
Using Imbalance Metrics to Optimize Task Clustering in Scientific Workflow Executions

Weiwei Chena,∗, Rafael Ferreira da Silvaa, Ewa Deelmana, Rizos Sakellarioub

aUniversity of Southern California, Information Sciences Institute, Marina del Rey, CA, USA
bUniversity of Manchester, School of Computer Science, Manchester, U.K.

Abstract

Scientific workflows can be composed of many fine computational granularity tasks. The runtime of these tasks may be shorter
than the duration of system overheads, for example, when using multiple resources of a cloud infrastructure. Task clustering is
a runtime optimization technique that merges multiple short running tasks into a single job such that the scheduling overhead is
reduced and the overall runtime performance is improved. However, existing task clustering strategies only provide a coarse-grained
approach that relies on an over-simplified workflow model. In this work, we examine the reasons that cause Runtime Imbalance
and Dependency Imbalance in task clustering. Then, we propose quantitative metrics to evaluate the severity of the two imbalance
problems. Furthermore, we propose a series of task balancing methods (horizontal and vertical) to address the load balance problem
when performing task clustering for five widely used scientific workflows. Finally, we analyze the relationship between these metric
values and the performance of proposed task balancing methods. A trace-based simulation shows that our methods can significantly
decrease the runtime of workflow applications when compared to a baseline execution. We also compare the performance of our
methods with two algorithms described in the literature.

Keywords: Scientific workflows, Performance analysis, Scheduling, Workflow simulation, Task clustering, Load balancing

1. Introduction

Many computational scientists develop and use large-scale,
loosely-coupled applications that are often structured as sci-
entific workflows. Although the majority of the tasks within
these applications are often relatively short running (from a
few seconds to a few minutes), in aggregate they represent a
significant amount of computation and data [1, 3]. When ex-
ecuting these applications in a multi-machine, distributed en-
vironment, such as the Grid or the Cloud, significant system
overheads may exist and may slowdown the application execu-
tion [4]. To reduce the impact of such overheads, task clustering
techniques [5, 6, 7, 8, 9, 10, 11, 12, 13] have been developed
to group fine-grained tasks into coarse-grained tasks so that
the number of computational activities is reduced and so that
their computational granularity is increased. This reduced the
(mostly scheduling related) system overheads. However, there
are several challenges that have not yet been addressed.

A scientific workflow is typically represented as a directed
acyclic graph (DAG). The nodes represent computations and
the edges describe data and control dependencies between
them. Tasks within a level (or depth within a workflow DAG)
may have different runtimes. Proposed task clustering tech-
niques that merge tasks within a level without considering the
runtime variance may cause load imbalance, i.e., some clus-

∗Corresponding address: USC Information Sciences Institute, 4676 Admi-
ralty Way Ste 1001, Marina del Rey, CA, USA, 90292, Tel: +1 310 448-8408

Email addresses: weiweich@acm.org (Weiwei Chen),
rafsilva@isi.edu (Rafael Ferreira da Silva), deelman@isi.edu (Ewa
Deelman), rizos@cs.man.ac.uk (Rizos Sakellariou)

tered jobs may be composed of short running tasks while oth-
ers of long running tasks. This imbalance delays the release
of tasks from the next level of the workflow, penalizing the
workflow execution with an overhead produced by the use of
inappropriate task clustering strategies [14]. A common tech-
nique to handle load imbalance is overdecomposition [15].
This method decomposes computational work into medium-
grained balanced tasks. Each task is coarse-grained enough
to enable efficient execution and reduce scheduling overheads,
while being fine-grained enough to expose significantly higher
application-level parallelism than what is offered by the hard-
ware.

Data dependencies between workflow tasks play an impor-
tant role when clustering tasks within a level. A data depen-
dency means that there is a data transfer between two tasks (out-
put data for one and input data for the other). Grouping tasks
without considering these dependencies may lead to data local-
ity problems, where output data produced by parent tasks are
poorly distributed. As a result, data transfer times and failure
probabilities increase. Therefore, we claim that data dependen-
cies of subsequent tasks should be considered.

We generalize these two challenges (Runtime Imbalance and
Dependency Imbalance) to the general task clustering load bal-
ance problem. We introduce a series of balancing methods to
address these challenges. However, there is a tradeoff between
runtime and data dependency balancing. For instance, balanc-
ing runtime may aggravate the Dependency Imbalance prob-
lem, and vice versa. Therefore, we propose a series of quanti-
tative metrics that reflect the internal structure (in terms of task
runtimes and dependencies) of the workflow and use them as a

Preprint submitted to Future Generation of Computer Systems September 11, 2014

criterion to select and balance the solutions.
In particular, we provide a novel approach to capture the im-

balance metrics. Traditionally, there are two approaches to im-
prove the performance of task clustering. The first one is a top-
down approach [16] that represents the clustering problem as a
global optimization problem and aims to minimize the overall
workflow execution time. However, the complexity of solving
such an optimization problem does not scale well since most
solutions are based on genetic algorithms. The second one is a
bottom-up approach [5, 11] that only examines free tasks to be
merged and optimizes the clustering results locally. In contrast,
our work extends these approaches to consider the neighboring
tasks including siblings, parents, and children, because such a
family of tasks has strong connections between them.

The quantitative metrics and balancing methods were intro-
duced and evaluated in [17] on five workflows. In this paper,
we extend this previous work by studying:
• the performance gain of using our balancing methods over

a baseline execution on a larger set of workflows;
• the performance gain over two additional task clustering

methods described in the literature [10, 11];
• the performance impact of the variation of the average data

size and number of resources;
• the performance impact of combining our balancing meth-

ods with vertical clustering.
The rest of the paper is organized as follows. Section 2 gives

an overview of the related work. Section 3 presents our work-
flow and execution environment models. Section 4 details our
heuristics and algorithms for balancing. Section 5 reports ex-
periments and results, and the paper closes with a discussion
and conclusions.

2. Related Work

System overhead analysis [18, 19] is a topic of great inter-
est in the distributed computing community. Stratan et al. [20]
evaluate in a real-world environment Grid workflow engines in-
cluding DAGMan/Condor and Karajan/Globus. Their method-
ology focuses on five system characteristics: overhead, raw per-
formance, stability, scalability, and reliability. They point out
that resource consumption in head nodes should not be ignored
and that the main bottleneck in a busy system is often the head
node. Prodan et al. [19] offered a complete Grid workflow over-
head classification and a systematic measurement of overheads.
In Chen et al. [4], we extended [19] by providing a measure-
ment of major overheads imposed by workflow management
systems and execution environments and analyzed how exist-
ing optimization techniques improve the workflow runtime by
reducing or overlapping overheads. The prevalent existence of
system overheads is an important reason why task clustering
provides significant performance improvement for workflow-
based applications. In this chapter, we aim to further improve
the performance of task clustering under imbalanced load.

The low performance of fine-grained tasks is a common
problem in widely distributed platforms where the scheduling
overhead and queuing times at resources are high, such as Grid

and Cloud systems. Several works have addressed the control
of task granularity of bags of tasks. For instance, Muthuvelu et
al. [5] proposed a clustering algorithm that groups bags of tasks
based on their runtime—tasks are grouped up to the resource
capacity. Later, they extended their work [6] to determine task
granularity based on task file size, CPU time, and resource con-
straints. Recently, they proposed an online scheduling algo-
rithm [7, 8] that groups tasks based on resource network utiliza-
tion, user’s budget, and application deadline. Ng et al. [9] and
Ang et al. [10] introduced bandwidth in the scheduling frame-
work to enhance the performance of task scheduling. Longer
tasks are assigned to resources with better bandwidth. Liu
and Liao [11] proposed an adaptive fine-grained job schedul-
ing algorithm to group fine-grained tasks according to process-
ing capacity and bandwidth of the current available resources.
Although these techniques significantly reduce the impact of
scheduling and queuing time overhead, they do not consider
data dependencies.

Task granularity control has also been addressed in scien-
tific workflows. For instance, Singh et al. [12] proposed level-
and label-based clustering. In level-based clustering, tasks at
the same level of the workflow can be clustered together. The
number of clusters or tasks per cluster are specified by the user.
In the label-based clustering method, the user labels tasks that
should be clustered together. Although their work considers
data dependencies between workflow levels, it is done manu-
ally by the users, which is prone to errors and it is not scalable.
Recently, Ferreira da Silva et al. [13, 21] proposed task group-
ing and ungrouping algorithms to control workflow task gran-
ularity in a non-clairvoyant and online context, where none or
few characteristics about the application or resources are known
in advance. Their work significantly reduced scheduling and
queuing time overheads, but did not consider data dependen-
cies.

A plethora of balanced scheduling algorithms have been
developed in the networking and operating system domains.
Many of these schedulers have been extended to the hierarchi-
cal setting. Lifflander et al. [15] proposed to use work stealing
and a hierarchical persistence-based rebalancing algorithm to
address the imbalance problem in scheduling. Zheng et al. [22]
presented an automatic hierarchical load balancing method that
overcomes the scalability challenges of centralized schemes
and poor solutions of traditional distributed schemes. There
are other scheduling algorithms [2] that indirectly achieve
load balancing of workflows through makespan minimization.
However, the benefit that can be achieved through traditional
scheduling optimization is limited by its complexity. The per-
formance gain of task clustering is primarily determined by
the ratio between system overheads and task runtime, which is
more substantial in modern distributed systems such as Clouds
and Grids.

