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Abstract—Scientific workflows can be composed of many fine
computational granularity tasks. The runtime of these tasks
may be shorter than the duration of system overheads, for
example, when using multiple resources of a cloud infrastructure.
Task clustering is a runtime optimization technique that merges
multiple short tasks into a single job such that the scheduling
overhead is reduced and the overall runtime performance is
improved. However, existing task clustering strategies only pro-
vide a coarse-grained approach that relies on an over-simplified
workflow model. In our work, we examine the reasons that
cause Runtime Imbalance and Dependency Imbalance in task
clustering. Next, we propose quantitative metrics to evaluate the
severity of the two imbalance problems respectively. Furthermore,
we propose a series of task balancing methods to address these
imbalance problems. Finally, we analyze their relationship with
the performance of these task balancing methods. A trace-based
simulation shows our methods can significantly improve the
runtime performance of two widely used workflows compared
to the actual implementation of task clustering.

Keywords—Scientific workflow, data locality, load balance, task

clustering

I. INTRODUCTION

Many computational scientists develop and use large-scale,
loosely-coupled applications that are often structured as sci-
entific workflows, which consist of many computational tasks
with data dependencies between them. Although the majority
of the tasks within these applications are often relatively
short running (from a few seconds to a few minutes), in
aggregate they represent a significant amount of computa-
tion and data [1]. When executing these applications on
a multi-machine distributed environment, such as the Grid
or the Cloud, significant system overheads may exist and
may adversely slowdown the application performance [2].
To minimize the impact of such overheads, task clustering
techniques [3]–[11] have been developed to group fine-grained
tasks into coarse-grained tasks so that the number of computa-
tional activities is reduced and their computational granularity
is increased thereby reducing the (mostly scheduling related)
system overheads [2]. However, there are several challenges
that have not yet been addressed.

In a scientific workflow, tasks within a level (or depth
within a workflow directed acyclic graph) may have different
runtimes. Merging tasks within a level without considering
the runtime variance may cause load imbalance, i.e., some

clustered jobs may be composed of short running tasks while
others of long running tasks. This imbalance delays the release
of tasks from the next level of the workflow, penalizing the
workflow execution with an overhead produced by the use
of inappropriate task clustering strategies [12]. A common
technique to handle load imbalance is overdecomposition [13].
This method decomposes computational work into medium-
grained balanced tasks. Each task is coarse-grained enough to
enable efficient execution and reduce scheduling overheads,
while being fine-grained enough to expose significantly higher
application-level parallelism than that is offered by the hard-
ware.

Data dependencies between workflow tasks play an im-
portant role when clustering tasks within a level. A data
dependency means that there is a data transfer between two
tasks (output data for one and input data for the other).
Grouping tasks without considering these dependencies may
lead to data locality problems where output data produced by
parent tasks are poorly distributed. Thus, data transfer times
and failures probability increase. Therefore, we claim that data
dependencies of subsequent tasks should be considered.

In this work, we generalize these two challenges (Runtime
Imbalance and Dependency Imbalance) to the generalized
load balance problem. We introduce a series of balancing
methods to address these challenges as our first contribution.
A performance evaluation study shows that the methods can
significantly reduce the imbalance problem. However, there
is a tradeoff between runtime and data dependency balancing.
For instance, balancing runtime may aggravate the Dependency
Imbalance problem, and vice versa. A quantitative measure-
ment of workflow characteristics is required to serve as a
criterion to select and balance these solutions. To achieve this
goal, we propose a series of metrics that reflect the internal
structure (in terms of task runtimes and dependencies) of the
workflow as our second contribution.

In particular, we provide a novel approach to capture these
metrics. Traditionally, there are two approaches to improve
the performance of task clustering. The first one is a top-
down approach [14] that represents the clustering problem as a
global optimization problem and aims to minimize the overall
workflow execution time. However, the complexity of solving
such an optimization problem does not scale well since most
methods use genetic algorithms. The second one is a bottom-up
approach [3], [9] that only examines free tasks to be merged
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and optimizes the clustering results locally. In contrast, our
work extends these approaches to consider the neighboring
tasks including siblings, parents, and children because such a
family of tasks has strong connections between them.

