
Workflow Overhead Analysis and Optimizations
Weiwei Chen Ewa Deelman

Information Sciences Institute, University of Southern California
Marina del Rey, California

{wchen, deelman}@isi.edu

ABSTRACT
The execution of scientific workflows often suffers from a variety
of overheads in distributed environments. It is essential to identify
the different overheads and to evaluate how optimization methods
help reduce overheads and improve runtime performance. In this
paper, we present an overhead analysis for a set of workflow runs
on cloud and grid platforms. We present the overhead
distributions and conclude that they satisfy an exponential or
uniform distribution. We compare three methods to calculate the
cumulative sum of the overheads based on how they overlap. In
addition, we indicate how experimental parameters impact the
overhead and thereby the overall workflow performance. We then
show how popular optimization methods improve runtime
performance by reducing some or all types of overheads.

Categories and Subject Descriptors
F.2.0 [Theory of Computation]; Analysis of Algorithms and
Problem Complexity

Keywords
Algorithms, measurement, performance

Keywords
Scientific workflow, workflow overhead, workflow optimization

1. INTRODUCTION
Over the years, scientific workflows [1] have emerged as a
paradigm for representing complex distributed scientific
computations. The Pegasus Workflow Management System
(Pegasus WMS) [2] is a framework for mapping complex
workflows onto distributed resources such as grids and clouds.
Internally, Pegasus generates executable workflows and then
submits them to DAGMan [3] and Condor [4] for execution.
Pegasus has been used to optimize runtime performance of
various scientific applications in astronomy [5], biology [6],
physics [7], and earthquake science [8] on dedicated clusters, and
national cyberinfrastructure such as the TeraGrid [9] and the Open
Science Grid [10]. Due to the distributed nature of these
resources, the large number of tasks in a workflow, and the
complex dependencies among the tasks, significant overheads can
occur during workflow execution. In this paper we provide a
detailed analysis of execution overheads using Pegasus WMS at
both the job and the workflow level.

Such overheads may include: unusually large grid latencies,
unpredictable waiting times on cluster queues, job status
processing time, data staging, and others. The cumulative
numbers and distributions of these overheads have a non-
negligible influence on overall workflow performance. In this
work we study the major overheads of queue delay, workflow

engine delay, job postscript delay, and data transfer delay. We use
execution logs gathered from Pegasus and Condor to analyze
these overheads.
First, we identify the major overheads in workflows and describe
how they are measured based on workflow and job events. We
provide an integrated and comprehensive quantitative analysis of
workflow overheads. The observation about overhead distribution
and characteristics can help researchers build a more realistic
model for simulations of real applications. Our analysis also offers
guidelines for developing further optimization methods.

What distinguishes our work from others is that we develop three
metrics to measure the workflow overheads. The execution time
and overheads may occur at the same time frame during
execution—we refer to that time as the overlap. We explain how
the reduction and overlap of overheads improves workflow
performance. Much research is underway to address issues of
performance optimization. The most straightforward approach is
to invest in hardware upgrade and reduce runtime, I/O latency or
network latency; for example, replacing current machines with
ones that have more CPU, memory, or storage resources.
However, this approach results in higher IT expenses. Another
solution includes a variety of makespan-centric DAG scheduling
algorithms [11] and heuristics that have been proposed and
analyzed. However, these algorithms focus on the runtime of
computational or data transfer jobs. While scheduling remains an
NP-hard problem, overhead analysis tools can play an important
role in understanding workflow performance and developing new
solutions. Among existing overhead reduction techniques are job
clustering [12], job throttling [13], and data pre-staging [14]
solutions. Our work takes a comprehensive look at the major
overheads occurring in the workflow management system and the
workflow execution. We propose three approaches to isolate and
measure the influence of overheads on the overall workflow
makespan.

2. RELATED WORK
Scheduling algorithms and heuristics for workflows have been
widely studied in recent years. Canon [11] and others have
analyzed the robustness of 20 static, makespan-centric DAG
scheduling heuristics and studied whether or not dynamically
changing the order of tasks improves the robustness. In
comparison, our work offers a detailed study of both the runtime
of tasks and the overheads of the workflow management system
and the execution environment.

Optimization techniques such as job clustering [12], job throttling
[13], data pre-staging [14], and over-provisioning [15] reduce the
impact of overheads in different ways. Kumar et al. [16] described
an integrated framework to support performance optimizations
along with multiple dimensions of the parameter space. They
viewed workflow performance optimization as the search for a set
of optimal values in a multi-dimensional parameter space based

WORKS’11, November 14, 2011, Seattle, Washington, USA.
Copyright 2011 ACM 978-1-4503-1100-7/11/11...$10.00.

WORKS’11, November 14, 2011, Seattle, Washington, USA.
Copyright 2011 ACM 978-1-4503-1100-7/11/11...$10.00.

on their QoS requirements. Our work helps identify which part of
the overheads have reduced or overlapped with computation or
other overheads.

