
Teaching Parallel and Distributed Computing Concepts
in Simulation with WRENCH

Henri Casanovaa,∗, Ryan Tanakaa,b, William Kocha, Rafael Ferreira da Silvab

a University of Hawai‘i at Mānoa, Information and Computer Sciences Dept.,
Honolulu, HI, USA

bUniversity of Southern California, Information Sciences Institute,
Marina del Rey, CA, USA

Abstract

Teaching parallel and distributed computing topics in a hands-on manner is

challenging, especially at introductory, undergraduate levels. Participation chal-

lenges arise due to the need to provide students with an appropriate compute

platform, which is not always possible. Even if a platform is provided to stu-

dents, not all relevant learning objectives can be achieved via hands-on learning

on a single platform. In particular, it is typically not feasible to provide students

with platform configurations representative of emerging and future cyberinfras-

tructure scenarios (e.g., highly distributed, heterogeneous platforms with large

numbers of high-end compute nodes). To address these challenges, we have

developed a set of pedagogic modules that can be integrated piecemeal into uni-

versity courses. These modules include simulation-driven activities for students

to experience relevant application and platform scenarios hands-on. These ac-

tivities are supported by simulators developed using the WRENCH simulation

framework. After motivating and describing our approach, we present and an-

alyze results obtained from evaluations performed in two consecutive offerings

of an undergraduate university course.

Keywords: Computer Science Education; Parallel and Distributed Computing

∗Corresponding address: University of Hawai‘i at Mānoa, Information and Computer Sci-
ences Department, POST Building, Rm 317, 1680 East-West Road, Honolulu, HI, USA, 96822

Email addresses: henric@hawaii.edu (Henri Casanova), tanaka@isi.edu (Ryan
Tanaka), kochwill@hawaii.edu (William Koch), rafsilva@isi.edu (Rafael Ferreira da Silva)

Preprint submitted to Journal of Parallel and Distributed Computing June 1, 2021

Education; Simulation.

1. Introduction

Teaching Parallel and Distributed Computing (PDC) topics is most effective

when students have opportunities for hands-on learning. The common approach

is to provide students with access to a PDC platform (hardware and software)

on which they can develop and/or execute programs so as to achieve various

Student Learning Objectives (SLOs). Unfortunately, instructors using this ap-

proach face several challenges.

A participation challenge stems from the need to provide students with access

to a representative platform, which is not feasible at all institutions due to lack

of resources. Even when an institution hosts suitable platforms, there may

be no straightforward mechanism to use them, or even sizable subsets thereof,

for education purposes (e.g., most platforms serve research communities and

pedagogic use can disrupt production use).

Even when students are provided with a PDC platform for a course, there are

pedagogic challenges. First, because students are only exposed to the particular

configuration of that platform, many relevant scenarios are out of reach (e.g.,

different scales, different hardware specifications of compute nodes, different

network interconnects, different software stacks). As a result, some PDC SLOs

cannot be achieved in a hands-on manner. Second, students must be trained on

platform usage mechanisms and policies. Some courses could deliberately devote

a large portion of the syllabus to these mechanisms and policies. But in other

courses this is pure overhead (e.g., introductory freshmen courses). Third, exe-

cuting workloads on real-world platforms is not free: it requires time, electricity,

and in some cases funds. There are thus practical bounds on the number and/or

scale of the executions available to students, which can impede hands-on learn-

ing. Fourth, instructors typically must devote a significant amount of effort to

managing students’ use of the platform (e.g., platform monitoring and trouble-

shooting, interaction with platform administrators, managing scheduled and

2

unscheduled platform downtimes, managing competition for compute resources

among students), which detracts from their pedagogic efforts.

The above challenges become steeper as the SLOs target more heterogeneous,

more distributed, and/or large-scale platforms. Some SLOs can be achieved

using a single multi-core computer, which typically is available to any student.

