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ABSTRACT 
The execution of scientific workflows often suffers from a variety 
of overheads in distributed environments. It is essential to identify 
the different overheads and to evaluate how optimization methods 
help reduce overheads and improve runtime performance. In this 
paper, we present an overhead analysis for a set of workflow runs 
on cloud and grid platforms. We present the overhead 
distributions and conclude that they satisfy an exponential or 
uniform distribution. We compare three methods to calculate the 
cumulative sum of the overheads based on how they overlap. In 
addition, we indicate how experimental parameters impact the 
overhead and thereby the overall workflow performance. We then 
show how popular optimization methods improve runtime 
performance by reducing some or all types of overheads.  

Categories and Subject Descriptors 
F.2.0 [Theory of Computation]; Analysis of Algorithms and 
Problem Complexity 

Keywords 
Algorithms, measurement, performance 

Keywords 
Scientific workflow, workflow overhead, workflow optimization 

1. INTRODUCTION 
Over the years, scientific workflows [1] have emerged as a 
paradigm for representing complex distributed scientific 
computations. The Pegasus Workflow Management System 
(Pegasus WMS) [2] is a framework for mapping complex 
workflows onto distributed resources such as grids and clouds. 
Internally, Pegasus generates executable workflows and then 
submits them to DAGMan [3] and Condor [4] for execution. 
Pegasus has been used to optimize runtime performance of 
various scientific applications in astronomy [5], biology [6], 
physics [7], and earthquake science [8] on dedicated clusters, and 
national cyberinfrastructure such as the TeraGrid [9] and the Open 
Science Grid [10]. Due to the distributed nature of these 
resources, the large number of tasks in a workflow, and the 
complex dependencies among the tasks, significant overheads can 
occur during workflow execution. In this paper we provide a 
detailed analysis of execution overheads using Pegasus WMS at 
both the job and the workflow level.  

Such overheads may include: unusually large grid latencies, 
unpredictable waiting times on cluster queues, job status 
processing time, data staging, and others. The cumulative 
numbers and distributions of these overheads have a non-
negligible influence on overall workflow performance. In this 
work we study the major overheads of queue delay, workflow 

engine delay, job postscript delay, and data transfer delay. We use 
execution logs gathered from Pegasus and Condor to analyze 
these overheads.  
First, we identify the major overheads in workflows and describe 
how they are measured based on workflow and job events. We 
provide an integrated and comprehensive quantitative analysis of 
workflow overheads. The observation about overhead distribution 
and characteristics can help researchers build a more realistic 
model for simulations of real applications. Our analysis also offers 
guidelines for developing further optimization methods.  

What distinguishes our work from others is that we develop three 
metrics to measure the workflow overheads. The execution time 
and overheads may occur at the same time frame during 
execution—we refer to that time as the overlap. We explain how 
the reduction and overlap of overheads improves workflow 
performance. Much research is underway to address issues of 
performance optimization. The most straightforward approach is 
to invest in hardware upgrade and reduce runtime, I/O latency or 
network latency; for example, replacing current machines with 
ones that have more CPU, memory, or storage resources. 
However, this approach results in higher IT expenses. Another 
solution includes a variety of makespan-centric DAG scheduling 
algorithms [11] and heuristics that have been proposed and 
analyzed. However, these algorithms focus on the runtime of 
computational or data transfer jobs. While scheduling remains an 
NP-hard problem, overhead analysis tools can play an important 
role in understanding workflow performance and developing new 
solutions. Among existing overhead reduction techniques are job 
clustering [12], job throttling [13], and data pre-staging [14] 
solutions. Our work takes a comprehensive look at the major 
overheads occurring in the workflow management system and the 
workflow execution. We propose three approaches to isolate and 
measure the influence of overheads on the overall workflow 
makespan.  