Profiling [17] workflows enables users to quickly and explicitly
understand their I/O characteristics, exploiting fine-grained
interactions between activities. Our work provides a
comprehensive view of overheads that includes queue delays,
workflow engine delays, postscript delays, data transfer delays
and others.
Performance Monitoring and Analysis [18] tools assist users to
verify and validate the status of their workflows and to offer
useful information about grid services and resources. Parallel
overhead [19] is the period when a thread is performing
miscellaneous work other than executing the user’s computation.
Measuring and attributing parallel overhead provides an
understanding of why the performance of a multithreaded
program does not improve with the number of cores is increased.
However, that work focuses on multi-threaded programming
models that use OpenMP [35] and requires libraries or compilers
support. Our work does not require modifications to the
application.

Overhead analysis [20][21] is a topic of great interest in the grid
community. Stratan et al. [22] evaluates workflow engines
including DAGMan/Condor and Karajan/Globus in a real-world
grid environment. Their methodology focuses on five system
characteristics: the overhead, the raw performance, the stability,
the scalability and the reliability. They have pointed out that head
node consumption should not be negligible and the main
bottleneck in a busy system is often the head node. Our work
further explains what overheads overwhelm the head node with
quantitative analysis. Prodan et al. [20] offers a complete grid
workflow overhead classification and a systematic measurement
of overheads. In comparison with their work, (1) we focus on
measuring the overlap of major overheads imposed by workflow
management systems and execution environments; (2) we present
a study of the distribution of overheads instead of just overall
numbers; (3) we compare workflows running in different
platforms (dedicated clusters, clouds, grids) and different
environments (resource availability, file systems), explaining how
they influence the resulting overheads; and (4) we analyze how
existing optimization techniques improve the workflow runtime
by reducing or overlapping overheads.

3. WORKFLOW EXECUTION MODEL
3.1 Workflows
We model workflows as Directed Acyclic Graphs (DAGs), where
each node represents a process or computation to be executed and
directed edges represent data or control flow dependencies
between the nodes. Pegasus compiles an abstract workflow
(resource-independent) to an executable workflow (where
appropriate resources are identified) and submits it to its
workflow engine (DAGMan). The workflow engine starts from
the root job(s) and then submits each job to a remote scheduler on
a head node (if this job has all the parent jobs completed and the
data dependencies are not violated). The local scheduler matches
the job with a resource local to it and executes it. When the job is
finished, the workflow engine executes a postscript to check the
return status of the job. If the status is “success”, the workflow
engine may release the next ready job. If the return status is
“failed”, the job may be re-submitted and re-executed.

Figure 3.1 System Overview.

Figure 3.1 shows a typical cluster, with a head node visible to the
outside network, a number of worker nodes and a data server. The
submit host has Pegasus WMS installed (the Pegasus planner, the
DAGMan workflow engine, and the Condor local scheduler). The
remote scheduler is located at the head node of the cluster.
Worker nodes are connected to the data server by NFS [34], or
some other network file system. As jobs are executed, a wrapper
script is launched to monitor and track the status of jobs.

Figure 3.21 Phases of the execution of a single job. Typically,
the difference between Job Terminate and Postscript Start is small
enough to be ignored.
Workflow execution is comprised of a series of events, shown in
Figure 3.2 and defined as:

Workflow Engine Start is defined as the time when the first job
in the workflow is released.

Job Release is defined as the time when the workflow engine
identifies that a job is ready to be submitted (when its parents
have successfully completed).

1 http://pegasus.isi.edu/wms/docs/3.1/monitoring_

debugging_stats.php#plotting_statistics

Job Submit is defined as the time when the workflow engine
submits a job to the local queue.

Job Execute is defined as the time when the workflow engine
sees a job is being executed.

Job Terminate is defined as the time when the workflow engine
sees a job has finished and returned a status code.

Postscript Start is defined as the time when the workflow engine
starts to execute the postscript.

Postscript Terminate is defined as the time when the postscript
returns a status code (success or failure).

Workflow Engine Finished is defined as the time when the
postscript completes.

Figure 3.2 shows a typical timeline of overheads and runtime in a
compute job. We do not specify the data transfer delay in this
timeline because data transfers are handled by data transfer jobs
(stage-in and stage-out jobs), which are subject to the similar
overheads as the compute jobs.

3.2 Overheads
An overhead is defined as the time of performing miscellaneous
work other than executing the user’s computational activities. In
Prodan et al. [20] define “an ideal scenario” as the case with
infinite resources available for execution. However, in our work,
we define the ideal case when the runtime of jobs has occupied
the timeline of each node without any idle block (overhead). In
our experiments, resources are all statically provisioned. Our ideal
case is closer to a real execution case with resource constraints. In
addition, we focus on reducing and overlapping overheads in
order to improve performance through increases in efficiency.