But other SLOs require a moderate-scale, commodity cluster. Some institutions

(e.g., Ph.D.-granting institutions) can provide students access to a representa-

tive cluster with relatively straightforward mechanisms and policies, such as a

batch scheduler. But even in this “easy” case the participation and pedagogic

challenges are significant enough to have prompted the exploration of alternate

approaches [1, 2, 3]. At the other end of the spectrum would be courses that

attempt to teach principles and practices of cyberinfrastructure computing, i.e.,

the execution of application workloads via services deployed on large-scale, dis-

tributed environments with heterogeneous hardware and software stacks. An

example would include the execution of a particular scientific application on a

platform that comprises clouds, batch-scheduled HPC clusters, and data host-

ing services, all distributed over wide-area networks. Such deployments would

be available for teaching purposes only at a few institutions, and would require

that students learn a large set of usage policies and mechanisms. Besides, given

the sheer number of relevant software and hardware configurations, it is unclear

how a single deployment provided to students could be “representative”. We

argue that the aforementioned participation and pedagogic challenges are likely

insurmountable in most university courses. And yet, it is critical to prepare

students that will join the national scientific research and engineering workforce

for a world in which cyberinfrastructure computing is the norm.

An alternative to using real-world platforms for teaching is to use simula-

tion, i.e., simulate executions using a software artifact that mimics real-world

executions. The participation challenge is obviated as the only requirement is

that students have access to a computer on which the simulation software is

installed, such as their personal computer or a server. The pedagogic challenges

are also addressed. Simulated executions can target arbitrary hardware and

3

software stack configurations, from basic (i.e., a single multi-core computer)

to complex (i.e, a distributed, heterogeneous cyberinfrastructure deployment)

scenarios. One can choose the level of details exposed to students regarding

platform usage mechanisms. Finally, simulated executions are repeatable, and,

provided an appropriate simulation framework is used, can be executed quickly

and at negligible cost.

In this work 1, we present a set of pedagogic modules that target a range

of PDC SLOs, and specifically SLOs that focus on quantitative reasoning and

performance. Our objective is not to define a PDC curriculum, but rather to

target SLOs that: (i) have been outlined by ongoing curriculum development

efforts [5]; and (ii) can be achieved better via hands-on learning. Our modules

have few pre-requisites and are designed to be integrated piecemeal in university

courses, from freshman- to graduate-level courses, so as to complement existing

course content. A current design choice is that these modules do not require any

programming. But they include simulation-based pedagogic activities through

which students acquire knowledge by experimenting with various application

and platform scenarios in simulation. The simulations used in these activities

provide metrics related to and visualizations of simulated application execu-

tions, through which students can empirically verify their answers to relevant

questions. Students can also use simulations to explore complex design spaces

so as to learn independently, possibly with instructor-provided scaffolding. Fi-

nally, several modules include a “capstone” activity. These are case-studies in

which students apply what they have learned so far to solve problems inspired

by real-world scenarios. Our contributions are as follows:

• We describe and justify the use of the WRENCH [6, 7] simulation frame-

work as a foundation for this work, and how it makes it possible to quickly

develop and deliver our simulation-based pedagogic activities;

• We describe a set of pedagogic modules and the PDC SLOs they target;

we detail some of the simulation-driven pedagogic activity within one of

1A preliminary version of this work appeared in EduHPC’19 [4]

4

these modules, and highlight how simulation is key to achieving SLOs in

a hands-on manner;

• We discuss evaluation results obtained in the classroom for two consecutive

offerings of the same 3rd-year undergraduate course at the University of

Hawai‘i at Mānoa; and

• We discuss and make recommendations for successful adoption of our ped-

agogic modules in university courses.

This paper is organized as follows. Section 2 discusses related work. Sec-

tion 3 describes the WRENCH simulation framework and shows how we use

it to implement and deliver simulation-driven pedagogic activities. Section 4

describes our pedagogic modules and the SLOs they target. Sections 5 and 6

present evaluation results obtained in the classroom, briefly explaining how

these results have led us to evolve the content and structure of our modules.

Section 7 discusses integration of our modules in university courses. Finally,

Section 8 concludes with a summary of results and perspectives on future work.

2. Related Work

Several options have been proposed to address the challenge of providing stu-

dents with PDC platforms for teaching purposes when such platforms are not

readily available at their institutions. These options, which include building

low-cost platforms [8, 9, 10, 11, 12, 13] and emulating platforms using virtual-

ization and/or containers [14, 15, 16, 17], often do not provide platforms with

capabilities, scales, and/or performance behaviors representative of production

environments. In this work, instead, we rely on simulation to provide students

with hands-on experience on arbitrary platform configurations.