Workflow patterns [26, 3, 27] are used to capture and abstract
the common structure within a workflow and they give insights
on designing new workflows and optimization methods. Yu and
Buyya [26] proposed a taxonomy that characterizes and classi-
fies various approaches for building and executing workflows
on Grids. They also provided a survey of several representative

2

Grid workflow systems developed by various projects world-
wide to demonstrate the comprehensiveness of the taxonomy.
Juve et al. [3] provided a characterization of workflow from
six scientific applications and obtained task-level performance
metrics (I/O, CPU, and memory consumption). They also pre-
sented an execution profile for each workflow running at a typ-
ical scale and managed by the Pegasus workflow management
system [28, 32, 25]. Liu et al. [27] proposed a novel pattern
based time-series forecasting strategy which utilizes a period-
ical sampling plan to build representative duration series. We
illustrate the relationship between the workflow patterns (asym-
metric or symmetric workflows) and the performance of our
balancing algorithms.

Some work in the literature has further attempted to define
and model workflow characteristics with quantitative metrics.
In [29], the authors proposed a robustness metric for resource
allocation in parallel and distributed systems and accordingly
customized the definition of robustness. Tolosana et al. [30]
defined a metric called Quality of Resilience to assess how re-
silient workflow enactment is likely to be in the presence of fail-
ures. Ma et al. [31] proposed a graph distance based metric for
measuring the similarity between data oriented workflows with
variable time constraints, where a formal structure called time
dependency graph (TDG) is proposed and further used as repre-
sentation model of workflows. Similarity comparison between
two workflows can be reduced to computing the similarity be-
tween TDGs. In this work, we develop quantitative metrics to
measure the severity of the imbalance problem in task cluster-
ing and then use the results to guide the selection of different
task clustering methods.

3. Model and Design

A workflow is modeled as a directed acyclic graph (DAG),
where each node in the DAG often represents a workflow task
(t), and the edges represent dependencies between the tasks that
constrain the order in which tasks are executed. Dependencies
typically represent data-flow dependencies in the application,
where the output files produced by one task are used as inputs
of another task. Each task is a computational program and a
set of parameters that need to be executed. This model fits
several workflow management systems such as Pegasus [32],
Askalon [33], Taverna [34] and Galaxy [23]. In this paper, we
assume that there is only one execution site with multiple com-
pute resources, such as virtual machines on the clouds.

Figure 1 shows a typical workflow execution environment.
The submit host prepares a workflow for execution (clustering,
mapping, etc.), and worker nodes, at an execution site, execute
jobs individually. The main components are introduced below:

Workflow Mapper. Generates an executable workflow based on
an abstract workflow [28] provided by the user or workflow
composition system. It also restructures the workflow to op-
timize performance and adds tasks for data management and
provenance information generation. The Workflow Mapper
also merges small tasks together into a job such that system

Figure 1: A workflow system model.

overheads are reduced (task clustering). A job is a single exe-
cution unit in the workflow execution systems and is composed
of one or more tasks.

Workflow Engine. Executes jobs defined by the workflow in or-
der of their dependencies. Only jobs that have all their parent
jobs completed are submitted to the Job Scheduler. The elapsed
time from when a job is released (all of its parents have com-
pleted successfully) to when it is submitted to the job scheduler
is denoted as the workflow engine delay.

Job Scheduler and Local Queue. Manage individual workflow
jobs and supervise their execution on local and remote re-
sources. The scheduler relies on the resources (compute, stor-
age, and network) defined in the executable workflow to per-
form computations. The elapsed time from when a task is sub-
mitted to the job scheduler to when it starts its execution in a
worker node is denoted as the queue delay. It reflects both the
efficiency of the job scheduler and resource availability.

Job Wrapper. Extracts tasks from clustered jobs and executes
them at the worker nodes. The clustering delay is the elapsed
time of the extraction process.

Figure 2: Extending DAG to o-DAG (s denotes a system overhead).

We extend the DAG model to be overhead aware (o-DAG).
System overheads play an important role in workflow execu-
tion and constitute a major part of the overall runtime when
tasks are poorly clustered [4]. Figure 2 shows how we augment

3

a DAG to be an o-DAG with the capability to represent sys-
tem overheads (s) such as workflow engine and queue delays.
In addition, system overheads also include data transfer delays
caused by staging-in and staging-out data. This classification
of system overheads is based on our prior study on workflow
analysis [4].

With an o-DAG model, we can explicitly express the process
of task clustering. In this paper, we address horizontal and ver-
tical task clustering. Horizontal Clustering (HC) merges mul-
tiple tasks that are at the same horizontal level of the workflow,
in which the horizontal level of a task is defined as the longest
distance from the entry task(s) of the DAG to this task (an entry
task has no parents). Vertical Clustering (VC) merges tasks
within a pipeline of the workflow. Tasks in the same pipeline
share a single-parent-single-child relationship, which means a
task ta is the unique parent of a task tb, which is the unique child
of ta.

Figure 3 shows a simple example of how to perform HC,
in which two tasks t2 and t3, without a data dependency be-
tween them, are merged into a clustered job j1. A job j is
a single execution unit composed by one or multiple task(s).
Job wrappers are commonly used to execute clustered jobs, but
they add an overhead denoted by the clustering delay c. The
clustering delay measures the difference between the sum of
the actual task runtimes and the job runtime seen by the job
scheduler. After horizontal clustering, t2 and t3 in j1 can be ex-
ecuted in sequence or in parallel, if parallelism on one compute
node is supported. In this paper, we consider sequential execu-
tions only. Given a single resource, the overall runtime for the
workflow in Figure 3 (left) is runtimel =

∑4
i=1(si + ti), and the

overall runtime for the clustered workflow in Figure 3 (right) is
runtimer = s1 + t1 + s2 +c1 + t2 + t3 + s4 + t4. runtimel > runtimer

as long as c1 < s3, which is the case in many distributed sys-
tems since the clustering delay within a single execution node
is usually shorter than the scheduling overhead across different
execution nodes.

Figure 3: An example of horizontal clustering (color indicates the horizontal
level of a task).

Figure 4 illustrates an example of vertical clustering, in
which tasks t2, t4, and t6 are merged into j1, while tasks t3,
t5, and t7 are merged into j2. Similarly, clustering delays c2 and
c3 are added to j1 and j2 respectively, but system overheads s4,
s5, s6, and s7 are removed.

Figure 4: An example of vertical clustering.

4. Balanced Clustering

Task clustering has been widely used to address the low per-
formance of very short running tasks on platforms where the
system overhead is high, such as distributed computing infras-
tructures. However, up to now, techniques do not consider the
load balance problem. In particular, merging tasks within a
workflow level without considering the runtime variance may
cause load imbalance (Runtime Imbalance), or merging tasks
without considering their data dependencies may lead to data
locality problems (Dependency Imbalance). In this section, we
introduce metrics that quantitatively capture workflow charac-
teristics to measure runtime and dependence imbalances. We
then present methods to handle the load balance problem.

4.1. Imbalance metrics

Runtime Imbalance describes the difference of the task/job
runtime of a group of tasks/jobs. In this work, we denote
the Horizontal Runtime Variance (HRV) as the ratio of the
standard deviation in task runtime to the average runtime of
tasks/jobs at the same horizontal level of a workflow. At the
same horizontal level, the job with the longest runtime often
controls the release of the next level jobs. A high HRV value
means that the release of next level jobs has been delayed.
Therefore, to improve runtime performance, it makes sense to
reduce the standard deviation of job runtime. Figure 5 shows
an example of four independent tasks t1, t2, t3 and t4 where
the task runtime of t1 and t2 is 10 seconds, and the task run-
time of t3 and t4 is 30 seconds. In the Horizontal Clustering
(HC) approach, a possible clustering result could be to merge
t1 and t2 into a clustered job, and t3 and t4 into another. This
approach results in imbalanced runtime, i.e., HRV > 0 (Fig-
ure 5-top). In contrast, a balanced clustering strategy should try
its best to evenly distribute task runtime among jobs as shown
in Figure 5 (bottom). A smaller HRV means that the runtime
of tasks within a horizontal level is more evenly distributed and

4

therefore it is less necessary to use runtime-based balancing al-
gorithms. However, runtime variance is not able to capture how
symmetric the structure of the dependencies between tasks is.

Figure 5: An example of Horizontal Runtime Variance.

Dependency Imbalance means that the task clustering at
one horizontal level forces the tasks at the next level (or even
subsequent levels) to have severe data locality problems and
thus loss of parallelism. For example, in Figure 6, we show
a two-level workflow composed of four tasks in the first level
and two in the second. Merging t1 with t3 and t2 with t4 (im-
balanced workflow in Figure 6) forces t5 and t6 to transfer files
from two locations and wait for the completion of t1, t2, t3, and
t4. A balanced clustering strategy groups tasks that have the
maximum number of child tasks in common. Thus, t5 can start
to execute as soon as t1 and t2 are completed, and so can t6. To
quantitatively measure the Dependency Imbalance of a work-
flow, we propose two metrics: (i) Impact Factor Variance, and
(ii) Distance Variance.