Based on the events illustrated in Figure 3.2 we identify the
following overheads:

Workflow engine delay measures the time between when the last
parent job of a job completes and the time when the job gets
submitted to the local queue. In case of retries the value of the last
retry is used for the calculation. Since we use a DAG model to
represent workflows, the completion time of the last parent job
means this job is released to the ready queue and waiting for
resources to be assigned to it. The workflow engine delay reflects
the efficiency of a workflow engine (in our experiments,
DAGMan).

Queue delay is defined as the time between the submission of a
job by the workflow engine to the local queue and the time the
local scheduler sees the job running (potentially on remote
resources). This overhead reflects the efficiency of the local
scheduler (in our experiment, Condor) to execute a job and the
availability of resources for the job’s execution. The queue delay
is an estimate of the time spent in the Condor queue on the submit
host. In case of retries the value is the cumulative of all the retries.

Postscript delay is the time taken to execute a lightweight script
under Condor to examine the status code of a job after the
computational part of the job is done.

Data transfer delay happens when data is transferred between
nodes. It includes three different types of processes: staging data
in, cleaning up, and staging data out. Stage-in jobs transfer input
files from source sites to execution sites before the computation
starts. Cleanup jobs delete intermediate data that is no longer
needed by the remainder of the workflow. Stage-out jobs transfer
workflow output data to archiving sites for storage and analysis.

The data transfer delay reflects the performance of data transfer
services and network latency.

Other terms used in this paper:

Makespan is the difference between the time when the first job is
released and the last job completes.

Runtime is the time spent by a job executing on a resource (as
seen by the local scheduler).

3.3 Cumulative Overhead
In this section, we define three methods2 to calculate cumulative
overheads of workflows. We call these methods O1, O2 and O3.
O1 simply adds up the overheads of all jobs without considering
their overlap. O2 subtracts from O1 all overlaps of the same type
of overhead. It is equal to the projection of all overheads to the
timeline. O3 subtracts the overlap of all types of overheads from
O2. It is equal to the projection of overheads of a particular type
excluding all other types of overheads to the timeline.

The reason we have three metrics of calculating cumulative
overheads is to present a comprehensive overview of the impact
of overlaps between the various overheads and runtime. Many
optimization methods such as Data Placement Services [14] try to
overlap overheads and runtime to improve the overall
performance. By analyzing these three types of cumulative
overheads, researchers have a clear view of whether their
optimization methods have overlapped the overheads of a same
type (if O2 < O1) or other types (if O3 < O2).

We use a simple example workflow with three jobs to show how
to calculate the overlap and cumulative overheads. Figure 3.3
shows the timeline of our example workflow. Job1 is a parent job
of Job 2 and Job 3.
At t=0, job 1, a stage-in job, is released: queue delay = 10 sec,
workflow engine delay = 10 sec, runtime = 10 sec, and postscript
delay = 10 sec.
At t=40, job 3 is released: workflow engine delay = 10, queue
delay = 20, runtime = 50, and postscript delay = 20.
At t=40, job 2 is released: workflow engine delay = 10, queue
delay = 10, runtime = 30, postscript delay = 10.

Figure 3.3 Example workflow timeline illustrating
overlapping overheads.

We show how to calculate the cumulative overheads:

For O1:
O1(runtime)=50+30=80. It contains the time slots of [60, 90] and
[70, 120].
O1(queue delay)=10+20+10=40. It contains [10, 20], [50, 70] and
[50, 60].
O1(workflow engine delay)=10+10+10=30. It contains [0,10],
[40, 50] and [40, 50].

2 Scripts are available at http://isi.edu/~wchen/techniques.html

O1(postscript delay)=10+20+10=40. It contains [30, 40], [90,
100] and [120, 140].
O1(data transfer delay)=10. It contains [20, 30].

For O2:
O2(runtime)=50+30-20=60. It contains [60, 120].
O2(queue delay)=10+20+10-10=30. It contains [10, 20] and [50,
70].
O2(workflow engine delay)=10+10+10-10=20. It contains [0, 10]
and [40, 50].
O2(postscript delay)=10+20+10=40. It contains [30, 40], [90,
100] and [120, 140].
O2(data transfer delay)=10. It contains [20, 30].

For O3:
O3(runtime)=50+30-20-10-10=40. It contains [70, 90] and [100,
120].
O3(queue delay)=10+20+10-10-10=20. It contains [10, 20] and
[50, 60].
O3(workflow engine delay)=10+10+10-10=20. It contains [0, 10]
and [40, 50].
O3(postscript delay)=10+20+10-10=30. It contains [30, 40] and
[120,140].
O3(data transfer delay)=10. It contains [20, 30].