Many simulation frameworks have been developed for PDC research and de-

velopment, several of which could also be used for education. These frameworks

span domains such as HPC [18, 19, 20, 21], Grid [22, 23, 24], Cloud [25, 26, 27],

Peer-to-peer [28, 29], or Volunteer Computing [30, 31, 32]. Some frameworks

have striven to be applicable across some or all or the above domains [33, 34].

5

Two conflicting concerns are accuracy (the ability to capture the behavior of a

real-world system with as little bias as possible) and scalability (the ability to

simulate long-running and/or large systems with as few CPU cycles and bytes of

RAM as possible). The aforementioned simulation frameworks achieve different

compromises between these two concerns by using various simulation models.

At one extreme are discrete event models that simulate the “microscopic” be-

havior of hardware/software systems (e.g., by relying on packet-level network

simulation for communication [35], on cycle-accurate CPU simulation [36] or

emulation for computation). At the other extreme are analytical models that

capture “macroscopic” behaviors (e.g., transfer times as data sizes divided by

bottleneck bandwidths, compute times as numbers of operations divided by

compute speeds). Although these models are typically more scalable, they must

be developed with care so that they are accurate [37]. One of the key intel-

lectual contributions of the SimGrid project [33] is that it employs simulation

models that are scalable (because macroscopic) and yet accurate (as shown in

several validation studies [38, 37, 39, 40, 41]). As a result, SimGrid simulations

can execute quickly on, say, a student’s laptop, and yet yield accurate results

even for complex simulation scenarios. SimGrid provides the core simulation

technology for the WRENCH simulation framework [7], which is used in this

work (see Section 3.

Simulation is used routinely as a pedagogic tool in many areas of the com-

puter science curriculum. For instance, it is traditional to use simulation frame-

works for teaching computer architecture and networks, since without simula-

tion it can be extremely challenging to create hands-on learning opportunities

in these domains. The use of simulation as a pedagogic tool is not as preva-

lent in the PDC domain, likely because with some effort it is possible to use

real-world platforms for teaching purposes (albeit facing the challenges outlined

in Section 1). Several works in the early 1990’s proposed using simulation for

the purpose of parallel computing education [42, 43, 44, 45]. More recently,

the authors in [1] describe the parallel computing module of a M.S. degree in

HPC, which relies on simulation as a foundational technology. The simulation

6

in use employs microscopic simulation models, thus mandating that students be

provided by an HPC platform to run simulations. In this work instead, because

we rely on WRENCH for simulations, students can easily run simulations on

their personal computers. Another recent work, Paralab teachware, is presented

in [2], which uses the Paralab system [46] to teach parallel computing concepts

and algorithms using simulation. From what information is provided in [46],

Paralab implements naive simulation models that are not necessarily represen-

tative of real-world platforms, which is problematic. Another recent related

work is that in [47], which does not point to re-usable pedagogic content but

describes the use of a particular simulator for supporting distributed systems

education. Unlike the above efforts, our work targets a broader set of PDC

SLOs (from multi-core computers to distributed cyberinfrastructures, and for a

range of application scenarios) and/or provides pedagogic modules that can be

readily integrated into existing university courses.

3. Using WRENCH for Simulation-driven Education

3.1. The WRENCH Simulation Framework

The simulators that support our pedagogic activities must be developed

based on some simulation framework. We identify four requirements for this

framework:

Requirement #1: Accuracy – The framework’s simulation models must have

been the object of validation/invalidation studies. This is so that simu-

lated executions are realistic when compared to real-world executions.

Requirement #2: Scalability – Simulations should have low time and space com-

plexity. This is so that simulations can be executed quickly by students

while engaged in hands-on learning.

Requirement #3: Versatility – The framework must be expressive enough to

allow the simulation of a wide range of scenarios, from a single homoge-

neous cluster running a vanilla parallel program all the way to multi-site

7

cyberinfrastructure scenarios with diverse software and hardware stacks.

This is so that we can target a broad set of SLOs.

Requirement #4: Easy development – The framework must provide high-level

APIs that make it possible to implement simulators of complex scenarios

with low effort. This is because many simulators must be implemented

to support the many simulation-driven pedagogic activities we intend to

develop.

