0.08 N/A 11951 8461 9734 

TABLE II WORKFLOW MAKESPAN (PERIODOGRAM, UNIT: SECOND)  

α 
Optimization Methods 

NOOP DC SR DR 

0.002 17180 15141 13824 15052 

0.004 18197 15272 13853 15106 

0.006 18930 15360 13883 15130 

0.008 19344 15464 13911 15159 

0.01 19668 15566 13941 15176 

0.02 19889 16081 14086 15363 

0.04 21407 17141 14376 15712 

0.06 24147 18283 14681 16109 

0.08 26597 19511 15010 16478 

We compare the workflow makespan when running the 
workflow with DC, SR, DR and No Optimization (NOOP) 
with task failure rate in a range between 0.2% and 8%. 
Researchers [14] show that a transient failure rate is not 

                                                
2	  N/A means the workflow runs longer than the simulator can support	  

usually more than 10%; otherwise such a system does not 
have much practical usage. If the task failure rate is lower 
than 0.1%, one doe not need to apply our methods.  
 

 
Figure 10 Workflow Makespan (Periodogram) 

We present the workflow makespan improvement of 
Montage in TABLE I and the results of Periodogram in 
TABLE II and Figure 10. Both improvements are significant 
particularly with SR since it is able to identify the failed 
tasks. Even though DC has optimized the clustering factor 
according to a prediction of task failure rate, the jobs to be 
retried still contain both failed tasks and successful tasks. DR 
performs better than DC as we have expected. Both SR and 
DR exclude the successful tasks and only retry the failed 
tasks within a job. However, they require the ability to 
identify tasks that have failed in a clustered job, which DC 
does not. These tables also show that the improvement is 
more significant when the task failure rate is higher, which is 
consistent to our previous claim. Particularly for Montage, 
we reduce the growth of makespan from a near-exponential 
increase (in NOOP) to a near-linear increase, which is a giant 
leap for task clustering. What is more, SR performs better 
than DR in the two workflows, which shows that there is still 
a gap between dynamically adjusting the clustering factor 
based on task failure rate and naturally retrying failed tasks. 
This might be caused by the simplification of our models and 
it suggests us to investigate the performance issues further. 

D. Refinements to Dynamic Clustering 
As indicated in last section, the actual clustering factor is 

not consistent with the suggested clustering factor in some 
particular cases and n >> r may not hold. When the 
workflow is almost done and there are not sufficient tasks 
available, our simplification of model may no longer be 
effective. To solve this problem, we propose three methods.  

The Default method tries to follow the clustering factor 
strictly. 

! 

kactual = k* . When there are insufficient tasks, they 
are clustered into less number of jobs than the available 

resources (

! 

n jobs =
ntask
k

< r ).  



The Replicative method tries to follow the clustering 
factor too (

! 

kactual = k* ) but it replicates the jobs so as to 

utilize idle resources (

! 

n jobs = r ) by 
r

ntask / k .
 

The Even method tries to adjust the clustering factor (

! 

kactual =
ntask
r

) so as the number of jobs is equal to the 

number of resources (

! 

n jobs = r ).  The resource utilization is 
improved too.  

Figure 11 shows the performance of three refinements 
with the Montage workflow. We can see that the Replicative 
method can reduce the runtime by up to 19% compared to 
the Default method while the Even method does not improve 
the performance much. The reason is that adjusting the 
clustering factor would cause performance degradation 
although resource utilization is improved.  

 
Figure 11 Performance of different refinements (Montage) 

E. Task Specific Failures 

TABLE III PERFORMANCE WITH TASK SPECIFIC FAILURE DETECTION 
(MONTAGE, UNIT:SECOND).  