2. RELATED WORK 
Scheduling algorithms and heuristics for workflows have been 
widely studied in recent years. Canon [11] and others have 
analyzed the robustness of 20 static, makespan-centric DAG 
scheduling heuristics and studied whether or not dynamically 
changing the order of tasks improves the robustness. In 
comparison, our work offers a detailed study of both the runtime 
of tasks and the overheads of the workflow management system 
and the execution environment.  

Optimization techniques such as job clustering [12], job throttling 
[13], data pre-staging [14], and over-provisioning [15] reduce the 
impact of overheads in different ways. Kumar et al. [16] described 
an integrated framework to support performance optimizations 
along with multiple dimensions of the parameter space. They 
viewed workflow performance optimization as the search for a set 
of optimal values in a multi-dimensional parameter space based 
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on their QoS requirements. Our work helps identify which part of 
the overheads have reduced or overlapped with computation or 
other overheads.  

Profiling [17] workflows enables users to quickly and explicitly 
understand their I/O characteristics, exploiting fine-grained 
interactions between activities. Our work provides a 
comprehensive view of overheads that includes queue delays, 
workflow engine delays, postscript delays, data transfer delays 
and others.  
Performance Monitoring and Analysis [18] tools assist users to 
verify and validate the status of their workflows and to offer 
useful information about grid services and resources. Parallel 
overhead [19] is the period when a thread is performing 
miscellaneous work other than executing the user’s computation. 
Measuring and attributing parallel overhead provides an 
understanding of why the performance of a multithreaded 
program does not improve with the number of cores is increased. 
However, that work focuses on multi-threaded programming 
models that use OpenMP [35] and requires libraries or compilers 
support. Our work does not require modifications to the 
application. 

Overhead analysis [20][21] is a topic of great interest in the grid 
community. Stratan et al. [22] evaluates workflow engines 
including DAGMan/Condor and Karajan/Globus in a real-world 
grid environment. Their methodology focuses on five system 
characteristics: the overhead, the raw performance, the stability, 
the scalability and the reliability. They have pointed out that head 
node consumption should not be negligible and the main 
bottleneck in a busy system is often the head node. Our work 
further explains what overheads overwhelm the head node with 
quantitative analysis. Prodan et al. [20] offers a complete grid 
workflow overhead classification and a systematic measurement 
of overheads. In comparison with their work, (1) we focus on 
measuring the overlap of major overheads imposed by workflow 
management systems and execution environments; (2) we present 
a study of the distribution of overheads instead of just overall 
numbers; (3) we compare workflows running in different 
platforms (dedicated clusters, clouds, grids) and different 
environments (resource availability, file systems), explaining how 
they influence the resulting overheads; and (4) we analyze how 
existing optimization techniques improve the workflow runtime 
by reducing or overlapping overheads. 
 

3. WORKFLOW EXECUTION MODEL 
3.1 Workflows 
We model workflows as Directed Acyclic Graphs (DAGs), where 
each node represents a process or computation to be executed and 
directed edges represent data or control flow dependencies 
between the nodes. Pegasus compiles an abstract workflow 
(resource-independent) to an executable workflow (where 
appropriate resources are identified) and submits it to its 
workflow engine (DAGMan). The workflow engine starts from 
the root job(s) and then submits each job to a remote scheduler on 
a head node (if this job has all the parent jobs completed and the 
data dependencies are not violated).  The local scheduler matches 
the job with a resource local to it and executes it. When the job is 
finished, the workflow engine executes a postscript to check the 
return status of the job. If the status is “success”, the workflow 
engine may release the next ready job. If the return status is 
“failed”, the job may be re-submitted and re-executed.  

 
Figure 3.1 System Overview. 

Figure 3.1 shows a typical cluster, with a head node visible to the 
outside network, a number of worker nodes and a data server. The 
submit host has Pegasus WMS installed (the Pegasus planner, the 
DAGMan workflow engine, and the Condor local scheduler). The 
remote scheduler is located at the head node of the cluster. 
Worker nodes are connected to the data server by NFS [34], or 
some other network file system. As jobs are executed, a wrapper 
script is launched to monitor and track the status of jobs. 