As discussed in Section 2, many simulation frameworks have been developed for

the PDC domain. One framework that meets the first three requirements above

is SimGrid [33, 48]. Its simulation accuracy and scalability have been shown to

be significantly better than that of its competitors [37, 33] (requirements #1

and #2). It is applicable to and has been utilized for scenarios ranging from

the simulation of MPI applications on clusters to the simulation of peer-to-peer

applications on wide-area networks (requirement #3). It has also been actively

developed for almost two decades, with a regular release schedule, a large team

of developers, and a vibrant user community. Finally, it has already been used

successfully for teaching purposes [3]. Unfortunately, SimGrid does not meet

requirement #4 above because its simulation abstractions are low-level. The

critical analysis in [49] recognizes that SimGrid provides superior accuracy and

scalable simulation capabilities, but also observes that using it to implement a

simulator of a complex system, such as distributed cyberinfrastructure scenarios,

is labor-intensive.

It is in part to meet requirement #4 that the WRENCH project [6, 7, 50]

was initiated. WRENCH builds on SimGrid, so that simulations can be ac-

curate and scalable, but provides high-level simulation abstractions. For in-

stance, it provides several simulated implementations of “compute services” for

bare-metal hardware resources, virtualized hardware resources, cloud platforms,

batch-scheduled clusters, or HTCondor pools. The whole set of WRENCH-

provided simulation abstractions is listed on the project’s web site [50] (version

1.7 of the software was released in September 2020). As a result, implementing

simulators of complex scenarios can be done with minimal software engineering

8

efforts. This is demonstrated in [7], which describes how simulators of produc-

tion workflow management systems that execute scientific workflow applications

on diverse hardware/software stacks can be implemented with only a few hun-

dred lines of code.

3.2. Implementing Simulation-driven Pedagogic Activities with WRENCH

Given the discussion in the previous section, in this work we use WRENCH

for implementing then simulation-driven activities in our pedagogic modules.

Each module is a web page that introduces concepts to students through a

narrative. For each concept students are asked questions that they must an-

swer before proceeding forward. Many of these questions are to be answered

by running simulations. Students answer the questions in two ways: (i) they

discover a valid answer by running simulations to explore the space of simu-

lated executions; and (ii) they come up with an answer through reasoning and

validate/invalidate this answer by running simulations. Students invoke simu-

lators through an interactive web interface. They must choose relevant input

to the simulator (either guided by particular questions or independently), and

inspect visual simulation output. Most visual displays are interactive in that

students can click or hover on visual elements to be presented with more detailed

information about the simulator’s output.

The first version of our pedagogic modules, described in the next section, in-

cludes several simulation-driven activities, supported by four distinct WRENCH

simulators. Some of these simulators implement relatively complex scenarios an

yet were implemented with minimal software engineering effort. Counting C++

header and source files, but ignoring comments, these simulators are imple-

mented in only 152, 226, 257, and 386 SLOCs.

To ensure ease-of-use and portability, all necessary software (web app, sim-

ulators, WRENCH and its dependencies) was packaged in a Docker container.

When instructed to do so, students simply ran this container on their own com-

puters. The container started a web server on a local port, allowing students to

access a web app locally in the browser. The instructions given to students for

9

running simulators were straightforward:

1. Copy-and-paste in the terminal: docker pull <name>

2. Copy-and-paste in the terminal: docker container run -p 3000:3000

-d <name>

3. Visit http://localhost:3000/

where <name> is the name of a particular Docker container. The only software

requirement was that Docker be installed.

4. The WRENCH Pedagogic Modules

4.1. Relationship to the DPC Curriculum

The objective of this work is not to define a PDC curriculum. A community-

driven, curriculum development effort has been ongoing as part of the NSF/IEEE-

TCPP Curriculum Initiative [5]. The latest version of this curriculum was pub-

lished in November 2020. It includes an extensive set of SLOs, each focused ei-

ther on knowledge, on quantitative reasoning, or on programming skills. In this

work, we develop pedagogic modules that target SLOs that focus on knowledge

and quantitative reasoning as relevant to the performance of PDC applications

and platforms. To enable hands-on learning for these SLOs, our modules pro-

vide students with the ability to run experiments in simulation. For now, our

modules do not target programming skills nor skills pertaining to the practical

use of PDC platforms (see further discussion in Section 7).