In calculating the cumulative runtime, we don’t include the
runtime of stage-in jobs because we have already classified it as
data transfer delay. The overall makespan for this example
workflow is 140. Table 3.1 shows the percentage of overheads
and runtime over makespan.

Table 3.1. Percentage of overheads and runtime.

In Table 3.1, we can conclude that the sum of O1 is larger than
makespan and smaller than makespan*(number of resources)
because it does not count the overlap at all. O2 is larger than
makespan since the overlap between more than two types of
overheads may be counted twice or more. O3 is smaller than
makespan since some overlap between more than two types of
overheads may not be counted.

4. EXPERIMENTS AND DISCUSSIONS
4.1 Experiment Setup and Workflows Used
We examined a wide range of workflows in our experiments3.
These workflows were run on distributed platforms including
clouds, grids and dedicated clusters. On clouds, virtual machines
were provisioned and then the required services (such as file
transfer services) were deployed. We examined two clouds:

3 Data are available at http://pegasus.isi.edu/workflow_gallery/

Amazon EC2 [27] and FutureGrid [33]. Amazon EC2 is a
commercial, public cloud that is been widely used in distributed
computing. FutureGrid is a distributed, high-performance testbed
that provides scientists with a set of computing resources to
develop parallel, grid, and cloud applications. On grids, grid
resources were provisioned through Corral [24] and the required
services were already installed before execution. A grid site may
be a cluster system or a heterogeneous and dynamic collection of
machines. In dedicated clusters, Condor was used to schedule jobs
directly to worker nodes.

Part of this data (especially those workflows run on Amazon EC2)
has been presented in [32] but without a detailed overhead
analysis. For the Amazon EC2 experiments, the performance with
different numbers of resources and file system types is compared.
The workflows and execution environments we examined include:

Epigenomics [28] maps short DNA segments collected with high-
throughput gene sequencing machines to a reference genome. It
was run on Amazon EC2.

Proteomics [31] is an application developed by scientists at Ohio
State University and it is used for mass-spectrometry-based
proteomics. It was run on Amazon EC2.

Broadband [26] is an application that enables researchers to
combine long-period deterministic seismograms with high-
frequency stochastic seismograms. It was run on Amazon EC2.

Montage [5] is an astronomy application used to construct large
image mosaics of the sky. The Montage workflows were run on
FutureGrid.

CyberShake [8] is a seismology application that calculates
Probabilistic Seismic Hazard curves for geographic sites in the
Southern California region. It was run on the HPCC cluster [25] at
the University of Southern California.

SIPHT [29] conducts searches for small untranslated RNAs
(sRNAs) that are used to regulate essential biochemical processes
in bacteria. It was run on a Condor cluster at the University of
Wisconsin at Madison.

LIGO [30] workflows are used to search for gravitational wave
signatures in data collected by large-scale interferometers. We
present one partition of the entire workflow in this paper. It was
run on a local cluster at Syracuse University.

4.2 Understanding Overheads
In this section, we present a basic view of the overheads and
demonstrate what system factors may influence them. Figure 4.1
shows the cumulative overheads (O1, O2, and O3 as defined in
Section 3.2) for all the workflows described above. The
percentages are calculated as the value of cumulative overheads
divided by the makespan of workflows. O1 is a naïve
measurement of overheads, but it can serve as a baseline for
comparison. It is also greatly influenced by the number of
resources used by the workflow since it simply sums up all
overheads and runtimes without considering the overlap. For O2,
the sum of all overheads/runtimes is larger than the makespan of a
workflow because the measurement of O2 considers only the
overlap between the same type of overheads/runtime. Therefore, a
period of time that has two or more types of overheads/runtime
are counted twice or more. In contrast with O2, O3 considers the
overlap among all types of overheads/runtime and takes away the
overlap part that has more than two types of overheads/runtime.

Figure 4.1 Percentage of Cumulative Overhead (O1, O2, O3)

of all the workflows.
The Montage run is the same as the one without clustering in
Section 4.3. The CyberShake workflow presented here is one
partition of the entire workflow.

Figure 4.2 Frequency Distribution of Queue delay in the

Broadband workflow.
Mean value, median value, and the exponential fitting lines (as in
Table 4.1.b) are also presented. The Broadband workflows were
executed in environments with different number of worker nodes
and file systems.

Table 4.1. (a) the SSE (sum of squares of error) of different
fitting distribution. (b) the of the exponential fitting

distribution. (c) the log likelihood of all fitting distributions.