Figure 6: An example of Dependency Imbalance.

We define the Impact Factor Variance (IFV) of tasks as the
standard deviation of their impact factors. The Impact Factor

(IF) of a task tu is defined as follows:

IF(tu) =
∑

tv∈Child(tu)

IF(tv)
||Parent(tv)||

(1)

where Child(tu) denotes the set of child tasks of tu, and
||Parent(tv)|| the number of parent tasks of tv. The Impact Factor
aims to capture the similarity of tasks/jobs in a graph by mea-
suring their relative impact factor or importance to the entire
graph. Tasks with similar impact factors are merged together,
so that the workflow structure tends to be more “even” or sym-
metric. For simplicity, we assume the IF of a workflow exit
task (a task without children, e.g. t5 in Figure 6) is 1.0. Con-
sider the two workflows presented in Figure 7. The IF for each
of t1, t2, t3, and t4 is computed as follows:

IF(t7) = 1.0, IF(t6) = IF(t5) = IF(t7)/2 = 0.5
IF(t1) = IF(t2) = IF(t5)/2 = 0.25
IF(t3) = IF(t4) = IF(t6)/2 = 0.25

Thus, IFV(t1, t2, t3, t4) = 0. In contrast, the IF for t1′ , t2′ , t3′ ,
and t4′ is:

IF(t7′) = 1.0, IF(t6′) = IF(t5′) = IF(t1′) = IF(t7′)/2 = 0.5
IF(t2′) = IF(t3′) = IF(t4′) = IF(t6′)/3 = 0.17

Therefore, the IFV value for t1′ , t2′ , t3′ , t4′ is 0.17, which pre-
dicts that it is likely to be less symmetric than the workflow in
Figure 7 (left). In this paper, we use HIFV (Horizontal IFV) to
indicate the IFV of tasks at the same horizontal level. The time
complexity of calculating the IF of all the tasks of a workflow
with n tasks is O(n).

Figure 7: Example of workflows with different data dependencies (For better
visualization, we do not show system overheads in the rest of the paper).

Distance Variance (DV) describes how ‘close’ tasks are to
each other. The distance between two tasks/jobs is defined as
the sum of the distance to their closest common successor. If
they do not have a common successor, the distance is set to
infinity. For a group of n tasks/jobs, the distance between them
is represented by a n × n matrix D, where an element D(u, v)
denotes the distance between a pair of tasks/jobs u and v. For
any workflow structure, D(u, v) = D(v, u) and D(u, u) = 0, thus
we ignore the cases when u ≥ v. Distance Variance is then
defined as the standard deviation of all the elements D(u, v) for
u < v. The time complexity of calculating all the values of D of
a workflow with n tasks is O(n2).

Similarly, HDV indicates the DV of a group of tasks/jobs
at the same horizontal level. For example, Table 1 shows the
distance matrices of tasks from the first level for both workflows

5

of Figure 7 (D1 for the workflow in the left, and D2 for the
workflow in the right). HDV for t1, t2, t3, and t4 is 1.03, and
for t1′ , t2′ , t3′ , and t4′ is 1.10. In terms of distance variance, D1
is more “even” than D2. A smaller HDV means the tasks at
the same horizontal level are more equally “distant” from each
other and thus the workflow structure tends to be more “even”
and symmetric.

D1 t1 t2 t3 t4
t1 0 2 4 4
t2 2 0 4 4
t3 4 4 0 2
t4 4 4 2 0

D2 t′1 t′2 t′3 t′4
t′1 0 4 4 4
t′2 4 0 2 2
t′3 4 2 0 2
t′4 4 2 2 0

Table 1: Distance matrices of tasks from the first level of workflows in Figure 7.

In conclusion, runtime variance and dependency variance of-
fer a quantitative and comparable tool to measure and evaluate
the internal structure of a workflow.

4.2. Balanced clustering methods

In this subsection, we introduce our balanced clustering
methods used to improve the runtime and dependency balances
in task clustering. We first present the basic runtime-based clus-
tering method, and then two other balancing methods that ad-
dress the dependency imbalance problem.

Algorithm 1 Horizontal Runtime Balancing algorithm.
Require: W: workflow; R: number of jobs per horizontal level
1: procedure Clustering(W,R)
2: for level < depth(W) do
3: T L← GetTasksAtLevel(W, level) . Partition W based on depth
4: C ← T L.size()/R . C is number of tasks per job in this level
5: CL← Merge(T L,C,R) . Returns a list of clustered jobs
6: W ← W − T L + CL . Merge dependencies as well
7: end for
8: end procedure
9: procedure Merge(T L,C,R)

10: for i < R do
11: Ji ←{} . An empty job
12: end for
13: CL←{} . An empty list of clustered jobs
14: Sort T L in descending of runtime
15: for all t in T L do
16: J ← the job with shortest runtime and less than C tasks
17: J.add (t) . Adds the task to the shortest job
18: end for
19: for i < R do
20: CL.add(Ji)
21: end for
22: return CL
23: end procedure

Horizontal Runtime Balancing (HRB) aims to evenly dis-
tribute task runtime among clustered jobs. Tasks with the
longest runtime are added to the job with the shortest run-
time. Algorithm 1 shows the pseudocode of HRB. This greedy
method is used to address the load balance problem caused by
runtime variance at the same horizontal level. Figure 8 shows
an example of HRB where tasks in the first level have different
runtimes and should be grouped into two jobs. HRB sorts tasks
in decreasing order of runtime, and then adds the task with the

highest runtime to the group with the shortest aggregated run-
time. Thus, t1 and t3, as well as t2 and t4 are merged together.
For simplicity, system overheads are not displayed.

Figure 8: An example of the HRB (Horizontal Runtime Balancing) method. By
solely addressing runtime variance, data locality problems may arise.

Algorithm 2 Horizontal Impact Factor Balancing algorithm.
Require: W: workflow; R: number of jobs per horizontal level
1: procedure Clustering(W,R)
2: for level < depth(W) do
3: T L← GetTasksAtLevel(W, level) . Partition W based on depth
4: C ← T L.size()/R . C is number of tasks per job in this level
5: CL← Merge(T L,C,R) . Returns a list of clustered jobs
6: W ← W − T L + CL . Merge dependencies as well
7: end for
8: end procedure
9: procedure Merge(T L,C,R)

10: for i < R do
11: Ji ←{} . An empty job
12: end for
13: CL←{} . An empty list of clustered jobs
14: Sort T L in descending of runtime
15: for all t in T L do
16: L← Sort all Ji with the similarity of impact factors with t
17: J ← the job with shortest runtime and less than C tasks in L
18: J.add (t)
19: end for
20: for i < R do
21: CL.add(Ji)
22: end for
23: return CL
24: end procedure

However, HRB may cause a dependency imbalance problem
since the clustering does not take data dependency into con-
sideration. To address this problem, we propose the Horizon-
tal Impact Factor Balancing (HIFB) and the Horizontal Dis-
tance Balancing (HDB) methods.

In HRB, candidate jobs within a workflow level are sorted by
their runtime, while in HIFB jobs are first sorted based on their
similarity of IF, then based on runtime. Algorithm 2 shows the
pseudocode of HIFB. For example, in Figure 9, t1 and t2 have
IF = 0.25, while t3, t4, and t5 have IF = 0.16. HIFB selects a
list of candidate jobs with the same IF value, and then HRB is
performed to select the shortest job. Thus, HIFB merges t1 and
t2 together, as well as t3 and t4.

However, HIFB is often suitable for workflows with an asym-
metric structure. A symmetric workflow structure means there
exists a (usually vertical) division of the workflow graph such
that one part of the workflow is a mirror of the other part.
For symmetric workflows, such as the one shown in Figure 8,
the IF value for all tasks of the first level will be the same

6

Algorithm 3 Horizontal Distance Balancing algorithm.
Require: W: workflow; R: number of jobs per horizontal level
1: procedure Clustering(W,C)
2: for level < depth(W) do
3: T L← GetTasksAtLevel(W, level) . Partition W based on depth
4: C ← T L.size()/R . C is number of tasks per job in this level
5: CL← Merge(T L,C,R) . Returns a list of clustered jobs
6: W ← W − T L + CL . Merge dependencies as well
7: end for
8: end procedure
9: procedure Merge(T L,C,R)

10: for i < R do
11: Ji ←{} . An empty job
12: end for
13: CL←{} . An empty list of clustered jobs
14: Sort T L in descending of runtime
15: for all t in T L do
16: L← Sort all Ji with the closest distance with t
17: J ← the job with shortest runtime and less than C tasks in L
18: J.add (t)
19: end for
20: for i < R do
21: CL.add(Ji)
22: end for
23: return CL
24: end procedure

Figure 9: An example of the HIFB (Horizontal Impact Factor Balancing)
method. Impact factors allow the detection of similarities between tasks.

(IF = 0.25), thus the method may also cause dependency im-
balance. In HDB, jobs are sorted based on the distance between
them and the targeted task t, then on their runtimes. Algo-
rithm 3 shows the pseudocode of HDB. For instance, in Fig-
ure 10, the distances between tasks D(t1, t2) = D(t3, t4) = 2,
while D(t1, t3) = D(t1, t4) = D(t2, t3) = D(t2, t4) = 4. Thus,
HDB merges a list of candidate tasks with the minimal distance
(t1 and t2, and t3 and t4). Note that even if the workflow is
asymmetric (Figure 9), HDB would obtain the same result as
with HIFB.