Our third contribution is an analysis of the quantitative
metrics and balancing methods. These metrics characterize
the workflow imbalance problem. A balancing method, or a
combination of those, is selected through the comparison of
the relative values of these metrics.

To the best of our knowledge, this study is the first example
of task granularity control that considers runtime variance and
data dependency. The next section gives an overview of the
related work. Section III presents our workflow and execution
environment models, Section IV details our heuristics and
algorithms, Section V reports experiments and results, and the
paper closes with a discussion and conclusions.

II. RELATED WORK

The low performance of fine-grained tasks is a common
problem in widely distributed platforms where the scheduling
overhead and queuing times at resources are high, such as Grid
and Cloud systems. Several works have addressed the control
of task granularity of bag of tasks. For instance, Muthuvelu
et al. [3] proposed a clustering algorithm that groups bag
of tasks based on their runtime—tasks are grouped up to
the resource capacity. Later, they extended their work [4]
to determine task granularity based on task file size, CPU
time, and resource constraints. Recently, they proposed an
online scheduling algorithm [5], [6] that groups tasks based
on resource network utilization, user’s budget, and application
deadline. Ng et al. [7] and Ang et al. [8] introduced bandwidth
in the scheduling framework to enhance the performance of
task scheduling. Longer tasks are assigned to resources with
better bandwidth. Liu and Liao [9] proposed an adaptive fine-
grained job scheduling algorithm to group fine-grained tasks
according to processing capacity and bandwidth of the current
available resources. Although these techniques significantly
reduce the impact of scheduling and queuing time overhead,
they are not applicable to scientific workflows, since data
dependencies are not considered.

Task granularity control has also been addressed in scientific
workflows. For instance, Singh et al. [10] proposed a level-
and label-based clustering. In level-based clustering, tasks at
the same level can be clustered together. The number of
clusters or tasks per cluster are specified by the user. In
the label-based clustering, the user labels tasks that should
be clustered together. Although their work considers data
dependency between workflow levels, it is done manually by
the users, which is prone to errors. Recently, Ferreira da Silva
et al. [11] proposed task grouping and ungrouping algorithms
to control workflow task granularity in a non-clairvoyant and
online context, where none or few characteristics about the
application or resources are known in advance. Their work
significantly reduced scheduling and queuing time overheads,
but did not consider data dependencies.

A plethora of balanced scheduling algorithms have been
developed in the networking and operating system domains.

Many of these schedulers have been extended to the hierarchi-
cal setting. Lifflander et al. [13] proposed to use work stealing
and a hierarchical persistence-based rebalancing algorithm to
address the imbalance problem in scheduling. Zheng et al. [15]
presented an automatic hierarchical load balancing method that
overcomes the scalability challenges of centralized schemes
and poor solutions of traditional distributed schemes. There
are other scheduling algorithms [16] (e.g. list scheduling)
that indirectly achieve load balancing of workflows through
makespan minimization. However, the benefit that can be
achieved through traditional scheduling optimization is limited
by its complexity. The performance gain of task clustering is
primarily determined by the ratio between system overheads
and task runtime, which is more substantial in modern dis-
tributed systems such as Clouds and Grids.

III. MODEL AND DESIGN

A workflow is modeled as a Directed Acyclic Graph (DAG).
Each node in the DAG often represents a workflow task (t),
and the edges represent dependencies between the tasks that
constrain the order in which tasks are executed. Dependencies
typically represent data-flow dependencies in the application,
where the output files produced by one task are used as inputs
of another task. Each task is a program and a set of parameters
that need to be executed. Fig. 1 (left) shows an illustration of a
DAG composed by four tasks. This model fits several workflow
management systems such as Pegasus [17], Askalon [18], and
Taverna [19].
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Fig. 1: Extending DAG to o-DAG.