 
Figure 3.21 Phases of the execution of a single job. Typically, 
the difference between Job Terminate and Postscript Start is small 
enough to be ignored.  
Workflow execution is comprised of a series of events, shown in 
Figure 3.2 and defined as:  

Workflow Engine Start is defined as the time when the first job 
in the workflow is released.  

Job Release is defined as the time when the workflow engine 
identifies that a job is ready to be submitted (when its parents 
have successfully completed).  

                                                                    
1 http://pegasus.isi.edu/wms/docs/3.1/monitoring_ 

debugging_stats.php#plotting_statistics 



Job Submit is defined as the time when the workflow engine 
submits a job to the local queue.  

Job Execute is defined as the time when the workflow engine 
sees a job is being executed.  

Job Terminate is defined as the time when the workflow engine 
sees a job has finished and returned a status code. 

Postscript Start is defined as the time when the workflow engine 
starts to execute the postscript. 

Postscript Terminate is defined as the time when the postscript 
returns a status code (success or failure).  

Workflow Engine Finished is defined as the time when the  
postscript completes.  

Figure 3.2 shows a typical timeline of overheads and runtime in a 
compute job. We do not specify the data transfer delay in this 
timeline because data transfers are handled by data transfer jobs 
(stage-in and stage-out jobs), which are subject to the similar 
overheads as the compute jobs. 

3.2 Overheads 
An overhead is defined as the time of performing miscellaneous 
work other than executing the user’s computational activities. In 
Prodan et al. [20] define “an ideal scenario” as the case with 
infinite resources available for execution. However, in our work, 
we define the ideal case when the runtime of jobs has occupied 
the timeline of each node without any idle block (overhead). In 
our experiments, resources are all statically provisioned. Our ideal 
case is closer to a real execution case with resource constraints. In 
addition, we focus on reducing and overlapping overheads in 
order to improve performance through increases in efficiency. 

Based on the events illustrated in Figure 3.2 we identify the 
following overheads: 

Workflow engine delay measures the time between when the last 
parent job of a job completes and the time when the job gets 
submitted to the local queue. In case of retries the value of the last 
retry is used for the calculation. Since we use a DAG model to 
represent workflows, the completion time of the last parent job 
means this job is released to the ready queue and waiting for 
resources to be assigned to it. The workflow engine delay reflects 
the efficiency of a workflow engine (in our experiments, 
DAGMan).  

Queue delay is defined as the time between the submission of a 
job by the workflow engine to the local queue and the time the 
local scheduler sees the job running (potentially on remote 
resources). This overhead reflects the efficiency of the local 
scheduler (in our experiment, Condor) to execute a job and the 
availability of resources for the job’s execution. The queue delay 
is an estimate of the time spent in the Condor queue on the submit 
host. In case of retries the value is the cumulative of all the retries.   

Postscript delay is the time taken to execute a lightweight script 
under Condor to examine the status code of a job after the 
computational part of the job is done. 

Data transfer delay happens when data is transferred between 
nodes. It includes three different types of processes: staging data 
in, cleaning up, and staging data out. Stage-in jobs transfer input 
files from source sites to execution sites before the computation 
starts. Cleanup jobs delete intermediate data that is no longer 
needed by the remainder of the workflow. Stage-out jobs transfer 
workflow output data to archiving sites for storage and analysis. 

The data transfer delay reflects the performance of data transfer 
services and network latency. 

Other terms used in this paper: 

Makespan is the difference between the time when the first job is 
released and the last job completes.  

Runtime is the time spent by a job executing on a resource (as 
seen by the local scheduler). 