Figure 10: An example of the HDB (Horizontal Distance Balancing) method.
Measuring the distances between tasks avoids data locality problems.

There are cases where HDB would yield lower performance
than HIFB. For instance, let t1, t2, t3, t4, and t5 be the set of tasks
to be merged in the workflow presented in Figure 11. HDB does
not identify the difference in the number of parent/child tasks
between the tasks, since d(tu, tv) = 2,∀u, v ∈ [1, 5], u , v. On
the other hand, HIFB does distinguish between them since their
impact factors are slightly different. Example of such scientific
workflows include the LIGO Inspiral workflow [35], which is
used in the evaluation of this paper (Section 5.4).

Figure 11: A workflow example where HDB yields lower performance than
HIFB. HDB does not capture the difference in the number of parents/child tasks,
since the distances between tasks (t1, t2, t3, t4, and t5) are the same.

Table 2 summarizes the imbalance metrics and balancing
methods introduced in this section. These balancing methods
have different preferences when selecting a candidate job to be
merged. For instance, HIFB tends to group tasks that share sim-
ilar importance to the workflow structure, while HDB tends to
group tasks that reduce data transfers.

Imbalance Metrics abbr.
Horizontal Runtime Variance HRV
Horizontal Impact Factor Variance HIFV
Horizontal Distance Variance HDV
Balancing Methods abbr.
Horizontal Runtime Balancing HRB
Horizontal Impact Factor Balancing HIFB
Horizontal Distance Balancing HDB

Table 2: Summary of imbalance metrics and balancing methods.

4.3. Combining vertical clustering methods
In this subsection, we discuss how we combine the bal-

anced clustering methods presented above with vertical clus-
tering (VC). In pipelined workflows (single-parent-single-child
tasks), vertical clustering always yields improvement over a
baseline, non-clustered execution because merging reduces sys-
tem overheads and data transfers within the pipeline. Horizon-
tal clustering does not have the same guarantee since its per-
formance depends on the comparison of system overheads and
task durations. However, vertical clustering has a limited per-
formance improvement if the workflow does not have pipelines.
Therefore, we are interested in the analysis of the performance
impact of applying both vertical and horizontal clustering in

7

the same workflow. We combine these methods in two ways:
(i) VC-prior, and (ii) VC-posterior.

VC-prior. In this method, vertical clustering is performed first,
and then the balancing methods (HRB, HIFB, HDB, or HC) are
applied. Figure 12 shows an example where pipelined-tasks
are merged first, and then the merged pipelines are horizontally
clustered based on the runtime variance.

Figure 12: VC-prior: vertical clustering is performed first, and then the balanc-
ing methods.

Figure 13: VC-posterior: horizontal clustering (balancing methods) is per-
formed first, and then vertical clustering (but without changes).

VC-posterior. Here, horizontal balancing methods are first ap-
plied, and then vertical clustering is performed. Figure 13
shows an example where tasks are horizontally clustered first
based on the runtime variance, and then merged vertically.
However, since the original pipeline structures have been bro-
ken by horizontal clustering, VC does not perform any changes
to the workflow.

5. Evaluation

The experiments presented hereafter evaluate the perfor-
mance of our balancing methods when compared to an existing
and effective task clustering strategy named Horizontal Cluster-
ing (HC) [12], which is widely used by workflow management
systems such as Pegasus [28]. We also compare our meth-
ods with two heuristics described in literature: DFJS [5], and
AFJS [11]. DFJS groups bags of tasks based on the task du-
rations up to the resource capacity. AFJS is an extended ver-
sion of DFJS that is an adaptive fine-grained job scheduling
algorithm to group fine-grained tasks according to processing
capacity of the current available resources and bandwidth be-
tween these resources.

5.1. Scientific workflow applications

Five real scientific workflow applications are used in the ex-
periments: LIGO Inspiral analysis [35], Montage [36], Cyber-
Shake [37], Epigenomics [38], and SIPHT [39]. In this subsec-
tion, we describe each workflow application and present their
main characteristics and structures.

LIGO. Laser Interferometer Gravitational Wave Observatory
(LIGO) [35] workflows are used to search for gravitational
wave signatures in data collected by large-scale interferome-
ters. The observatories’ mission is to detect and measure gravi-
tational waves predicted by general relativity (Einstein’s theory
of gravity), in which gravity is described as due to the curvature
of the fabric of time and space. The LIGO Inspiral workflow is
a data-intensive workflow. Figure 14 shows a simplified version
of this workflow. The LIGO Inspiral workflow is separated into
multiple groups of interconnected tasks, which we call branches
in the rest of our paper. However, each branch may have a dif-
ferent number of pipelines as shown in Figure 14.

Figure 14: A simplified visualization of the LIGO Inspiral workflow.

Montage. Montage [36] is an astronomy application that is
used to construct large image mosaics of the sky. Input im-
ages are reprojected onto a sphere and overlap is calculated
for each input image. The application re-projects input images
to the correct orientation while keeping background emission
level constant in all images. The images are added by rectify-
ing them to a common flux scale and background level. Finally,
the reprojected images are co-added into a final mosaic. The
resulting mosaic image can provide a much deeper and detailed
understanding of the portion of the sky in question. Figure 15
illustrates a small Montage workflow. The size of the workflow
depends on the number of images used in constructing the de-
sired mosaic of the sky. The structure of the workflow changes
to accommodate increases in the number of inputs, which cor-
responds to an increase in the number of computational tasks.

Cybershake. CyberShake [37] is a seismology application that
calculates Probabilistic Seismic Hazard curves for geographic
sites in the Southern California region. It identifies all ruptures
within 200km of the site of interest and converts rupture defi-
nition into multiple rupture variations with differing hypocen-
ter locations and slip distributions. It then calculates synthetic
seismograms for each rupture variance, and peak intensity mea-
sures are then extracted from these synthetics and combined
with the original rupture probabilities to produce probabilistic

8

Figure 15: A simplified visualization of the Montage workflow.

seismic hazard curves for the site. Figure 16 shows an illustra-
tion of the Cybershake workflow.

Figure 16: A simplified visualization of the CyberShake workflow.

Epigenomics. The Epigenomics workflow [38] is a data-
parallel workflow. Initial data are acquired from the Illumina-
Solexa Genetic Analyzer in the form of DNA sequence lanes.
Each Solexa machine can generate multiple lanes of DNA se-
quences. These data are converted into a format that can be
used by sequence mapping software. The mapping software
can do one of two major tasks. It either maps short DNA reads
from the sequence data onto a reference genome, or it takes
all the short reads, treats them as small pieces in a puzzle and
then tries to assemble an entire genome. In our experiments,
the workflow maps DNA sequences to the correct locations in
a reference Genome. This generates a map that displays the se-
quence density showing how many times a certain sequence ex-
presses itself on a particular location on the reference genome.
Epigenomics is a CPU-intensive application and its simplified
structure is shown in Figure 17. Different to the LIGO Inspi-
ral workflow, each branch in Epigenomics has exactly the same
number of pipelines, which makes it more symmetric.

SIPHT. The SIPHT workflow [39] conducts a wide search for
small untranslated RNAs (sRNAs) that regulates several pro-
cesses such as secretion or virulence in bacteria. The kingdom-
wide prediction and annotation of sRNA encoding genes in-
volves a variety of individual programs that are executed in
the proper order using Pegasus [28]. These involve the pre-
diction of ρ-independent transcriptional terminators, BLAST

Figure 17: A simplified visualization of the Epigenomics workflow with multi-
ple branches.

(Basic Local Alignment Search Tools) comparisons of the in-
ter genetic regions of different replicons and the annotations of
any sRNAs that are found. A simplified structure of the SIPHT
workflow is shown in Figure 18.

Figure 18: A simplified visualization of the SIPHT workflow.

Number Average Average
Workflow of Tasks Data Size Task Runtime
LIGO 800 5 MB 228s
Montage 300 3 MB 11s
CyberShake 700 148 MB 23s
Epigenomics 165 355 MB 2952s
SIPHT 1000 360 KB 180s

Table 3: Summary of the scientific workflows characteristics.

Table 3 shows the summary of the main workflows charac-
teristics: number of tasks, average data size, and average task
runtimes for the five workflows. More detailed characteristics
could be found in [3].

5.2. Task clustering techniques

The experiments compare the performance of our balancing
methods to the Horizontal Clustering (HC) [12] technique, and
with two methods well known from the literature, DFJS [5] and
AFJS [11]. In this subsection, we briefly describe each of these
algorithms.

HC. Horizontal Clustering (HC) merges multiple tasks that are
at the same horizontal level of the workflow. The clustering

9

granularity (number of tasks within a cluster) of a clustered
job is controlled by the user, who defines either the number
of tasks per clustered job (clusters.size), or the number of clus-
tered jobs per horizontal level of the workflow (clusters.num).
This algorithm has been implemented and used in Pegasus [12].
For simplicity, we define clusters.num as the number of avail-
able resources. In our prior work [17], we have compared the
runtime performance with different clustering granularity. The
pseudocode of the HC technique is shown in Algorithm 4.