Fig. 2 shows a typical workflow execution environment.
The submit host prepares a workflow for execution (clustering,
mapping, etc.), and worker nodes, at an execution site, execute
jobs individually. The main components are introduced below:

a) Workflow Mapper: generates an executable workflow
based on an abstract workflow provided by the user or work-
flow composition system. It also restructures the workflow to
optimize performance and adds tasks for data management and
provenance information generation. In this work, the workflow
mapper is used to merge small tasks together into a job
such that system overheads are reduced. This is called Task
Clustering. A job is a single execution unit in the workflow
execution systems and may contain one or more tasks.
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Fig. 2: A workflow system model.

b) Workflow Engine: executes jobs defined by the work-
flow in order of their dependencies. Only jobs that have all
their parent jobs completed are submitted to the Job Sched-
uler. The Workflow Engine relies on the resources (compute,
storage, and network) defined in the executable workflow to
perform the necessary actions. The time period when a job is
free (all of its parents have completed successfully) to when
it is submitted to the job scheduler is denoted the workflow
engine delay. The workflow engine delay is usually configured
by users to assure that the entire workflow scheduling and
execution system is not overloaded.

c) Job Scheduler and Local Queue: manage individual
workflow jobs and supervise their execution on local and
remote resources. The time period when a task is submitted
to the job scheduler to when it starts its execution in a
worker node is denoted as the queue delay. It reflects both the
efficiency of the job scheduler and the resource availability.

d) Job Wrapper: extracts tasks from clustered jobs and
executes them at the worker nodes. The clustering delay is the
elapsed time of the extraction process.

In this work, we extend the DAG model to be overhead
aware (o-DAG). System overheads play an important role in
workflow execution and constitute a major part of the overall
runtime when tasks are poorly clustered. Fig. 1 shows how
we augment a DAG to be an o-DAG with the capability to
represent scheduling overheads (s) such as workflow engine
and queue delays. This classification of scheduling overheads
is based on our prior study on workflow analysis [2].

With an o-DAG model, we can explicitly express the process
of task clustering. For instance, in Fig. 3, two tasks t1 and
t2, without data dependency between them, are merged into a
clustered job j1. A job j is a single execution unit composed
by one or multiple task(s). Job wrappers are commonly used
to execute clustered jobs, but they add an overhead denoted
the clustering delay c. The clustering delay measures the
difference between the sum of the actual task runtimes and
the job runtime seen by the job scheduler. After horizontal
clustering, t1 and t2 in j1 can be executed in sequence or
in parallel, if supported. In this paper, we consider sequential
executions only. Given a single resource, the overall runtime
for the workflow in Fig. 3 (left) is runtime1 = s1+t1+s2+t2
, and the overall runtime for the clustered workflow in Fig. 3
(right) is runtime2 = s1+c1+t1+t2. runtime1 > runtime2
as long as c1 < s2, which is the case of many distributed

systems since the clustering delay within an execution node is
usually shorter than the scheduling overhead across different
execution nodes.
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Fig. 3: An Example of Task Clustering.

Fig 3 shows a typical example of a Horizontal Clustering
(HC) technique that groups tasks at the same workflow level.
In our work, we define the level of a task as the longest
depth from the root task to this task because the longest depth
controls the final release of this task.

In summary, an o-DAG representation allows the specifi-
cation of high level system overhead details, which is more
suitable than DAG models when clustering tasks.

IV. BALANCED CLUSTERING

In this section we introduce the imbalance problem we are
going to address and we present metrics to quantitatively cap-
ture workflow characteristics, and methods to handle runtime
and dependency imbalances.