α3 
Optimization Methods 

DR DR+TSFD DC DC+TSFD 

0.2 10415 10412 13804 13820 

0.4 11830 11839 22946 22923 

0.6 14704 14688 60429 60414 

0.8 23238 23229 436638 435297 

In this section, we improve DR and DC with Task 
Specific Failure Detection (TSFD). The Failure Monitor 
module regularly collects failure records including the task id 
of the failed task and then calculates the task failure rate per 
task type. The Clustering Engine then adjusts the clustering 
factors based on different task failure rates. In this 
experiment, we set the task failure rate of mProjectPP and 
mDiffFit to be 0.001 while the task failure rate of 
mBackground ranges from 0.2 to 0.8. TABLE III shows the 
performance of DC+TSFD and DR+TSFD. Neither of them 
show significant improvement. The reason is that Montage 
has almost the same number (~2,000) of mProjectPP, 
mDiffFit and mBackground jobs. Therefore, the estimated 

                                                
3 The task failure rate of mBackground only	  

task failure rate of mBackground is one third of its real task 
failure rate. Figure 3 tells that TFM is relatively robust to the 
change of task failure rate when the clustering factor is 
small. This conclusion also suggests that the estimation of 
task failure rate does not have to be very precise.  

F. Location Specific Failures  
In this section, we improve DC, SR and DR with 

Location Specific Failure Detection (LSFD).  The Failure 
Monitor remembers the resource id (worker node) where the 
failure has occurred and calculates the task failure rates for 
each worker node. The Job Scheduler then tries to avoid 
unstable worker nodes or even skip them if the task failure 
rates are higher than a threshold. Figure 12 shows an 
example when two out of twenty nodes have a higher task 
failure rates (from 0.2 to 0.8) while others still have a task 
failure rate of 0.001. We can see that the DC+LSFD has 
significant improvement of up to 62% while SR+LSFD and 
DR+LSFD do not have much improvement. The reason of 
the spike (DC without LSFD) is that it detects many failures 
and then creates many small jobs, which increases the impact 
of scheduling overhead and other possible overheads.  

 
Figure 12 Performance with location specific failure detection (Montage).    

V. RELATED WORK 
Failure analysis and modeling [12] presents system 

characteristics such as error and failure distribution and 
hazard rates. Schroeder et al. [13] has studied the statistics of 
the data, including the root cause of failures, the mean time 
between failures, and the mean time to repair. Sahoo et al. 
[14] analyzed the empirical and statistical properties of 
system errors and failures from a network of heterogeneous 
servers running a diverse workload. Oppenheimer et al. [15] 
analyzed the causes of failures from three large-scale Internet 
services and the effectiveness of various techniques for 
preventing and mitigating service failure. McConnel [16] 
analyzed the transient errors in computer systems and 
showed that transient errors follow a Weibull distribution. 
Benoit [19] et al. analyzed the impact of transient and fail-
stop failures on the complexity of task graph scheduling. 
Based on these work, we measure the failure rates in a 
workflow and then provide methods to improve task 
clustering.   

Task clustering [2] merges fined-grained tasks into 
coarse-grained jobs. After task clustering the number of jobs 
is reduced and the cumulative overhead is reduced too. 



However, their clustering strategy is static and does not 
consider the dynamic resource characteristics. In addition, 
we discover that inappropriate clustering parameters would 
damage the benefits of task clustering. Also, they did not 
consider the middleware overhead that relates to the 
overhead of grid middleware services, such as the time to 
query resources, the time to match jobs with resources, etc. 
These overheads are included in our model in the form of 
constant delays and the values are set based on real traces.  

Dynamic job grouping is a technique that dynamically 
assembles the individual fined-grained tasks into a group of 
jobs and send these coarse-grained jobs to the resources.  
Muthuvelu [11] et al. has taken into account the 
characteristics of jobs and the costs of resources. Liu [10] et 
al. extended the work to consider the dynamic resource 
characteristics and the processing capability and bandwidth 
to constrain the sizes of coarse-grained jobs. Compared to 
their work, our work focuses on the failure occurrence and 
aims to improve the makespan of a workflow in a faulty 
environment.  

VI. FUTURE WORK 
In the future, we plan to apply our work to a real world 

framework---the Pegasus Workflow Management System 
and to evaluate the performance with more applications. We 
will also examine failures with different distribution, such as 
for example Weibull.  We will further evaluate the 
robustness of our methods to the variance of failure patterns, 
runtime, and overhead. The gap between DC and SR 
indicates that there is still space for further improvement in 
the approach of dynamically adjusting the workflow task 
clustering factor.  
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