3.3 Cumulative Overhead 
In this section, we define three methods2 to calculate cumulative 
overheads of workflows. We call these methods O1, O2 and O3. 
O1 simply adds up the overheads of all jobs without considering 
their overlap. O2 subtracts from O1 all overlaps of the same type 
of overhead. It is equal to the projection of all overheads to the 
timeline. O3 subtracts the overlap of all types of overheads from 
O2. It is equal to the projection of overheads of a particular type 
excluding all other types of overheads to the timeline. 

The reason we have three metrics of calculating cumulative 
overheads is to present a comprehensive overview of the impact 
of overlaps between the various overheads and runtime. Many 
optimization methods such as Data Placement Services [14] try to 
overlap overheads and runtime to improve the overall 
performance. By analyzing these three types of cumulative 
overheads, researchers have a clear view of whether their 
optimization methods have overlapped the overheads of a same 
type (if O2 < O1) or other types (if O3 < O2).  

We use a simple example workflow with three jobs to show how 
to calculate the overlap and cumulative overheads. Figure 3.3 
shows the timeline of our example workflow. Job1 is a parent job 
of Job 2 and Job 3. 
At t=0, job 1, a stage-in job, is released: queue delay = 10 sec, 
workflow engine delay = 10 sec, runtime = 10 sec, and postscript 
delay = 10 sec. 
At t=40, job 3 is released: workflow engine delay = 10, queue 
delay = 20, runtime = 50, and postscript delay = 20. 
At t=40, job 2 is released: workflow engine delay = 10, queue 
delay = 10, runtime = 30, postscript delay = 10.  

 

Figure 3.3 Example workflow timeline illustrating 
overlapping overheads. 

We show how to calculate the cumulative overheads: 
 
For O1: 
O1(runtime)=50+30=80. It contains the time slots of [60, 90] and 
[70, 120].  
O1(queue delay)=10+20+10=40. It contains [10, 20], [50, 70] and 
[50, 60].  
O1(workflow engine delay)=10+10+10=30. It contains [0,10], 
[40, 50] and [40, 50].  

                                                                    
2 Scripts are available at http://isi.edu/~wchen/techniques.html 



O1(postscript delay)=10+20+10=40. It contains [30, 40], [90, 
100] and [120, 140].  
O1(data transfer delay)=10. It contains [20, 30]. 
 
For O2: 
O2(runtime)=50+30-20=60. It contains [60, 120]. 
O2(queue delay)=10+20+10-10=30. It contains [10, 20] and [50, 
70]. 
O2(workflow engine delay)=10+10+10-10=20. It contains [0, 10] 
and [40, 50]. 
O2(postscript delay)=10+20+10=40. It contains [30, 40], [90, 
100] and [120, 140]. 
O2(data transfer delay)=10. It contains [20, 30]. 
 
For O3:  
O3(runtime)=50+30-20-10-10=40. It contains [70, 90] and [100, 
120]. 
O3(queue delay)=10+20+10-10-10=20. It contains [10, 20] and 
[50, 60].  
O3(workflow engine delay)=10+10+10-10=20. It contains [0, 10] 
and [40, 50].  
O3(postscript delay)=10+20+10-10=30. It contains [30, 40] and  
[120,140].  
O3(data transfer delay)=10. It contains [20, 30]. 
 
In calculating the cumulative runtime, we don’t include the 
runtime of stage-in jobs because we have already classified it as 
data transfer delay. The overall makespan for this example 
workflow is 140. Table 3.1 shows the percentage of overheads 
and runtime over makespan.   

Table 3.1. Percentage of overheads and runtime. 

 
 

In Table 3.1, we can conclude that the sum of O1 is larger than 
makespan and smaller than makespan*(number of resources) 
because it does not count the overlap at all. O2 is larger than 
makespan since the overlap between more than two types of 
overheads may be counted twice or more. O3 is smaller than 
makespan since some overlap between more than two types of 
overheads may not be counted.   
 