(a) (b)

(c)

This results in a smaller sum of overheads/runtime than the exact
makespan. Together, these three types of cumulative overheads
and runtime form a comprehensive, integrated view of the
overhead problem. Simply looking at O1 and O2, we might not be
able to confirm which overheads contribute most to the overall
makespan. However, with O3 we can infer, for example, that
workflows that were run on dedicated clusters such as LIGO and
SIPHT spent the majority of their time executing computational
tasks.
Frequency distribution analysis serves as an important supplement
to the understanding of how different execution environments
influence the overheads. Figure 4.2 shows the frequency
distribution of queue delay in the Broadband workflow of five
runs (BB1~BB5). These runs had the same jobs and used the same
type of virtual machines (c1.xlarge), but they were run in different
environments. The number of worker nodes was ranging from 1 to
8 and the file systems included NFS [34], PVFS [35] and a shared
memory system (shm) on a single host.

Comparing BB1, BB2 and BB4 we conclude that resource
availability influences the distribution of the queue delay.
Although for all five runs, most of the queue delays (30%~40%)
are less than 50 seconds, the maximum value of queue delay
increases with the decrease of resource availability. With more
resources available, the local scheduler is able to find a resource
for execution more quickly. BB3 is installed with PVFS, which
performs worse than BB2 with NFS in this experiment. The
shared memory system can also improve the performance, but it is
limited to the case with only one host.

We use the Matlab Distribution Fitting tool [38] to analyze the
distribution of the queue delay as shown in Table 4.1. This tool
aims to maximize the log likelihood of the parameters. Table 4.1.c
shows that the queue delay satisfies Weibull and Gamma
distribution better in terms of the log likelihood. However, Table
4.1.a shows that in terms of SSE (sum of squares of error), the
exponential and normal distributions perform better. For
simplicity, in this paper we use an exponential distribution to
describe the queue delay:

 (1)

where is an unit step function. The estimates of are
listed in Table 4.1.b.

Figure 4.3. Mean and Variance of all the 78 partitions of

CyberShake workflow.
Seismogram, Extract and PeakValCalc are the most compute
intensive jobs (shown in different colors).

Figure 4.4. Distribution of overheads in the Montage

workflow.
mProject, mDiffFit, and mBackground are the most compute
intensive jobs in the workflow.

Figure 4.3 shows the mean and standard deviation of all 78
partitions of the entire CyberShake workflow. The standard
deviation is comparable to the mean of the overheads, which we
attribute to the fact that HPCC comprises a diverse mix of
computing and data resources and is shared among many users
across the campus.
Figure 4.4 shows the overhead distribution of the Montage
workflow run on the FutureGrid. The postscript delay
concentrates at 7 seconds, because the postscript is only used to
locally check the return status of a job and is not influenced by the
remote execution environment. The workflow engine delay tends
to have a uniform distribution, which is probably because the
workflow engine spends a constant amount of time to identify that
the parent jobs have completed and insert a job that is ready at the
end of the local queue. Normally, the queue delay has only one
peak such as in Figure 4.2. But in this experiment, the queue delay
has three decreasing peak points at 8, 14, and 22. We believe this
is because the average postscript delay is about 7 seconds and the
average runtime is 1 second (see details in Table 4.2). The local
scheduler spends about 8 seconds finding an available resource
and executing a job; if there is no resource idle, it will wait
another 8 seconds for the current running jobs to finish, and so on.

Based on Eq. (1), an integrated function of the queue delay can be
expressed as a combination of multiple exponential distributions:

 (2)

 is the attenuation coefficient of the exponential distribution
and is the average distance between the peaks, namely the
period. In the example of Figure 4.4, .

4.3 How Job Clustering Reduces Overheads
Table 4.2. Statistics of all overheads with clustering.

In the following sections, we use a Montage workflow to show
how different optimization methods improve overall performance.
Many workflows are composed of thousands of fine
computational granularity tasks. Job clustering [12] is a technique
that increases the computational granularity of tasks by merging
small jobs together into a clustered job, reducing the impact of the
queue wait time and minimizing the makespan of the workflow.
Table 4.2 compares the overheads and runtime of the Montage
workflow. We can conclude that with clustering, although the
average overheads do not change much, the cumulative overheads
decrease greatly due to the decreased number of jobs. With
clustering, the makespan has been reduced by 53.3% by reducing
the number of all jobs from 3461 to 104 in this example. Figure
4.5 shows the percentage of workflow overheads and runtime.

The percentage is calculated by the cumulative overhead (O2, or
O3) divided by the makespan of workflows. With clustering, the
portion of runtime is increased significantly. Figure 4.6 profiles
the number of active jobs during execution and it also shows that
with clustering the resource utilization is improved significantly.

Figure 4.5 Percentage of cumulative overheads and runtime

Figure 4.6 The number of active jobs during execution.

4.4 How Job Throttling Reduces Overheads
Data or job throttling [13] limits the amount of parallel data
transfer to avoid overloading supporting services such as data
servers. Throttling is especially useful for unbalanced workflows
in which one task might be idle while waiting for data to arrive.
The aim of throttling is to appropriately regulate the rate of data
transfers between the workflow tasks via data transfer servers by
ways of restricting the data connections, data threads or data
transfer jobs. Especially on cloud platforms, I/O requests need to
go through more layers than a physical cluster; and thereby
workflows may suffer a higher overhead from data servers.