Algorithm 4 Horizontal Clustering algorithm.
Require: W: workflow; C: max number of tasks per job defined by clus-

ters.size or clusters.num
1: procedure Clustering(W,C)
2: for level < depth(W) do
3: T L← GetTasksAtLevel(W, level) . Partition W based on depth
4: CL← Merge(T L,C) . Returns a list of clustered jobs
5: W ← W − T L + CL . Merge dependencies as well
6: end for
7: end procedure
8: procedure Merge(T L,C)
9: J ← {} . An empty job

10: CL←{} . An empty list of clustered jobs
11: while T L is not empty do
12: J.add (T L.pop(C) . Pops C tasks that are not merged
13: CL.add(J)
14: end while
15: return CL
16: end procedure

DFJS. The dynamic fine-grained job scheduler (DFJS) was
proposed by Muthuvelu et al. [5]. The algorithm groups bags
of tasks based on their granularity size—defined as the process-
ing time of the task on the resource. Resources are ordered
by their decreasing values of capacity (in MIPS), and tasks are
grouped up to the resource capacity. This process continues un-
til all tasks are grouped and assigned to resources. Algorithm 5
shows the pseudocode of the heuristic.

Algorithm 5 DFJS algorithm.
Require: W: workflow; max.runtime: max runtime of clustered jobs
1: procedure Clustering(W,max.runtime)
2: for level <the depth of W do
3: T L← GetTasksAtLevel(W, level) . Partition W based on depth
4: CL← Merge(T L,max.runtime) . Returns a list of clustered jobs
5: W ← W − T L + CL . Merge dependencies as well
6: end for
7: end procedure
8: procedure Merge(T L,max.runtime)
9: J ← {} . An empty job

10: CL←{} . An empty list of clustered jobs
11: while T L is not empty do
12: t ← TC.pop() . Get a task that is not mereged
13: if J.runtime + t.runtime > max.runtime then
14: CL.add(J)
15: J ←{}
16: end if
17: J.add(t)
18: end while
19: return CL
20: end procedure

AFJS. The adaptive fine-grained job scheduler (AFJS) [11] is
an extension of DFJS. It groups tasks not only based on the
maximum runtime defined per cluster job, but also on the max-
imum data size per clustered job. The algorithm adds tasks to
a clustered job until the job’s runtime is greater than the max-
imum runtime or the job’s total data size (input + output) is
greater than the maximum data size. The AFJS heuristic pseu-
docode is shown in Algorithm 6.

Algorithm 6 AFJS algorithm.
Require: W: workflow; max.runtime: the maximum runtime for a clustered

jobs; max.datasize: the maximum data size for a clustered job
1: procedure Clustering(W,max.runtime)
2: for level <the depth of W do
3: T L← GetTasksAtLevel(W, level) . Partition W based on depth
4: CL← Merge(T L,max.runtime,max.datasize) . Returns a list of

clustered jobs
5: W ← W − T L + CL . Merge dependencies as well
6: end for
7: end procedure
8: procedure Merge(T L,max.runtime,max.datasize)
9: J ← {} . An empty job

10: CL←{} . An empty list of clustered jobs
11: while T L is not empty do
12: t ← TC.pop() . Get a task that is not mereged
13: if J.runtime + t.runtime > max.runtime OR J.datasize + t.datasize

> max.datasize then
14: CL.add(J)
15: J ←{}
16: end if
17: J.add(t)
18: end while
19: return CL
20: end procedure

DFJS and AFJS require parameter tuning (e.g. maximum
runtime per clustered job) to efficiently cluster tasks into coarse-
grained jobs. For instance, if the maximum runtime is too high,
all tasks may be grouped into a single job, leading to loss of
parallelism. In contrast, if the runtime threshold is too low, the
algorithms do not group tasks, leading to no improvement over
a baseline execution.

For comparison purposes, we performed a parameter study
in order to tune the algorithms for each workflow applica-
tion described in Section 5.1. Exploring all possible parame-
ter combinations is a cumbersome and exhaustive task. In the
original DFJS and AFJS works, these parameters are empiri-
cally chosen, however this approach requires deep knowledge
of the workflow applications. Instead, we performed a param-
eter tuning study, where we first estimated the upper bound of
max.runtime (n) as the sum of all task runtimes, and the lower
bound of max.runtime (m) as 1 second for simplicity. Data
points were divided into ten chunks and then we sample one
data point from each chunk. We then selected the chunk that
has the lowest makespan and set n and m as the upper and lower
bounds of the selected chunk, respectively. These steps were re-
peated until n and m had converged into a data point.

To demonstrate the correctness of our sampling approach in
practice, we show the relationship between the makespan and
the max.runtime for an example Montage workflow applica-
tion in Figure 19—experiment conditions are presented in Sec-

10

tion 5.3. Data points are divided into 10 chunks of 250s each
(for max.runtime). As the lower makespan values belongs to
the first chunk, n is updated to 250, and m to 1. The process
repeats until the convergence around max.runtime=180s. Even
though there are multiple local minimal makespan values, these
data points are close to each other, and the difference between
their values (on the order of seconds) is negligible.

0 500 1000 1500 2000 2500
1500

2000

2500

3000

3500

4000

4500

5000

Max.runtime(seconds)

M
a
k
e
s
p
a
n
(s

e
c
o
n
d
s
)

180

Figure 19: Relationship between the makespan of workflow and the specified
maximum runtime in DFJS (Montage).

For simplicity, in the rest of this paper we use DFJS* and
AFJS* to indicate the best estimated performance of DFJS
and AFJS respectively using the sampling approach described
above.

5.3. Experiment conditions
We adopted a trace-based simulation approach, where we ex-

tended our WorkflowSim [40] simulator with the balanced clus-
tering methods and imbalance metrics to simulate a controlled
distributed execution environment. WorkflowSim is a workflow
simulator that extends CloudSim [41] by providing support for
task clustering, task scheduling, and resource provisioning at
the workflow level. It has been recently used in multiple work-
flow studies [17, 42, 43] and its correctness has been verified
in [40].

The simulated computing platform is composed by 20 sin-
gle homogeneous core virtual machines (worker nodes), which
is the quota per user of some typical distributed environments
such as Amazon EC2 [44] and FutureGrid [45]. Amazon EC2
is a commercial, public cloud that has been widely used in dis-
tributed computing, in particular for scientific workflows [46].
FutureGrid is a distributed, high-performance testbed that pro-
vides scientists with a set of computing resources to develop
parallel, grid, and cloud applications. Each simulated virtual
machine (VM) has 512MB of memory and the capacity to pro-
cess 1,000 million instructions per second. The default network
bandwidth is 15MB per second according to the real environ-
ment in FutureGrid from, where our traces were collected. The
task scheduling algorithm is data-aware, i.e. tasks are sched-
uled to resources, which have the most input data available. By
default, we merge tasks at the same horizontal level into 20

clustered jobs, which is a simple selection of granularity con-
trol of the strength of task clustering. The study of granularity
size has been done in [17], which shows that such selection is
acceptable.

We collected workflow execution traces [3, 4] (including
overhead and task runtime information) from real runs (exe-
cuted on FutureGrid and Amazon EC2) of the scientific work-
flow applications described in Section 5.1. The traces are
used as input to the Workflow Generator toolkit [47] to gen-
erate synthetic workflows. This allows us to perform simu-
lations with several different application configurations under
controlled conditions. The toolkit uses the information gath-
ered from actual scientific workflow executions to generate syn-
thetic workflows resembling those used by real world scientific
applications. The number of inputs to be processed, the num-
ber of tasks in the workflow, and their composition determine
the structure of the generated workflow. Such an approach of
traced-based simulation allows us to utilize real traces and vary
the system parameters (i.e., the number of VMs) and workflow
(i.e., avg. data size) to fully explore the performance of our
balanced task clustering algorithms.

Three sets of experiments were conducted. Experiment 1
evaluated the performance gain (µ) of our balancing methods
(HRB, HIFB, and HDB) over a baseline execution that had
no task clustering. We define the performance gain (µ) over
a baseline execution as the performance of the balancing meth-
ods related to the performance of an execution without cluster-
ing. Thus, for values of µ > 0 our balancing methods perform
better than the baseline execution. Otherwise, the balancing
methods perform poorer. The goal of the experiment is to iden-
tify conditions, where each method works best and worst. In
addition, we also evaluate the performance gain of using work-
flow structure metrics (HRV, HIFV, and HDV), which require
less a-priori knowledge about task and resource characteris-
tics, than task clustering techniques in literature (HC, DFJS*,
and AFJS*).

Experiment 2 evaluates the performance impact of the vari-
ation of average data size (defined as the average of all the in-
put and output data) and the number of resources available in
our balancing methods for one scientific workflow application
(LIGO). The original average data size (both input and output
data) of the LIGO workflow is approximately 5MB as shown in
Table 3. In this experiment, we increase the average data size
up to 500MB to study the behavior of data-intensive workflows.
We control resource contention by varying the number of avail-
able resources (VMs). High resource contention is achieved
by setting the number of available VMs to 5, which represents
fewer than 10% of the required resources to compute all tasks
in parallel. On the other hand, low contention is achieved when
the number of available VMs is increased to 25, which repre-
sents about 50% of the required resources.