4. EXPERIMENTS AND DISCUSSIONS 
4.1 Experiment Setup and Workflows Used 
We examined a wide range of workflows in our experiments3. 
These workflows were run on distributed platforms including 
clouds, grids and dedicated clusters. On clouds, virtual machines 
were provisioned and then the required services (such as file 
transfer services) were deployed. We examined two clouds: 

                                                                    
3 Data are available at http://pegasus.isi.edu/workflow_gallery/ 

Amazon EC2 [27] and FutureGrid [33]. Amazon EC2 is a 
commercial, public cloud that is been widely used in distributed 
computing. FutureGrid is a distributed, high-performance testbed 
that provides scientists with a set of computing resources to 
develop parallel, grid, and cloud applications. On grids, grid 
resources were provisioned through Corral [24] and the required 
services were already installed before execution. A grid site may 
be a cluster system or a heterogeneous and dynamic collection of 
machines. In dedicated clusters, Condor was used to schedule jobs 
directly to worker nodes.  

Part of this data (especially those workflows run on Amazon EC2) 
has been presented in [32] but without a detailed overhead 
analysis. For the Amazon EC2 experiments, the performance with 
different numbers of resources and file system types is compared. 
The workflows and execution environments we examined include: 

Epigenomics [28] maps short DNA segments collected with high-
throughput gene sequencing machines to a reference genome. It 
was run on Amazon EC2.  

Proteomics [31] is an application developed by scientists at Ohio 
State University and it is used for mass-spectrometry-based 
proteomics. It was run on Amazon EC2.  

Broadband [26] is an application that enables researchers to 
combine long-period deterministic seismograms with high-
frequency stochastic seismograms. It was run on Amazon EC2.  

Montage [5] is an astronomy application used to construct large 
image mosaics of the sky. The Montage workflows were run on 
FutureGrid. 

CyberShake [8] is a seismology application that calculates 
Probabilistic Seismic Hazard curves for geographic sites in the 
Southern California region. It was run on the HPCC cluster [25] at 
the University of Southern California.  

SIPHT [29] conducts searches for small untranslated RNAs 
(sRNAs) that are used to regulate essential biochemical processes 
in bacteria. It was run on a Condor cluster at the University of 
Wisconsin at Madison.  

LIGO [30] workflows are used to search for gravitational wave 
signatures in data collected by large-scale interferometers. We 
present one partition of the entire workflow in this paper. It was 
run on a local cluster at Syracuse University. 

4.2 Understanding Overheads 
In this section, we present a basic view of the overheads and 
demonstrate what system factors may influence them. Figure 4.1 
shows the cumulative overheads (O1, O2, and O3 as defined in 
Section 3.2) for all the workflows described above. The 
percentages are calculated as the value of cumulative overheads 
divided by the makespan of workflows. O1 is a naïve 
measurement of overheads, but it can serve as a baseline for 
comparison. It is also greatly influenced by the number of 
resources used by the workflow since it simply sums up all 
overheads and runtimes without considering the overlap. For O2, 
the sum of all overheads/runtimes is larger than the makespan of a 
workflow because the measurement of O2 considers only the 
overlap between the same type of overheads/runtime. Therefore, a 
period of time that has two or more types of overheads/runtime 
are counted twice or more. In contrast with O2, O3 considers the 
overlap among all types of overheads/runtime and takes away the 
overlap part that has more than two types of overheads/runtime. 



 

 
Figure 4.1 Percentage of Cumulative Overhead (O1, O2, O3) 

of all the workflows. 
The Montage run is the same as the one without clustering in 
Section 4.3. The CyberShake workflow presented here is one 
partition of the entire workflow. 

 

 

 
Figure 4.2 Frequency Distribution of Queue delay in the 

Broadband workflow. 
Mean value, median value, and the exponential fitting lines (as in 
Table 4.1.b) are also presented. The Broadband workflows were 
executed in environments with different number of worker nodes 
and file systems.  