In our experiments, the data transfer service is deployed on a
virtual machine that is similar to a worker node. In this section,
we evaluate a simple static throttling strategy where the Condor
scheduler limits the number of concurrent jobs to be run and
thereby restricts the number of parallel I/O requests. There are 32
resources available and we evaluate the cases with throttling
parameters that are equal to 24, 16 and 12 in Table 4.3. In the case
of 24, the resources are better utilized but the data server is
heavily loaded. In the case of 12, the resources are under-utilized
even though the data server has more capabilities. In this
experiment, both O2 and O3 reflect the variation trend of
overheads and makespan better than O1.

Figure 4.7 Percentage of cumulative overheads and runtime.

Figure 4.7 shows the percentage of workflow overheads and
runtime. Figure 4.8 profiles the number of active jobs during
execution. Montage is an unbalanced workflow because the three
major types of jobs (mProjectPP, mDiffFit, and mBackground)
impose a heavy load on the data server while the other jobs in the
workflow do not. Figure 4.8 shows that with throttling the
maximum number of active jobs is restricted. With limited
throttling (reducing threshold from 24 to 16), the data transfer
requests are distributed in the timeline more evenly and, as a
result, their overhead is reduced. However, with over throttling
(reducing threshold from 16 to 12), resources are not fully utilized
and thus the makespan is increased.
Table 4.3. Statistics of overheads and runtime with throttling.

Figure 4.8 The number of active jobs during execution.

4.5 How Pre-staging Reduces Overheads
Scientific workflows often consume and produce a large amount
of data during execution. Data pre-staging [14] transfers input
data before the computational activities are started or even before
the workflow is mapped onto resources. Data placement policies
distribute data in advance by placing data sets where they may be

requested or by replicating data sets to improve runtime
performance.

Table 4.4. Statistics of all overheads.

Figure 4.9 Percentage of cumulative overhead and runtime.

In our experiments, because data is already pre-staged, the
implementation of the stage-in job is to create a soft link to the
data from the workflow’s working directory, making it available
to the workflow jobs. Table 4.4 and Figure 4.9 show the
cumulative overheads and runtime of the Montage workflows
running with and without pre-staging. Looking at the rows for O2
in Table 4.4, we can conclude that pre-staging improves the
overall runtime by reducing the data transfer delay. For the case
without pre-staging the O3 for data transfer delay is zero because
it overlaps with the workflow engine delay of another job.
Therefore, in this experiment, O2 reflects the variation trend of
the makespan more consistently.

4.6 How Provisioning Reduces Overheads
Many of the scientific applications presented here consist of a
large number of short-duration tasks whose runtimes are greatly
influenced by overheads present in distributed environments.
Most of these environments have an execution mode based on
batch scheduling where jobs are held in a queue until resources

become available to execute them. Such a best-effort model
normally imposes heavy overheads in scheduling and queuing.
For example, Condor-G [23] uses Globus GRAM [37] to submit
jobs to remote clusters. The Globus Toolkit normally has a
significant overhead compared to running Condor directly as an
intra domain resource and job management system. Provisioning
tools often deploy pilot jobs as placeholders for the execution of
application jobs. Since a placeholder can allow multiple
application jobs to execute during its lifetime, some job
scheduling overheads can be reduced. In our experiments, we
compared the performance of Condor-G (without provisioning)
and Corral (with provisioning).

Table 4.5. Statistics of all overheads

Table 4.5 and Figure 4.10 show the percentage of workflow
overheads and runtime. The percentage is calculated by the
cumulative overhead (O1, O2, or O3) divided by the makespan of
workflows. Comparing O1, O2 and O3, we can conclude that the
overheads with provisioning have been reduced significantly
because the local scheduler has direct control over the resources
without going through Globus.

Figure 4.10 Percentage of cumulative overheads and runtime

5. CONCLUSIONS and FUTURE WORK
From our experiments, we conclude that applying only one type
of cumulative overhead analysis does not offer a complete view of
how different optimization techniques work. O1 simply measures
the amount of overhead occurring to all resources. O2 projects O1
to a timeline and measures the projection. O3 reflects the overlap
with other types of overheads. A complete view of these three
metrics helps us understand how different optimization techniques
reduce the impact of overheads.

We also describe and model the characteristics of workflow
overheads and indicate the relationship between different
overheads. Such knowledge should help researchers better
interpret overheads in their workflow models.

In the last section, we examined existing optimization methods
and demonstrated how they improve the makespan of a workflow
by reducing or by overlapping overheads. We plan to evaluate the
effectiveness of our approach with other optimization methods.
Additionally, our current work is based on static provisioning and
we plan to analyze the workflow performance along with dynamic
provisioning.