Table 1 lists the specific SLOs covered by the set of pedagogic modules that

was delivered to students in undergraduate courses in Spring 2019 [51] and Fall

2019 [52] (see pedagogic evaluation results in Sections 5 and 6). The SLOs

in this list directly map to SLOs in the NSF/IEEE-TCPP curriculum, but do

not provide full coverage of the knowledge and quantitative reasoning topics in

that curriculum. We selected our initial set of SLOs in a pragmatic, top-down

fashion with the overall goal of teaching all necessarily skills to reason about

the performance of a workflow application executed on a cluster of homogeneous

multi-core compute nodes with both local and remote storage. Our latest set

10

of pedagogic modules, available at https://eduwrench.org, covers many more

SLOs in the IEEE-TCPP PDC curriculum, and new modules are still under

development. We maintain an up-to-date list of which modules target which

SLOs in the IEEE-TCPP curriculum at http://eduwrench.org/teachers.

4.2. Initial Modules

Five pedagogic modules were developed and made available on-line at the

beginning of 2019, and are still available on-line at [51]. These modules were

designed to be performed as a sequence and target the following topics:

(I) Networking – In this module, students acquire essential networking con-

cepts as they relate to the execution of programs on PDC platforms. These

concepts include notions of latency, bandwidth, and topology, and how they are

used to reason about and compute rough estimates of data transfer times.

(II) Workflows – This module introduces students to concepts necessary to

understand the structure of workflow applications; to the steps necessary for

executing these applications on a parallel/distributed platform; and to methods

for reasoning about the performance of a workflow execution on a particular

set of hardware resources. This and the following three modules use workflow

applications as a compelling context for achieving fundamental PDC SLOs.

(III) Data Locality – Building on the previous two modules, this module

introduces the general concept of data locality in distributed platforms. Stu-

dents evaluate different workflow execution scenarios and experience first-hand

the impact of poor and good data locality on performance.

(IV) Parallelism – Building on the first two modules as well, this module

introduces students to notions pertaining to parallel computing (e.g., speedup,

efficiency, dependent vs. independent tasks) and parallel computing platforms

(e.g., multi-core nodes with limited RAM, multi-node clusters).

(V) Resource Provisioning – In this capstone module, students use the

concepts learned in previous modules to solve a problem based on a real-world

scenario. Students are presented with a particular workflow application and a

set of hardware resources. Given a budget, students must determine the best

11

https://eduwrench.org
http://eduwrench.org/teachers

Table 1: Curriculum map for our WRENCH pedagogic modules: (I) Networking; (II) work-

flows; (III) Data locality; (IV) Parallelism; and (V) Resource Provisioning. (E: Emerging, D:

Developing, P: Proficient).

S
t
u
d
e
n
t
L
e
a
r
n
in

g
O
b
je
c
t
iv

e
M

o
d
u
le

(
I)

(
I
I)

(
I
I
I)

(
IV

)
(
V
)