A. Balanced Clustering Metrics
Runtime Imbalance describes the difference of the task/job

runtime of a group of tasks/jobs. In this work, we denote the
Horizontal Runtime Variance (HRV ) as the ratio of the
standard deviation in task runtime to the average runtime of
tasks/jobs at the same horizontal level of a workflow. At the
same horizontal level, the job with the longest runtime often
controls the release of the next level jobs. A high HRV value
means that the release of next level jobs has been delayed.
Therefore, to improve runtime performance, it is meaningful
to reduce the standard deviation of job runtime. Fig. 4 shows
an example of four independent tasks t1, t2, t3 and t4 where
task runtime of t1 and t2 is half of that of t3 and t4. In
the Horizontal Clustering (HC) approach, a possible clustering
result could be merging t1 and t2 into a clustered job and
t3 and t4 into another. This approach results in imbalanced
runtime, i.e., HRV > 0 (Fig. 4-top). In contrast, a balanced
clustering strategy should try its best to evenly distribute task
runtime among jobs as shown in Fig. 4 (bottom). Generally
speaking, a smaller HRV means that the runtime of tasks at the
same horizontal level is more evenly distributed and therefore it
is less necessary to balance the runtime distribution. However,
runtime variance is not able to describe how regular is the
structure of the dependencies between the tasks.

Dependency Imbalance means that the task clustering at
one horizontal level forces the tasks at the next level (or even
subsequent levels) to have severe data locality problem and
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Fig. 4: An Example of Runtime Variance.

thus loss of parallelism. For example, in Fig. 5, we show a
two-level workflow composed of four tasks in the first level
and two in the second. Merging t1 with t2 and t3 with t4
(imbalanced workflow in Fig. 5) forces t5 and t6 to transfer
files from two locations and wait for the completion of t1, t2,
t3, and t4. A balanced clustering strategy groups tasks that
have the maximum number of child tasks in common. Thus,
t5 can start to execute as soon as t1 and t3 are completed,
and so can t6. To measure and quantitatively demonstrate the
Dependency Imbalance of a workflow, we propose two metrics:
(i) Impact Factor Variance, and (ii) Distance Variance.
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Fig. 5: An Example of Dependency Variance.

We define the Impact Factor Variance (IFV ) of tasks
as the standard deviation of their impact factor. The intuition
behind the Impact Factor is that we aim to capture the
similarity of tasks/jobs in a graph by measuring their relative
impact factor or importance to the entire graph. Intuitively
speaking, tasks with similar impact factors should be merged
together compared to tasks with different impact factors. Also,

if all the tasks have similar impact factors, the workflow
structure tends to be more ‘even’ or ‘regular’. The Impact
Factor (IF ) of a task tu is defined as follows:

IF (tu) =
X

tv2Child(tu)

IF (tv)

L(tv)
(1)

where Child(tu) denotes the set of child tasks of tu, and L(tv)
the number of parent tasks of tv . For simplicity, we assume
the IF of a workflow exit task (e.g. t5 in Fig. 5) as 1.0. For
instance, consider the two workflows presented in Fig. 6. IF
for t1, t2, t3, and t4 are computed as follows:

IF (t7) = 1.0, IF (t6) = IF (t5) = IF (t7)/2 = 0.5

IF (t1) = IF (t2) = IF (t5)/2 = 0.25

IF (t3) = IF (t4) = IF (t6)/2 = 0.25

Thus, IFV(t1, t2, t3, t4) = 0. In contrast, IF for t01, t02, t03, and
t04 are:

IF (t07) = 1.0, IF (t06) = IF (t05) = IF (t01) = IF (t07)/2 = 0.5

IF (t02) = IF (t03) = IF (t04) = IF (t06)/3 = 0.17

Therefore, the IFV value for t01, t02, t03, t04 is 0.17, which
means it is less regular than the workflow in Fig. 6 (left). In
this work, we use HIFV (Horizontal IFV) to indicate the IFV
of tasks at the same horizontal level. The time complexity of
calculating all the IF of a workflow with n tasks is O(n).
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Fig. 6: Example of workflows with different data dependencies.

Distance Variance (DV ) describes how ‘closely’ tasks
are to each other. The distance between two tasks/jobs is
defined as the cumulative length of the path to their closest
common successor. If they do not have a common successor,
the distance is set to infinity. For a group of n tasks/jobs,
the distance between them is represented by a n ⇥ n matrix
D, where an element D(u, v) denotes the distance between
a pair of tasks/jobs u and v. For any workflow structure,
D(u, v) = D(v, u) and D(u, u) = 0, thus we ignore the cases
when u � v. Distance Variance is then defined as the standard
deviation of all the elements D(u, v) for u < v. The time
complexity of calculating all the D of a workflow with n tasks
is O(n2).