Experiment 3 evaluates the influence of combining our hor-
izontal clustering methods with vertical clustering (VC). We
compare the performance gain under four scenarios: (i) VC-
prior, VC is first performed and then HRB, HIFB, or HDB; (ii)
VC-posterior, horizontal methods are performed first and then
VC; (iii) No-VC, horizontal methods only; and (iv) VC-only, no

11

horizontal methods. Table 4 shows the results of combining VC
with horizontal methods. For example, VC-HIFB indicates we
perform VC first and then HIFB.

Combination HIFB HDB HRB HC
VC-prior VC-HIFB VC-HDB VC-HRB VC-HC
VC-posterior HIFB-VC HDB-VC HRB-VC HC-VC
VC-only VC VC VC VC
No-VC HIFB HDB HRB HC

Table 4: Combination Results. ‘-’ indidates the order of performing these algo-
rithms, i.e., VC-HIFB indicates we perform VC first and then HIFB.

5.4. Results and discussion
Experiment 1. Figure 20 shows the performance gain µ of the
balancing methods for the five workflow applications over a
baseline execution. All clustering techniques significantly im-
prove (up to 48%) the runtime performance of all workflow ap-
plications, except HC for SIPHT. The reason is that SIPHT has
a high HRV compared to other workflows as shown in Table 5.
This indicates that the runtime imbalance problem in SIPHT
is more significant and thus it is harder for HC to improve the
workflow performance. Cybershake and Montage workflows
have the highest gain, but nearly the same improvement inde-
pendent of the algorithm. This is due to their symmetric struc-
ture and low values for the imbalance metrics and the distance
metrics as shown in Table 5. Epigenomics and LIGO have a
higher average task runtime and thus a lower performance gain.
However, Epigenomices and LIGO have a higher variance of
runtime and of distance and thus the performance improvement
of HRB and HDB is better than that of HC, which is more
significant compared to other workflows. In particular, each
branch of the Epigenomics workflow (Figure 17) has the same
number of pipelines, consequently the IF values of tasks in the
same horizontal level are the same. Therefore, HIFB cannot
distinguish tasks from different branches, which leads the sys-
tem to a dependency imbalance problem. In such cases, HDB
captures the dependency between tasks and yields better perfor-
mance. Furthermore, Epigenomics and LIGO workflows have
a high runtime variance, which has a higher impact on the per-
formance than data dependency. Last, the performance gain of
our balancing methods is in most cases better than the well-
tuned algorithms DFJS* and AFJS*. The other benefit is that
our balancing methods do not require parameter tuning, which
is cumbersome in practice.

Experiment 2. Figure 21 shows the performance gain µ of
HRB, HIFB, HDB, and HC over a baseline execution for the
LIGO Inspiral workflow. We chose LIGO because the per-
formance improvement among these balancing methods is sig-
nificantly different for LIGO compared to other workflows as
shown in Figure 20. For small data sizes (up to 100 MB), the
application is CPU-intensive and runtime variations have higher
impact on the performance of the application. Thus, HRB per-
forms better than any other balancing method. When increasing
the average data size, the application turns into a data-intensive
application, i.e. data dependencies have a higher impact on

0

10

20

30

40

50

Cybershake Epigenomics LIGO Montage SIPHT

µ
 %

HRB HIFB HDB HC DFJS* AFJS*

Figure 20: Experiment 1: performance gain (µ) over a baseline execution for six
algorithms (* indicates the tuned performance of DFJS and AFJS). By default,
we have 20 VMs.

the application’s performance. HIFB captures both the work-
flow structure and task runtime information, which reduces data
transfers between tasks and consequently yields a better per-
formance improvement over the baseline execution. HDB cap-
tures the strong connections between tasks (data dependencies),
while HIFB captures the weak connections (similarity in terms
of structure). In some cases, HIFV is zero while HDV is less
likely to be zero. Most of the LIGO branches are like the
ones in Figure 14, however, as mentioned in Section 4.2, the
LIGO workflow has a few branches that depend on each other
as shown in Figure 11. Since most branches are isolated from
each other, HDB initially performs well compared to HIFB.
However, as the average data size is increased, the performance
of HDB is more and more constrained by the interdependent
branches as shown in Figure 21. HC shows a nearly constant
performance despite of the average data size, due to its random
merging of tasks at the same horizontal level regardless of the
runtime and data dependency information.

0

5

10

15

20

5 MB 50 MB 100 MB 250 MB 400 MB 500 MB

µ
 %

HRB HIFB HDB HC

Figure 21: Experiment 2: performance gain (µ) over a baseline execution with
different average data sizes for the LIGO workflow. The original avg. data size
is 5MB.

Figures 22 and 23 show the performance gain µwhen varying
the number of available VMs for the LIGO workflows with an
average data size of 5MB (CPU-intensive) and 500MB (data-
intensive) respectively. In high contention scenarios (small
number of available VMs), all methods perform similarly when

12

of Tasks HRV HIFV HDV
Level (a) CyberShake

1 4 0.309 0.03 1.22
2 347 0.282 0.00 0.00
3 348 0.397 0.00 26.20
4 1 0.000 0.00 0.00

Level (b) Epigenomics
1 3 0.327 0.00 0.00
2 39 0.393 0.00 578
3 39 0.328 0.00 421
4 39 0.358 0.00 264
5 39 0.290 0.00 107
6 3 0.247 0.00 0.00
7 1 0.000 0.00 0.00
8 1 0.000 0.00 0.00
9 1 0.000 0.00 0.00

Level (c) LIGO
1 191 0.024 0.01 10097
2 191 0.279 0.01 8264
3 18 0.054 0.00 174
4 191 0.066 0.01 5138
5 191 0.271 0.01 3306
6 18 0.040 0.00 43.70

Level (d) Montage
1 49 0.022 0.01 189.17
2 196 0.010 0.00 0.00
3 1 0.000 0.00 0.00
4 1 0.000 0.00 0.00
5 49 0.017 0.00 0.00
6 1 0.000 0.00 0.00
7 1 0.000 0.00 0.00
8 1 0.000 0.00 0.00
9 1 0.000 0.00 0.00

Level (e) SIPHT
1 712 3.356 0.01 53199
2 64 1.078 0.01 1196
3 128 1.719 0.00 3013
4 32 0.000 0.00 342
5 32 0.210 0.00 228
6 32 0.000 0.00 114

Table 5: Experiment 1: average number of tasks, and average values of imbal-
ance metrics (HRV, HIFV, and HDV) for the five workflow applications (before
task clustering).

the application is CPU-intensive (Figure 22), i.e., runtime vari-
ance and data dependency have a smaller impact than the sys-
tem overhead (e.g. queuing time). As the number of available
resources increases, and the data size is too small, runtime vari-
ance has more impact on the application’s performance, thus
HRB performs better than the others. Note that as HDB cap-
tures strong connections between tasks, it is less sensitive to the
runtime variations than HIFB, thus it yields better performance.
For the data-intensive case (Figure 23), data dependencies have
more impact on the performance than the runtime variation
does. In particular, in the high contention scenario HDB per-
forms poor clustering leading the system to data locality prob-
lems compared to HIFB due to the interdependent branches in
the LIGO workflow. However, the method still improves the
execution time of the workflow over the baseline case due to

the high system overhead. Similarly to the CPU-intensive case,
under low contention, runtime variance increases its importance
and then HRB performs better.

0

10

20

5 10 15 20 25

Number of VMs

µ
 %

HRB HIFB HDB HC

Figure 22: Experiment 2: performance gain (µ) over baseline execution with
different number of resources for the LIGO workflow (average data size is
5MB).

0

10

20

30

5 10 15 20 25

Number of VMs

µ
 %

HRB HIFB HDB HC

Figure 23: Experiment 2: performance gain (µ) over baseline execution with
different number of resources for the LIGO workflow (average data size is
500MB).

To evaluate the performance of our algorithms in a larger
scale scenario, we increase the number of tasks in LIGO
to 8,000 (following the same structure rules enforced by the
WorkflowGenerator toolkit) and simulate the execution with
[200, 1800] VMs. We choose 1,800 as the maximum number
of VMs because the LIGO workflow has a maximum width of
1892 tasks (at the same level). Figure 24 shows the perfor-
mance gain over the baseline execution with different numbers
of resources for the LIGO workflow. In a small scale (i.e., 200
VMs), HRB and HDB perform slightly better than the other
methods. However, as the scale increases, HDB outperforms
the other methods. Similarly to the results obtained in Fig-
ure 23, HRB performs worse in larger scales since the runtime
imbalance is no longer a major issue (HRV is too small) and
thus the dependency imbalance becomes the bottleneck. Within
the two dependency-oriented optimization methods, HDB out-
performs HIFB since HDB captures the strong relation between
tasks (distance), while HIFB uses the impact factor based met-
rics to capture the structural similarity.

13

0

20

40

60

200 400 600 800 1000 1200 1400 1600 1800

Number of VMs

µ
 %

HRB HIFB HDB HC

Figure 24: Experiment 2: performance gain (µ) over baseline execution with
different number of resources for the LIGO workflow (number of tasks is 8000).

Experiment 3. Figure 25 shows the performance gain µ for the
Cybershake workflow over the baseline execution when using
vertical clustering (VC) combined to our balancing methods.
Vertical clustering does not show any improvement for the Cy-
bershake workflow (µ(VC-only) ≈ 0.2%), because the work-
flow structure has no explicit pipelines (see Figure 16). Simi-
larly, VC does not improve the SIPHT workflow due to the lack
of pipelines in its structure (Figure 18). Thus, results for this
workflow are omitted.