U
n
d
e
rs

ta
n
d

n
o
ti

o
n
s

o
f

n
e
tw

o
rk

to
p

o
lo

g
y
,

b
a
n
d
w

id
th

,
a
n
d

la
te

n
c
y

E
E

D
-

P

B
e

a
b
le

to
re

a
so

n
a
b

o
u
t

b
o
tt

le
n
e
ck

li
n
k
s

a
n
d

b
a
n
d
w

id
th

sh
a
ri

n
g

E
E

D
-

P

B
e

a
b
le

to
e
st

im
a
te

d
a
ta

tr
a
n
sf

e
r

ti
m

e
s

g
iv

e
n

a
to

p
o
lo

g
y
,

fo
r

b
o
th

se
q
u
e
n
ti

a
l

a
n
d

c
o
n
c
u
rr

e
n
t

d
a
ta

tr
a
n
sf

e
rs

E
E

D
-

P

B
e

e
x
p

o
se

d
to

C
I

d
e
p
lo

y
m

e
n
ts

th
a
t

c
o
n
si

st
o
f

st
o
ra

g
e

a
n
d

c
o
m

p
u
te

se
rv

ic
e
s

d
e
p
lo

y
e
d

o
n

w
id

e
-a

re
a

n
e
tw

o
rk

s
o
f

h
e
te

ro
g
e
n
e
o
u
s

re
so

u
rc

e
s

-
E

E
D

P

U
n
d
e
rs

ta
n
d

th
e

st
ru

c
tu

re
o
f

sc
ie

n
ti

fi
c

w
o
rk

fl
o
w

a
p
p
li
c
a
ti

o
n
s

a
n
d

th
e

n
o
ti

o
n

o
f

ta
sk

d
e
p

e
n
d
e
n
c
ie

s
-

E
D

D
P

B
e

a
b
le

to
e
st

im
a
te

w
o
rk

fl
o
w

e
x
e
c
u
ti

o
n

ti
m

e
fo

r
a

g
iv

e
n

C
I

d
e
p
lo

y
m

e
n
t

in
c
lu

d
in

g
c
o
m

p
u
ta

ti
o
n

a
n
d

I/
O

-
E

D
D

P

U
n
d
e
rs

ta
n
d

n
o
ti

o
n
s

o
f

d
a
ta

lo
c
a
li
ty

a
n
d

d
a
ta

p
ro

x
im

it
y

E
-

D
-

P

B
e

a
b
le

to
q
u
a
n
ti

fy
th

e
im

p
a
c
t

o
f

d
a
ta

lo
c
a
li
ty

o
n

a
p
p
li
c
a
ti

o
n

e
x
e
c
u
ti

o
n

ti
m

e
E

-
D

-
P

B
e

fa
m

il
ia

r
w

it
h

m
u
lt

i-
c
o
re

c
o
m

p
u
te

n
o
d
e
s

a
n
d

h
o
w

th
e
y

c
a
n

b
e

a
g
g
re

g
a
te

d
to

fo
rm

c
o
m

p
u
te

c
lu

st
e
rs

-
-

-
E

D

U
n
d
e
rs

ta
n
d

p
a
ra

ll
e
li
sm

a
n
d

p
a
ra

ll
e
l

sp
e
e
d
u
p

-
E

E
D

P

U
n
d
e
rs

ta
n
d

th
e

tr
a
d
e
o
ff

b
e
tw

e
e
n

p
a
ra

ll
e
li
sm

a
n
d

c
o
re

u
ti

li
z
a
ti

o
n

-
-

-
D

P

U
n
d
e
rs

ta
n
d

h
o
w

m
e
m

o
ry

fo
o
tp

ri
n
t

c
o
n
st

ra
in

ts
c
a
n

li
m

it
p
a
ra

ll
e
li
sm

-
-

-
D

P

B
e

a
b
le

to
e
st

im
a
te

a
p
p
li
c
a
ti

o
n

e
x
e
c
u
ti

o
n

ti
m

e
s

w
h
e
n

ta
sk

s
a
re

e
x
e
c
u
te

d
in

p
a
ra

ll
e
l

o
n

a
c
lu

st
e
r

o
f

m
u
lt

i-
c
o
re

c
o
m

p
u
te

n
o
d
e
s

w
it

h
li
m

it
e
d

R
A

M
c
a
p
a
c
it

y
-

-
-

D
P

B
e

a
b
le

to
c
o
m

p
a
re

re
so

u
rc

e
p
ro

v
is

io
n
in

g
a
lt

e
rn

a
ti

v
e
s

fo
r

a
g
iv

e
n

a
p
p
li
c
a
ti

o
n

-
-

-
E

D

B
e

a
b
le

to
m

a
k
e

a
p
p
ro

p
ri

a
te

re
so

u
rc

e
p
ro

v
is

io
n
in

g
d
e
c
is

io
n
s

fo
r

a
g
iv

e
n

a
p
p
li
c
a
ti

o
n

g
iv

e
n

b
u
d
g
e
t

c
o
n
st

ra
in

ts
-

-
-

E
D

12

Figure 1: Module (IV): CI deployment (left-hand side) and workflow application (right-hand

side).

way to spend this budget on hardware upgrades in order to minimize application

execution time.

Due to lack of space we cannot describe all of the above five modules and

the simulation-driven pedagogic activities therein. In the next section, instead,

we provide an overview of Module (IV).