Similarly, HDV indicates the DV of a group of tasks/jobs
at the same horizontal level. For example, Table I shows
the distance matrices of tasks from the first level for both
workflows of Fig. 6 (D1 for the workflow in the left and D2
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for the workflow in the right). HDV for t1, t2, t3, and t4 is
1.03, and for t01, t

0
2, t

0
3, and t04 is 1.10. In terms of distance

variance, D1 is more ‘even’ than D2. Intuitively speaking, a
smaller HDV means the tasks at the same horizontal level
are more equally ‘distant’ to each other and thus the workflow
structure tends to be more ‘evenly’ and ‘regular’.

In conclusion, Runtime Variance and Dependency Variance
offer a quantitative and comparable tool to measure and
evaluate the internal structure of a workflow.

D1 t1 t2 t3 t4
t1 0 2 4 4
t2 2 0 4 4
t3 4 4 0 2
t4 4 4 2 0

D2 t01 t02 t03 t04
t01 0 4 4 4
t02 4 0 2 2
t03 4 2 0 2
t04 4 2 2 0

TABLE I: Distance matrices of tasks from the first level of
workflows in Fig. 6.

B. Balanced Clustering Methods
In this subsection, we introduce our balanced clustering

methods used to improve the runtime balance and dependency
balance in task clustering. We first introduce the basic runtime-
based clustering method and then two other balancing methods
that address the Dependency Imbalance problem. We use the
metrics presented in the previous subsection to evaluate a given
workflow to decide which balancing method(s) is(are) more
appropriate.

Algorithm 1 shows the pseudocode of our balanced clus-
tering algorithm that uses a combination of these balancing
methods and metrics. The maximum number of clustered jobs
(size of CL) is equal to the number of available resources
multiplied by a clustering factor. We compare the performance
of using different clustering factor in Section 5.

Algorithm 1 Balanced Clustering algorithm
Require: W : workflow; CL: list of clustered jobs; C: the required size of

CL;
Ensure: The job runtime of CL are as even as possible
1: procedure CLUSTERING(W,D,C)
2: Sort W in decreasing order of the size of each level
3: for level <the depth of W do
4: TL GETTASKSATLEVEL(w, level) . Partition W based on

depth
5: CL MERGE(TL,C) . Form a list of clustered jobs
6: W  W � TL+ CL . Merge dependencies as well
7: end for
8: end procedure
9: procedure MERGE(TL,C)

10: Sort TL in decreasing order of task runtime
11: for t in TL do
12: J  GETCANDIDATEJOB(CL, t) . Get a candidate task
13: J  J + t . Merge it with the clustered job
14: end for
15: return CL
16: end procedure
17: procedure GETCANDIDATEJOB(CL, t)
18: Selects a job based on balanced clustering methods
19: end procedure

We examine tasks in a level-by-level approach starting from
the level with the largest width (number of tasks at the same

level, line 2). The intuition behind this breadth favored
approach is that we believe it should improve the performance
most. Then, we determine which type of imbalance problem
a workflow experiences based on the balanced clustering
metrics presented previously (HRV , HIFV , and HDV ), and
accordingly, we select a combination of balancing methods.
GETCANDIDATEJOB selects a job (line 12) from a list of
potential candidate jobs (CL) to be merged with the targeting
task (t). Below we introduce the three balancing methods
proposed in this work.

Horizontal Runtime Balancing (HRB) aims to evenly
distribute task runtime among jobs. Tasks with the longest
runtime are added to the job with the shortest runtime. This
greedy method is used to address the imbalance problem
caused by runtime variance at the same horizontal level. Fig. 7
shows how HRB works in an example of four jobs with
different job runtime (assuming the height of a job is its
runtime). For the given task (t0), HRB sorts the potential jobs
(j1, j2, j3, and j4) based on their runtime and selects the
shortest job (in this case j1 or j2).
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Fig. 7: An example of HRB.