Table 4.1. (a) the SSE (sum of squares of error) of different 
fitting distribution. (b) the  of the exponential fitting 

distribution. (c) the log likelihood of all fitting distributions. 

 
(a)                                                   (b) 

 
(c) 

This results in a smaller sum of overheads/runtime than the exact 
makespan. Together, these three types of cumulative overheads 
and runtime form a comprehensive, integrated view of the 
overhead problem. Simply looking at O1 and O2, we might not be 
able to confirm which overheads contribute most to the overall 
makespan. However, with O3 we can infer, for example, that 
workflows that were run on dedicated clusters such as LIGO and 
SIPHT spent the majority of their time executing computational 
tasks. 
Frequency distribution analysis serves as an important supplement 
to the understanding of how different execution environments 
influence the overheads. Figure 4.2 shows the frequency 
distribution of queue delay in the Broadband workflow of five 
runs (BB1~BB5). These runs had the same jobs and used the same 
type of virtual machines (c1.xlarge), but they were run in different 
environments. The number of worker nodes was ranging from 1 to 
8 and the file systems included NFS [34], PVFS [35] and a shared 
memory system (shm) on a single host.  

Comparing BB1, BB2 and BB4 we conclude that resource 
availability influences the distribution of the queue delay. 
Although for all five runs, most of the queue delays (30%~40%) 
are less than 50 seconds, the maximum value of queue delay 
increases with the decrease of resource availability. With more 
resources available, the local scheduler is able to find a resource 
for execution more quickly. BB3 is installed with PVFS, which 
performs worse than BB2 with NFS in this experiment. The 
shared memory system can also improve the performance, but it is 
limited to the case with only one host.   

We use the Matlab Distribution Fitting tool [38] to analyze the 
distribution of the queue delay as shown in Table 4.1. This tool 
aims to maximize the log likelihood of the parameters. Table 4.1.c 
shows that the queue delay satisfies Weibull and Gamma 
distribution better in terms of the log likelihood. However, Table 
4.1.a shows that in terms of SSE (sum of squares of error), the 
exponential and normal distributions perform better. For 
simplicity, in this paper we use an exponential distribution to 
describe the queue delay: 

    (1) 



where  is an unit step function. The estimates of  are 
listed in Table 4.1.b.  

 

 

 
Figure 4.3. Mean and Variance of all the 78 partitions of 

CyberShake workflow. 
Seismogram, Extract and PeakValCalc are the most compute 
intensive jobs (shown in different colors). 

 

 
Figure 4.4. Distribution of overheads in the Montage 

workflow. 
mProject, mDiffFit, and mBackground are the most compute 
intensive jobs in the workflow.  

Figure 4.3 shows the mean and standard deviation of all 78 
partitions of the entire CyberShake workflow. The standard 
deviation is comparable to the mean of the overheads, which we 
attribute to the fact that HPCC comprises a diverse mix of 
computing and data resources and is shared among many users 
across the campus.  
Figure 4.4 shows the overhead distribution of the Montage 
workflow run on the FutureGrid. The postscript delay 
concentrates at 7 seconds, because the postscript is only used to 
locally check the return status of a job and is not influenced by the 
remote execution environment. The workflow engine delay tends 
to have a uniform distribution, which is probably because the 
workflow engine spends a constant amount of time to identify that 
the parent jobs have completed and insert a job that is ready at the 
end of the local queue. Normally, the queue delay has only one 
peak such as in Figure 4.2. But in this experiment, the queue delay 
has three decreasing peak points at 8, 14, and 22. We believe this 
is because the average postscript delay is about 7 seconds and the 
average runtime is 1 second (see details in Table 4.2). The local 
scheduler spends about 8 seconds finding an available resource 
and executing a job; if there is no resource idle, it will wait 
another 8 seconds for the current running jobs to finish, and so on.  