0

10

20

30

40

50

HRB HIFB HDB HC VC−only

µ
 %

VC−prior VC−posterior No−VC VC−only

Figure 25: Experiment 3: performance gain (µ) for the Cybershake workflow
over baseline execution when using vertical clustering (VC).

Figure 26 shows the performance gain µ for the Montage
workflow. In this workflow, vertical clustering is often per-
formed on the two pipelines (Figure 15). These pipelines have
only a single task in each workflow level, thereby no horizontal
clustering is performed on the pipelines. As a result, whether
performing vertical clustering prior or after horizontal cluster-
ing, the result is about the same. Since VC and horizontal clus-
tering methods are independent of each other in this case, we
should still do VC in combination with horizontal clustering to
achieve further performance improvement.

The performance gain µ for the LIGO workflow is shown in
Figure 27. Vertical clustering yields better performance gain
when it is performed prior to horizontal clustering (VC-prior).
The LIGO workflow structure (Figure 14) has several pipelines
that are primarily clustered vertically and thus system over-

0

10

20

30

40

50

HRB HIFB HDB HC VC−only

µ
 %

VC−prior VC−posterior No−VC VC−only

Figure 26: Experiment 3: performance gain (µ) for the Montage workflow over
baseline execution when using vertical clustering (VC).

0

5

10

15

20

HRB HIFB HDB HC VC−only

µ
 %

VC−prior VC−posterior No−VC VC−only

Figure 27: Experiment 3: performance gain (µ) for the LIGO workflow over
baseline execution when using vertical clustering (VC).

0

5

10

15

20

HRB HIFB HDB HC VC−only

µ
 %

VC−prior VC−posterior No−VC VC−only

Figure 28: Experiment 3: performance gain (µ) for the Epigenomics workflow
over baseline execution when using vertical clustering (VC).

heads (e.g. queuing and scheduling times) are reduced. Fur-
thermore, the runtime variance (HRV) of the clustered pipelines
increases, thus the balancing methods, in particular HRB, can
further improve the runtime performance by evenly distributing
task runtimes among clustered jobs. When vertical clustering
is performed a posteriori, pipelines are broken due to the hori-
zontal merging of tasks between pipelines neutralizing vertical
clustering improvements.

Similarly to the LIGO workflow, the performance gain µ
values for the Epigenomics workflow (see Figure 28) is better

14

when VC is performed a priori. This is due to several pipelines
inherent to the workflow structure (Figure 17). However, ver-
tical clustering has poorer performance if it is performed prior
to the HDB algorithm. The reason is the average task runtime
of Epigenomics is much larger than that of other workflows as
shown in Table. 3. Therefore, VC-prior generates very large
clustered jobs vertically and makes it difficult for horizontal
methods to improve further.

5.5. Compilation of the results
The experimental results show strong relations between the

proposed imbalance metrics and the performance improvement
of the balancing methods. HRV indicates the potential perfor-
mance improvement for HRB. The higher HRV, the more per-
formance improvement HRB is likely to have. Similarly, for
the workflows with symmetric structures (such as Epigenomics)
where HIFV and HDV values are low, neither HIFB nor HDB
performs well.

Based on the conclusions of the experimental evaluation, we
applied machine learning techniques on the result data to build a
decision tree that can be used to drive the development of policy
engines that can select a well performing balancing method. Al-
though our decision tree is tightly coupled to our results, it can
be used by online systems that implement the adaptive MAPE-
K loop [1, 21, 48], which will adjust the tree according to the
system behavior.

Figure 29: Decision tree for selection of the appropriate balancing method.

6. Conclusion and Future Work

We presented three task clustering methods that try to bal-
ance the workload across clusters and two vertical clustering
variants. We also defined three imbalance metrics to quantita-
tively measure workflow characteristics based on task runtime
variation (HRV), task impact factor (HIFV), and task distance
variance (HDV).

Three sets of experiment sets were conducted using traces
from five real workflow applications. The first experiment
aimed at measuring the performance gain over a baseline ex-
ecution without clustering. In addition, we compared our bal-
ancing methods with three algorithms described in literature.
Experimental results show that our methods yield a significant

improvement over a baseline execution, and that they have ac-
ceptable performance when compared to the performance of
the existing algorithms. The second experiment measured the
influence of the average data size and the number of avail-
able resources on the performance gain. In particular, results
showed that our methods have different sensitivity to data- and
computational-intensive workflows. Finally, the last experi-
ment evaluated the benefit of performing horizontal and vertical
clustering in the same workflow. Results showed that vertical
clustering can significantly improve pipeline-structured work-
flows, but that it is not suitable if the workflow has no explicit
pipelines.

We also studied the performance gains of all the proposed
horizontal methods with the increase of the number of VMs.
Figure 23 shows that HIFB mostly performs better than the
other methods with a small number of VMs (5∼25). How-
ever, with the increase of the scale (VM has increased from
200 to 1800) as indicated in Figure 24, HDP presents nearly
constant performance improvement over the baseline (around
40%), while all other methods including HIFB have dropped
to around 4%. This evidences the superiority of the proposed
methods as opposed to the baseline changed significantly de-
pending on the number of VMs.

The simulation-based evaluation also showed that the per-
formance improvement of the proposed balancing algorithms
(HRB, HDB and HIFB) is highly related to the metric values
(HRV, HDV and HIFV) that we introduced. For example, a
workflow with high HRV tends to have better performance im-
provement with HRB since HRB is used to balance the runtime
variance.

In the future, we plan to further analyze the imbalance met-
rics proposed. For instance, the values of the metrics presented
in this paper are not normalized, and thus their values per level
(HIFV, HDV, and HRV) are at different scales. Also, we plan to
analyze more workflow applications, particularly the ones with
asymmetric structures, to investigate the relationship between
workflow structures and the metric values.

Also, as shown in Figure 28, VC-prior can generate very
large clustered jobs vertically and makes it difficult for hori-
zontal methods to further improve the workflow performance.
Therefore, we aim to develop imbalance metrics for VC-prior
to avoid generating large clustered jobs, i.e., based on the accu-
mulated runtime of tasks in a pipeline.

As shown in our experimental results, the combination of our
balancing methods with vertical clustering has different sensi-
tivity to workflows with different graph structures and runtime
distribution. Therefore, a possible future work is the develop-
ment of a portfolio clustering algorithm, which chooses mul-
tiple clustering algorithms, and dynamically selects the most
suitable one according to the dynamic load.

Acknowledgements

This work was funded by NSF IIS-0905032 and NSF FutureGrid 0910812
awards. We thank Gideon Juve, Karan Vahi, Rajiv Mayani, and Mats Rynge
for their valuable help.

15

References

[1] R. Ferreira da Silva, G. Juve, E. Deelman, T. Glatard, F. Desprez,
D. Thain, B. Tovar, M. Livny, Toward fine-grained online task charac-
teristics estimation in scientific workflows, in: Proceedings of the 8th
Workshop on Workflows in Support of Large-Scale Science, WORKS
’13, ACM, 2013, pp. 58–67.

[2] L. Canon, E. Jeannot, R. Sakellariou and W. Zheng, Comparative Evalua-
tion Of The Robustness Of DAG Scheduling Heuristics, Grid Computing,
2008, pp. 73-84

[3] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, K. Vahi,
Characterizing and profiling scientific workflows, Vol. 29, 2013, pp. 682
– 692, special Section: Recent Developments in High Performance Com-
puting and Security.

[4] W. Chen, E. Deelman, Workflow overhead analysis and optimizations, in:
Proceedings of the 6th workshop on Workflows in support of large-scale
science, WORKS ’11, 2011, pp. 11–20.

[5] N. Muthuvelu, J. Liu, N. L. Soe, S. Venugopal, A. Sulistio, R. Buyya, A
dynamic job grouping-based scheduling for deploying applications with
fine-grained tasks on global grids, in: Proceedings of the 2005 Aus-
tralasian workshop on Grid computing and e-research - Volume 44, 2005,
pp. 41–48.

[6] N. Muthuvelu, I. Chai, C. Eswaran, An adaptive and parameterized job
grouping algorithm for scheduling grid jobs, in: Advanced Communica-
tion Technology, 2008. ICACT 2008. 10th International Conference on,
Vol. 2, 2008, pp. 975 –980.

[7] N. Muthuvelu, I. Chai, E. Chikkannan, R. Buyya, On-line task granular-
ity adaptation for dynamic grid applications, in: Algorithms and Archi-
tectures for Parallel Processing, Vol. 6081 of Lecture Notes in Computer
Science, 2010, pp. 266–277.

[8] N. Muthuvelu, C. Vecchiolab, I. Chaia, E. Chikkannana, R. Buyyab,
Task granularity policies for deploying bag-of-task applications on global
grids, Future Generation Computer Systems 29 (1) (2012) 170 – 181.

[9] W. K. Ng, T. Ang, T. Ling, C. Liew, Scheduling framework for
bandwidth-aware job grouping-based scheduling in grid computing,
Malaysian Journal of Computer Science 19 (2) (2006) 117–126.