However, HRB may cause a Dependency Imbalance prob-
lem since the clustering does not take data dependency into
consideration. To address this problem, we propose the Hori-
zontal Impact Factor Balancing (HIFB) and the Horizontal
Distance Balancing (HDB) methods.

In HRB, candidate jobs are sorted by their runtime, while
in HIFB jobs are first sorted based on their similarity of IF ,
then on runtime. For example, in Fig. 8, assuming 0.2, 0.2,
0.1, and 0.1 IF values of j1, j2, j3, and j4 respectively, HIFB
selects a list of candidate jobs with the same IF value, i.e. j3
and j4. Then, HRB is performed to select the shortest job (j3).

Similarly, in HDB jobs are sorted based on the distance
between them and the targeted task t0, then on their runtimes.
For instance, in Fig. 9, assuming 2, 4, 4, and 2 the distances to
j1, j2, j3, and j4 respectively, HDB selects a list of candidate
jobs with the minimal distance (j1 and j4). Then, HRB is
performed to select the shortest job (j1).

In conclusion, these balancing methods have different pref-
erence on the selection of a candidate job to be merged
with the targeting task. HIFB tends to group tasks that share
similar position/importance to the workflow structure. HDB
tends to group tasks that are closed to each other to reduce
data transfers. Table II summarizes the imbalance metrics and
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Fig. 8: An example of HIFB.
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Fig. 9: An example of HDB.

balancing methods presented in this work.

Imbalance Metrics abbr.
Horizontal Runtime Variance HRV
Horizontal Impact Factor Variance HIFV
Horizontal Distance Variance HDV
Balancing Methods abbr.
Horizontal Runtime Balancing HRB
Horizontal Impact Factor Balancing HIFB
Horizontal Distance Balancing HDB

TABLE II: Imbalance metrics and balancing methods.

V. EXPERIMENT AND EVALUATION

The experiments presented hereafter evaluate the perfor-
mance of our balancing methods in comparison with an
existing and effective task clustering strategy named Horizontal
Clustering (HC) [10], which is widely used by workflow
management systems such as Pegasus.

A. Experiment Conditions
We extended the WorkflowSim [20] simulator with the

balanced clustering methods and imbalance metrics to simulate
a distributed environment where we could evaluate the perfor-
mance of our methods when varying the average data size and
task runtime. The simulated computing platform is composed
by 20 single homogeneous core virtual machines (worker
nodes), which is the quota per user of some typical distributed

environments such as Amazon EC2 [21] and FutureGrid [22].
Each machine has 512MB of memory and the capacity to
process 1,000 million instructions per second. Task scheduling
is data-aware, i.e. tasks are scheduled to resources which have
the most input data available.

Two workflows are used in the experiments: LIGO [1]
inspiral analysis, and Epigenomics [23]. Both workflows are
generated and varied using the WorkflowGenerator1. LIGO is
composed by 400 tasks and its workflow structure is presented
in Fig. 10 (top); Epigenomics has about 500 tasks and is
structured as showed in Fig. 10 (bottom). Runtime (average
and task runtime distribution) and overhead (workflow engine
delay, queue delay, and network bandwidth) information were
collected from real traces production environments [2], [24],
then used as input parameters for the simulations.
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Fig. 10: A simplified visualization of the LIGO Inspiral
workflow (top) and Epigenomics workflow (bottom).

Three sets of experiments are conducted. Experiment 1 aims
at determining an appropriate clustering factor such that both
the workflow runtime performance and the reliability over
the dynamic system variation are improved. We randomly
select 20% from LIGO workflow tasks and increase their task
runtime by a factor of Ratio to simulate the system variation

1https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
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in a production environment.
Experiment 2 evaluates the reliability and the influence

of average data size in our balancing methods, since data
has becoming more and more intensive in scientific work-
flows [24]. In this experiment set, there is no runtime variance
(HRV = 0). The original average data size (both input and
output data) of the LIGO workflow is about 5MB, and of
the Epigenomics workflows is about 45MB. We increase the
average data size up to 5GB.