Based on Eq. (1), an integrated function of the queue delay can be 
expressed as a combination of multiple exponential distributions: 

                                                  (2) 

 is the attenuation coefficient of the exponential distribution 
and  is the average distance between the peaks, namely the 
period. In the example of Figure 4.4, . 

4.3 How Job Clustering Reduces Overheads 
Table 4.2. Statistics of all overheads with clustering.  

 
In the following sections, we use a Montage workflow to show 
how different optimization methods improve overall performance. 
Many workflows are composed of thousands of fine 
computational granularity tasks. Job clustering [12] is a technique 
that increases the computational granularity of tasks by merging 
small jobs together into a clustered job, reducing the impact of the 
queue wait time and minimizing the makespan of the workflow. 
Table 4.2 compares the overheads and runtime of the Montage 
workflow. We can conclude that with clustering, although the 
average overheads do not change much, the cumulative overheads 
decrease greatly due to the decreased number of jobs. With 
clustering, the makespan has been reduced by 53.3% by reducing 
the number of all jobs from 3461 to 104 in this example. Figure 
4.5 shows the percentage of workflow overheads and runtime. 



The percentage is calculated by the cumulative overhead (O2, or 
O3) divided by the makespan of workflows. With clustering, the 
portion of runtime is increased significantly. Figure 4.6 profiles 
the number of active jobs during execution and it also shows that 
with clustering the resource utilization is improved significantly.  

 
Figure 4.5 Percentage of cumulative overheads and runtime 

 
Figure 4.6 The number of active jobs during execution.  

4.4 How Job Throttling Reduces Overheads 
Data or job throttling [13] limits the amount of parallel data 
transfer to avoid overloading supporting services such as data 
servers. Throttling is especially useful for unbalanced workflows 
in which one task might be idle while waiting for data to arrive. 
The aim of throttling is to appropriately regulate the rate of data 
transfers between the workflow tasks via data transfer servers by 
ways of restricting the data connections, data threads or data 
transfer jobs. Especially on cloud platforms, I/O requests need to 
go through more layers than a physical cluster; and thereby 
workflows may suffer a higher overhead from data servers. 

In our experiments, the data transfer service is deployed on a 
virtual machine that is similar to a worker node.  In this section, 
we evaluate a simple static throttling strategy where the Condor 
scheduler limits the number of concurrent jobs to be run and 
thereby restricts the number of parallel I/O requests. There are 32 
resources available and we evaluate the cases with throttling 
parameters that are equal to 24, 16 and 12 in Table 4.3. In the case 
of 24, the resources are better utilized but the data server is 
heavily loaded. In the case of 12, the resources are under-utilized 
even though the data server has more capabilities. In this 
experiment, both O2 and O3 reflect the variation trend of 
overheads and makespan better than O1.  

 
Figure 4.7 Percentage of cumulative overheads and runtime.  

Figure 4.7 shows the percentage of workflow overheads and 
runtime. Figure 4.8 profiles the number of active jobs during 
execution. Montage is an unbalanced workflow because the three 
major types of jobs (mProjectPP, mDiffFit, and mBackground) 
impose a heavy load on the data server while the other jobs in the 
workflow do not. Figure 4.8 shows that with throttling the 
maximum number of active jobs is restricted. With limited 
throttling (reducing threshold from 24 to 16), the data transfer 
requests are distributed in the timeline more evenly and, as a 
result, their overhead is reduced. However, with over throttling 
(reducing threshold from 16 to 12), resources are not fully utilized 
and thus the makespan is increased.  
Table 4.3. Statistics of overheads and runtime with throttling.  

 

 
Figure 4.8 The number of active jobs during execution.  

4.5 How Pre-staging Reduces Overheads 
Scientific workflows often consume and produce a large amount 
of data during execution. Data pre-staging [14] transfers input 
data before the computational activities are started or even before 
the workflow is mapped onto resources. Data placement policies 
distribute data in advance by placing data sets where they may be 



requested or by replicating data sets to improve runtime 
performance.  