Another future work is Optimistic Job Execution. As Tables 4.1,
4.2 and 4.3 have shown, the percentage of the workflow engine
overhead and queue delay do not change much with different
optimization techniques, which means that there is room for
improvement. We therefore suggest an optimistic job execution
strategy, which releases child jobs into the local queue before the
completion of the parent job (for example, when it is 90% done).
The scheduler then starts to look for resources available for these
child jobs. A pre-script invoked before running a child job checks
whether the child’s input data is available, otherwise it will hold.
To make this optimistic strategy work, the tradeoff between
possible failures and benefits gained by overlapping the workflow
engine overhead and the queue delay should be carefully studied.

6. ACKNOWLEDGMENTS
This work is supported by NFS under grant number IIS-0905032.
Our thanks to the Pegasus Team, the Southern California
Earthquake Center (CyberShake and Broadband), the USC
Epigenome Center (Epigenomics), the Infrared Processing and
Analysis Center at Caltech (Montage), Michael Freitas
(Proteomics), and Johnathan Livny (SIPHT) for providing original
data for analysis.

7. REFERENCES
[1] Gil, Y.; Deelman, E.; Ellisman, M.; Fahringer, T.; Fox, G.;

Gannon, D.; Goble, C.; Livny, M.; Moreau, L.; Myers,
Examing the Challenges of Scientific Workflows, J. -
Computer , Vol.40, no.12, pp.24-32, Dec. 2007

[2] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S.
Patil, M.-H. Su, K. Vahi, and M. Livny. Pegasus: Mapping
scientific workflows onto the Grid. Lecture Notes in
Computer Science: Grid Computing, pages 11–20, 2004.

[3] Peter Couvares, Tevik Kosar, Alain Roy, Jeff Weber and
Kent Wenger, "Workflow in Condor", in In Workflows for e-
Science, Editors: I.Taylor, E.Deelman, D.Gannon, M.Shields,
Springer Press, January 2007 (ISBN: 1-84628-519-4)

[4] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke,
"Condor-G: A Computation Management Agent for Multi-
Institutional Grids," Cluster Computing, vol. 5, pp. 237-246
2002.

[5] G. B. Berriman, E. Deelman, J. Good, J. Jacob, D. S. Katz,
C. Kesselman, A. Laity, T. A. Prince, G. Singh, and M.-H.

Su, "Montage: A Grid Enabled Engine for Delivering
Custom Science-Grade Mosaics On Demand," presented at
SPIE Conference 5487: Astronomical Telescopes, 2004.

[6] A. Lathers, M.-H. Su, A. Kulungowski, A. W. Lin, G. Mehta,
S. T. Peltier, E. Deelman, and M. H. Ellisman, "Enabling
parallel scientific applications with workflow tools,"
presented at Challenges of Large Applications in Distributed
Environments, 2006 IEEE, 2006.

[7] E. Deelman, J. Blythe, Y. Gil, and C. Kesselman, "Workflow
Management in GriPhyN," in Grid Resource Management:
State of the Art and Future Trends, J. Nabrzyski, J. M.
Schopf, and J. Weglarz, Eds.: Springer, 2003.

[8] E. Deelman, S. Callaghan, E. Field, H. Francoeur, R. Graves,
N. Gupta, V. Gupta, T. H. Jordan, C. Kesselman, P.
Maechling, J. Mehringer, G. Mehta, D. Okaya, K. Vahi, and
L. Zhao, "Managing Large-Scale Workflow Execution from
Resource Provisioning to Provenance Tracking: The
CyberShake Example," presented at Second IEEE
International Conference on e-Science and Grid Computing,
2006.

[9] C. Catlett, "The philosophy of TeraGrid: building an open,
extensible, distributed TeraScale facility," presented at
Cluster Computing and the Grid 2nd IEEE/ACM
International Symposium CCGRID2002, 2002.

[10] The Open Science Grid Consortium,
http://www.opensciencegrid.org.

[11] Louis-Claude Canon, Emmanuel Jeannot, Rizos Sakellariou,
and Wei Zheng. Comparative evaluation of the Robustness
of DAG Scheduling Heuristics. In Grid Computing:
Achievements and Prospects (eds: Sergei Gorlatch, Paraskevi
Fragopoulou, Thierry Priol), Springer, 2008, pp. 73-84
(ISBN 978-0-387-09456-4)

[12] Gurmeet Singh, Mei-Hui Su, Karan Vahi, Ewa Deelman,
Bruce Berriman, John Good, Daniel S. Katz, and Gaurang
Mehta. Workflow Task Clustering for Best Effort Systems
with Pegasus Mardi Gras Conference, Baton Rouge, LA,
January 2008

[13] Sang-Min Park;Humphrey, M.; Data throttling for data-
intensive workflows, IEEE Intl. Symposium on Parallel and
Distributed Processing, Miami, FL, April 2008.