[10] T. Ang, W. Ng, T. Ling, L. Por, C. Lieu, A bandwidth-aware job grouping-
based scheduling on grid environment, Information Technology Journal 8
(2009) 372–377.

[11] Q. Liu, Y. Liao, Grouping-based fine-grained job scheduling in grid com-
puting, in: First International Workshop on Education Technology and
Computer Science, Vol. 1, 2009, pp. 556 –559.

[12] G. Singh, M.-H. Su, K. Vahi, E. Deelman, B. Berriman, J. Good, D. S.
Katz, G. Mehta, Workflow task clustering for best effort systems with
pegasus, in: 15th ACM Mardi Gras Conference, 2008, pp. 9:1–9:8.

[13] R. Ferreira da Silva, T. Glatard, F. Desprez, On-line, non-clairvoyant op-
timization of workflow activity granularity on grids, in: F. Wolf, B. Mohr,
D. Mey (Eds.), Euro-Par 2013 Parallel Processing, Vol. 8097 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, 2013, pp. 255–
266.

[14] W. Chen, E. Deelman, R. Sakellariou, Imbalance optimization in scien-
tific workflows, in: Proceedings of the 27th international ACM confer-
ence on International conference on supercomputing, ICS ’13, 2013, pp.
461–462.

[15] J. Lifflander, S. Krishnamoorthy, L. V. Kale, Work stealing and
persistence-based load balancers for iterative overdecomposed applica-
tions, in: Proceedings of the 21st international symposium on High-
Performance Parallel and Distributed Computing, HPDC ’12, 2012, pp.
137–148.

[16] W. Chen, E. Deelman, Integration of workflow partitioning and resource
provisioning, in: Cluster, Cloud and Grid Computing (CCGrid), 2012
12th IEEE/ACM International Symposium on, 2012, pp. 764–768.

[17] W. Chen, R. Ferreira da Silva, E. Deelman, R. Sakellariou, Balanced task
clustering in scientific workflows, in: eScience (eScience), 2013 IEEE
9th International Conference on, 2013, pp. 188–195.

[18] P.-O. Ostberg, E. Elmroth, Mediation of service overhead in service-
oriented grid architectures, in: Grid Computing (GRID), 2011 12th
IEEE/ACM International Conference on, 2011, pp. 9–18.

[19] R. Prodan, T. Fabringer, Overhead analysis of scientific workflows in grid
environments, in: IEEE Transactions in Parallel and Distributed System,
Vol. 19, 2008.

[20] C. Stratan, A. Iosup, D. H. Epema, A performance study of grid workflow
engines, in: Grid Computing, 2008 9th IEEE/ACM International Confer-
ence on, IEEE, 2008, pp. 25–32.

[21] R. Ferreira da Silva, T. Glatard, F. Desprez, Controlling fairness and task
granularity in distributed, online, non-clairvoyant workflow executions,
Concurrency and Computation: Practice and Experience (2014) in press.

[22] G. Zheng, A. Bhatelé, E. Meneses, L. V. Kalé, Periodic hierarchical load
balancing for large supercomputers, Int. J. High Perform. Comput. Appl.
25 (4) (2011) 371–385.

[23] M. Abouelhoda, S. Issa, and M. Ghanem, Tavaxy: Integrating Taverna
and Galaxy workflows with cloud computing support, BMC Bioinformat-
ics, Vol. 13, 2012, pp. 77.

[24] J. Goecks, A. Nekrutenko and et.al., Galaxy: a comprehensive approach
for supporting accessible, reproducible, and transparent computational re-
search in the life sciences, Genome Biol, vol. 11, 2010.

[25] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. Maechling,
R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger,
Pegasus, a Workflow Management System for Science Automation, sub-
mitted to Future Generation Computer Systems, 2014, bibitemDeel-
man:2005:PFM:1239649.1239653 E. Deelman, and et. al., Pegasus: A
Framework for Mapping Complex Scientific Workflows Onto Distributed
Systems, Sci. Program., vol. 13, 2005, pp. 219-237.

[26] J. Yu, R. Buyya, A taxonomy of workflow management systems for grid
computing, Journal of Grid Computing 3.

[27] X. Liu, J. Chen, K. Liu, Y. Yang, Forecasting duration intervals of scien-
tific workflow activities based on time-series patterns, in: eScience, 2008.
eScience ’08. IEEE Fourth International Conference on, 2008, pp. 23–30.

[28] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M. Su,
K. Vahi, M. Livny, Pegasus: Mapping scientific workflows onto the grid,
in: Across Grid Conference, 2004.

[29] S. Ali, A. Maciejewski, H. Siegel, J.-K. Kim, Measuring the robustness
of a resource allocation, Parallel and Distributed Systems, IEEE Transac-
tions on 15 (7) (2004) 630–641.

[30] R. Tolosana-Calasanz, M. Lackovic, O. F Rana, J. Á. Bañares, D. Talia,
Characterizing quality of resilience in scientific workflows, in: Proceed-
ings of the 6th workshop on Workflows in support of large-scale science,
ACM, 2011, pp. 117–126.

[31] Y. Ma, X. Zhang, K. Lu, A graph distance based metric for data ori-
ented workflow retrieval with variable time constraints, Expert Syst. Appl.
41 (4) (2014) 1377–1388.

[32] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob, D. S.
Katz, Pegasus: A framework for mapping complex scientific workflows
onto distributed systems, Sci. Program. 13 (3) (2005) 219–237.

[33] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. Seragiotto, Jr., H.-L.
Truong, Askalon: a tool set for cluster and grid computing: Research
articles, Concurr. Comput. : Pract. Exper. 17 (2-4) (2005) 143–169.

[34] T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. Ferris, K. Glover,
C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. R. Pocock,
M. Senger, R. Stevens, A. Wipat, C. Wroe, Taverna: lessons in creating
a workflow environment for the life sciences: Research articles, Concurr.
Comput. : Pract. Exper. 18 (10) (2006) 1067–1100.

[35] D. Brown, P. Brady, A. Dietz, J. Cao, B. Johnson, J. McNabb, A case
study on the use of workflow technologies for scientific analysis: Grav-
itational wave data analysis, in: I. Taylor, E. Deelman, D. Gannon,
M. Shields (Eds.), Workflows for e-Science, Springer London, 2007, pp.
39–59.

[36] G. B. Berriman, E. Deelman, J. C. Good, J. C. Jacob, D. S. Katz,
C. Kesselman, A. C. Laity, T. A. Prince, G. Singh, M. Su, Montage: a
grid-enabled engine for delivering custom science-grade mosaics on de-
mand, in: SPIE Conference on Astronomical Telescopes and Instrumen-
tation, Vol. 5493, 2004, pp. 221–232.

[37] R. Graves, T. Jordan, S. Callaghan, E. Deelman, E. Field, G. Juve,
C. Kesselman, P. Maechling, G. Mehta, K. Milner, D. Okaya, P. Small,
K. Vahi, CyberShake: A Physics-Based Seismic Hazard Model for South-
ern California, Pure and Applied Geophysics 168 (3-4) (2011) 367–381.

[38] USC Epigenome Center, http://epigenome.usc.edu.
[39] SIPHT, http://pegasus.isi.edu/applications/sipht.
[40] W. Chen, E. Deelman, Workflowsim: A toolkit for simulating scientific

workflows in distributed environments, in: E-Science (e-Science), 2012
IEEE 8th International Conference on, 2012, pp. 1–8.

16

http://epigenome.usc.edu
http://pegasus.isi.edu/applications/sipht

[41] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, R. Buyya,
CloudSim: a toolkit for modeling and simulation of cloud computing en-
vironments and evaluation of resource provisioning algorithms, Software:
Practice and Experience 41 (1) (2011) 23–50.

[42] W. Chen, E. Deelman, Fault tolerant clustering in scientific workflows,
in: Services (SERVICES), 2012 IEEE Eighth World Congress on, 2012,
pp. 9–16.

[43] F. Jrad, J. Tao, A. Streit, A broker-based framework for multi-cloud work-
flows, in: Proceedings of the 2013 international workshop on Multi-cloud
applications and federated clouds, ACM, 2013, pp. 61–68.

[44] Amazon.com, Inc., Amazon Web Services, http://aws.amazon.com.
URL http://aws.amazon.com

[45] FutureGrid, http://futuregrid.org/.
[46] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, Scientific work-

flow applications on amazon ec2, in: In Cloud Computing Workshop in
Conjunction with e-Science, IEEE, 2009.

[47] R. Ferreira da Silva, W. Chen, G. Juve, K. Vahi, E. Deelman, Community
resources for enabling and evaluating research on scientific workflows,
in: 10th IEEE International Conference on e-Science, eScience’14, 2014,
p. to appear.

[48] R. Ferreira da Silva, T. Glatard, F. Desprez, Self-healing of workflow
activity incidents on distributed computing infrastructures, Future Gener-
ation Computer Systems 29 (8) (2013) 2284–2294.

17

http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com
http://futuregrid.org/

	Introduction
	Related Work
	Model and Design
	Balanced Clustering
	Imbalance metrics
	Balanced clustering methods
	Combining vertical clustering methods

	Evaluation
	Scientific workflow applications
	Task clustering techniques
	Experiment conditions
	Results and discussion
	Compilation of the results

	Conclusion and Future Work