Table 4.4. Statistics of all overheads.  

 

 

 
Figure 4.9 Percentage of cumulative overhead and runtime. 

In our experiments, because data is already pre-staged, the 
implementation of the stage-in job is to create a soft link to the 
data from the workflow’s working directory, making it available 
to the workflow jobs. Table 4.4 and Figure 4.9 show the 
cumulative overheads and runtime of the Montage workflows 
running with and without pre-staging. Looking at the rows for O2 
in Table 4.4, we can conclude that pre-staging improves the 
overall runtime by reducing the data transfer delay. For the case 
without pre-staging the O3 for data transfer delay is zero because 
it overlaps with the workflow engine delay of another job. 
Therefore, in this experiment, O2 reflects the variation trend of 
the makespan more consistently.  

4.6 How Provisioning Reduces Overheads 
Many of the scientific applications presented here consist of a 
large number of short-duration tasks whose runtimes are greatly 
influenced by overheads present in distributed environments. 
Most of these environments have an execution mode based on 
batch scheduling where jobs are held in a queue until resources 

become available to execute them. Such a best-effort model 
normally imposes heavy overheads in scheduling and queuing. 
For example, Condor-G [23] uses Globus GRAM [37] to submit 
jobs to remote clusters. The Globus Toolkit normally has a 
significant overhead compared to running Condor directly as an 
intra domain resource and job management system. Provisioning 
tools often deploy pilot jobs as placeholders for the execution of 
application jobs. Since a placeholder can allow multiple 
application jobs to execute during its lifetime, some job 
scheduling overheads can be reduced. In our experiments, we 
compared the performance of Condor-G (without provisioning) 
and Corral (with provisioning).  

Table 4.5. Statistics of all overheads 

 
Table 4.5 and Figure 4.10 show the percentage of workflow 
overheads and runtime. The percentage is calculated by the 
cumulative overhead (O1, O2, or O3) divided by the makespan of 
workflows. Comparing O1, O2 and O3, we can conclude that the 
overheads with provisioning have been reduced significantly 
because the local scheduler has direct control over the resources 
without going through Globus.  

 

 
Figure 4.10 Percentage of cumulative overheads and runtime 

 



5. CONCLUSIONS and FUTURE WORK 
From our experiments, we conclude that applying only one type 
of cumulative overhead analysis does not offer a complete view of 
how different optimization techniques work. O1 simply measures 
the amount of overhead occurring to all resources. O2 projects O1 
to a timeline and measures the projection. O3 reflects the overlap 
with other types of overheads. A complete view of these three 
metrics helps us understand how different optimization techniques 
reduce the impact of overheads.  

We also describe and model the characteristics of workflow 
overheads and indicate the relationship between different 
overheads. Such knowledge should help researchers better 
interpret overheads in their workflow models.  

In the last section, we examined existing optimization methods 
and demonstrated how they improve the makespan of a workflow 
by reducing or by overlapping overheads. We plan to evaluate the 
effectiveness of our approach with other optimization methods. 
Additionally, our current work is based on static provisioning and 
we plan to analyze the workflow performance along with dynamic 
provisioning.  

Another future work is Optimistic Job Execution. As Tables 4.1, 
4.2 and 4.3 have shown, the percentage of the workflow engine 
overhead and queue delay do not change much with different 
optimization techniques, which means that there is room for 
improvement. We therefore suggest an optimistic job execution 
strategy, which releases child jobs into the local queue before the 
completion of the parent job (for example, when it is 90% done). 
The scheduler then starts to look for resources available for these 
child jobs. A pre-script invoked before running a child job checks 
whether the child’s input data is available, otherwise it will hold. 
To make this optimistic strategy work, the tradeoff between 
possible failures and benefits gained by overlapping the workflow 
engine overhead and the queue delay should be carefully studied.  
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