[14] Ann Chervenak, Ewa Deelman, Miron Livny, Mei-Hui Su,
Rob Schuler, Shishir Bharathi, Gaurang Mehta, Karan Vahi,
Data Placement for Scientific Applications in Distributed
Environments, Proceedings of Grid Conference 2007,
Austin, Texas, September 2007.

[15] Nezil Yigitbasi, and Dick Epema, Static and Dynamic
Overprovisioning Strategies for Performance Consistency in
Grids, The 11th ACM/IEEE International Conference on
Grid Computing (Grid 2010), Brussels, Belgium, Oct 2010.

[16] Vijay S. Kumar, P. Sadayappan, Gaurang Mehta, Karan
Vahi, Ewa Deelman, Varun Ratnakar, Jihie Kim, Yolanda
Gil, Mary W. Hall, Tahsin M. Kurç, Joel H. Saltz, An
Integrated Framework for Parameter-based Optimization of
Scientific Workflows, HPDC 2009: 177-186

[17] Nan Dun, Kenjiro Taura, Akinori Yonezawa, ParaTrac: A
Fine-Grained Profiler for Data-Intensive Workflows, The
International Symposium on High Performance Distributed
Computing (HPDC’10), Chicago, USA, June 2010.

[18] H. Truong, P. Brunner, etc., K-WfGrid Distributed
Monitoring and Performance Analysis Services for
Workflows in the Grid, Proceedings of the Second IEEE
International Conference on e-Science and Grid Computing,
2006.

[19] N. R. Tallent, Effective Performance Measurement and
Analysis of Multithreaded Applications, PPoPP’09, Raleigh
NC, USA, Feb 2009.

[20] Radu Prodan, Thomas Fabringer, Overhead Analysis of
Scientific Workflows in Grid Environments, IEEE
Transactions n Parallel and Distributed System, Vol. 19, No.
3, Mar 2008.

[21] Radu Prodan et al., Online Analysis and Runtime Steering of
Dynamic Workflows in the ASKALON Grid Environment,
CCGrid 07.

[22] C. Stratan, et al., A Performance Study of Grid Workflow
Engines, the 9th IEEE/ACM Intl. Conf. on Grid Computing,
Tsukuba, Japan, Sep 2008

[23] James Frey, Todd Tannenbaum, Ian Foster, Miron Livny,
and Steven Tuecke, "Condor-G: A Computation
Management Agent for Multi-Institutional Grids", Journal of
Cluster Computing volume 5, pages 237-246, 2002

[24] Gideon Juve, Ewa Deelman, Karan Vahi, Gaurang Mehta,
Experiences with Resource Provisioning for Scientific
Workflows Using Corral, Scientific Programming, 18:2, pp.
77-92, April 2010.

[25] http://www.usc.edu/hpcc/
[26] http://scec.usc.edu/research/cme/groups/broadband
[27] Amazon.com, “Elastic Compute Cloud (EC2)”;

http://aws.amazon.com/ec2.
[28] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su,

and K. Vahi, "Characterization of Scientific Workflows," in
The 3rd Workshop on Workflows in Support of Large-Scale
Science (WORKS08), in conjunction with Supercomputing
(SC08) Conference Austin, Texas, November, 2008.

[29] Livny, J., Teonadi, H., Livny, M., and Waldor, M.K. (2008).
High-throughput, kingdom-wide prediction and annotation of
bacterial non-coding RNAs. PLoS ONE 3, e3197.

[30] A. Abramovici, W. Althouse, et al., "LIGO: The Laser
Interferometer Gravitational-Wave Observatory," Science,
vol 256, pp. 325-333, 1992 1992.

[31] Proteomics: http://www.ccic.ohio-
state.edu/MS/proteomics.htm

[32] Gideon Juve, et al., Scientific Workflow Applications on
Amazon EC2. Workshop on Cloud-based Services and
Applications in conjunction with 5th IEEE Intl. Conf. on e-
Science (e-Science 2009), Oxford UK, December 2009.

[33] FutureGrid: https://portal.futuregrid.org/
[34] Dave Hitz, James Lau, and Michael Malcolm, File system

design for an NFS file server appliance, In Proceedings of
the Winter 1994 USENIX Conference, San Francisco, CA,
January 1994

[35] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur. PVFS:
A parallel file system for linux clusters. In Proceedings of the
4th Annual Linux Showcase and Conference, pages 317–327,
2000.

[36] DAGUM, L., AND MENON, R. 1998. OpenMP: An industry-
standard API for shared-memory programming. IEEE Comput.
Sci. Eng. 5, 1, 46–55.

[37] Globus Toolkit: http://www.globus.org/toolkit/
[38] Matlab Interactive distribution fitting:

http://www.mathworks.com/help/toolbox/stats/dfittool.html