Experiment 3 evaluates the influence of the runtime variation
(HRV) in our balancing methods. We assume a normal distri-
bution to vary task runtimes based on average and standard
deviation. In this experiment set, there is no variation on the
data size.

Simulation results present a confidence level of 95%. We
define the performance gain over HC (µ) as the performance of
the balancing methods related to the performance of Horizontal
Clustering (HC). Thus, for values of µ > 0 our balancing
methods perform better than the HC method. Otherwise, the
balancing methods perform poorer.

B. Results and Discussion
As we have mentioned in Subsection IV-B , the maximum

number of clustered jobs is equal to the number of available
resources multiplied by a clustering factor. Experiment 1:
Fig. 11 shows the speedup of Horizontal Clustering (HC) for
different Ratio and clustering factors. We use the speedup of
HC in overall runtime compared to the original overall runtime
without clustering. The speedup decreases with the increase
of the clustering factor. However, a smaller clustering factor
performs worse when the Ratio is high. For simplicity, we use
clustering factor = 2 in the experiments conducted in this
work.
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Fig. 11: Experiment 1: Speedup of Horizontal Clustering (HC).

Experiment 2: Fig. 12 (top) shows the performance gain
over HC µ of the balancing methods compared to the HC
method for the LIGO workflow. HIFB and HDB signifi-
cantly increase the performance of the workflow execution.
Both strategies capture the structural and runtime information,
reducing data transfers between tasks, while HRB focuses

on runtime distribution, which in this case is none. Fig. 12
(bottom) shows the performance of the balancing methods
for the Epigenomics workflow. When increasing the average
data size, only HDB demonstrates significantly improvement
related to HC. Investigating the structure of the Epigenomics
workflow (Fig. 10-bottom), we can see that all tasks at the
same horizontal level share the same IFs (HIFV = 0), because
each branch (surrounded by dash lines) happen to have the
same amount of pipelines. Thus, HIFB has no performance
improvement when compared to HC. However, for LIGO
(Fig. 10-top), HIFV 6= 0, thus HIFB improves the workflow
runtime performance. HDB captures the strong connections
between tasks (data dependencies) and HIFB captures the
weak connections (similarity in terms of structure). In both
workflows, HDV is not zero thus HDB performs better than
HC.
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Fig. 12: Experiment 2: Performance of the LIGO workflow
(top) and the Epigenomics workflow (bottom).

Experiment 3: Fig. 13 shows the performance gain µ when
varying task runtimes for the LIGO workflow. As expected,
when HRV increases HRB over performs HC. However, HDB
and HIFB demonstrate poor performance because they merge
tasks based on data dependencies first, and then, they balance
the runtime distribution. For high values of HRV , we just
simply need to use HRB. Otherwise, we can use either HDB or
HIFB while in some cases HIFB fails to capture the structural
information.
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VI. CONCLUSION

We presented three balancing methods to address the load
balance problem when clustering workflow tasks. We defined
three imbalance metrics to quantitatively measure workflow
characteristics based on task runtime variation (HRV), task
impact factor (HIFV), and task distance variance (HDV).

The balanced clustering methods were implemented in the
WorkflowSim simulator. Three experiments were conducted
using two real workflows. The first experiment showed the
gain of task clustering by using a naive horizontal cluster-
ing technique. Results showed that our balancing methods
can significantly reduce the runtime and data dependency
imbalance. For high HRV values, a runtime variance based
approach (HRB) performs best over a naive horizontal clus-
tering algorithm. When data dependency is more important
HIFB and particularly HDB methods perform better than the
naive approach, while HRB performs similarly. In our future
work, we will explore the influence of different overheads,
and how the HDB method can be extended to perform vertical
clustering, i.e. multiple levels clustering.
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