4.3. Overview of Module (IV)

Module (IV) focuses on parallelism and includes several simulation-driven

pedagogic activities. The module first presents students with the platform de-

picted in the left-hand side of Figure 1. The deployment consists of three sites.

The site on the top left (storage db.edu) hosts a Storage Service with infinite

storage capacity. The site on the right hosts a Compute Service (accessible via

hpc.edu). These two sites are connected via a network link with 100µs latency

and 125 MB/sec bandwidth. The third site (my lab computer.edu) is where

the user resides and runs a software agent (Workflow Management System) to

orchestrate application executions using the hardware resources provided by the

Storage and Compute Services.

The application to be executed on the above platform is provided to students

as depicted on the right-hand side of Figure 1. It consists of 20 identical and

independent single-threaded tasks, each taking in a 2GB input file, computing

3600 TFlop using 4GB of RAM, and producing a 2GB output file. A last, also

13

single-threaded, task takes in all these output files, computes 300 TFlop using

42GB of RAM, and produces a final 2GB output file. The first 20 input files,

are initially stored on the Storage Service at host storage db.edu. All tasks

must be executed on the Compute Service. This service has a local scratch

space (with fast bandwidth of 1250 MB/sec) to which intermediate files (i.e.,

the output files of the first 20 tasks) are written. Finally, the last output file

must be written back to the Storage Service.

The module presents the above scenario to the students in the form of a

narrative, with the depictions in Figure 1, and some review of the SLOs achieved

in previous modules. Using an example, students are introduced to the concept

of core utilization and core idle time. Students are then asked to answer a series

of questions, assuming the Compute Service only hosts one single-core node.

An example question is: “What do you expect the overall execution time to be?

Use the simulator to check your answer”. The module then evolves the scenario

to cases in which the compute node at the Compute Service has 10, 15, or 20

cores. In each case, students quantify the performance gain, or lack thereof,

and experience first-hand the interplay between core utilization and application

performance using the simulation.

In a second phase of this module, the Compute Service hosts multiple multi-

core nodes, which is depicted to students as in Figure 2. At the same time,

each of the first 20 tasks uses 12GB more RAM, thus limiting the utilization

of each compute node (whose RAM capacity is 80GB). The narrative explains

to students how RAM constraints impact parallelism on a compute node, and

then presents students again with a series of questions. An example question

is: “What is the minimum number of 3-core nodes that achieves the previously

determined fastest possible execution time?” Students can answer this question

analytically and check their answer in simulation, or empirically by running

several simulations to do a (manual) binary search. Other questions pertain to

core utilization, getting to the notion of which hardware investments are worth-

while (this notion is fully explored in Module (V), which focuses on resource

provisioning).

14

Figure 2: Module (IV): Simulated hardware specification of the cluster used by the Compute

Service.

As described in Section 3.2, students invoke the simulator via a web interface,

entering the number of compute nodes and the number of cores per compute

node, specifying whether tasks require extra RAM, and then clicking the “Run

Simulation” button. The simulation takes less than 1 second and updates the

web page with several visualizations of the simulated execution. Figure 3 shows

a Gantt chart visualization, which displays, for each task on the vertical axis,

the task execution timeline with input read, computation, and output write.

Tasks that read/write input concurrently split the bandwidth, which is why I/O

times for the 5 tasks that start around time 3,900 are lower than that of the 15

tasks that start at time 0. Hovering above any component in this visualization

pops up a tooltip with qualitative and quantitative information (e.g., task and

file names, durations, start and end times). Another provided visualization

is the core utilization time-line shown in Figure 4. This visualization shows

idle core time due to I/O operations (e.g., the gap at time 0), due to RAM

limitation (e.g., the 6th core on a node is never used), due to imperfect load-

balancing (e.g., the 2nd and 3rd nodes are fully idle after time 3,900), and lack

of parallelism (e.g., all cores but one are idle while the last task executes). Here

15

Figure 3: Module (IV): Sample Gantt chart of task executions for a platform with 3 6-core

compute nodes.

again, a student can hover over any component of this visualization to gain more

detailed information.

5. Spring 2019 Evaluation

5.1. Preliminary Evaluation

In February 2019, we performed a preliminary evaluation of our modules with

three student participants, seniors in the B.S. in Computer Science program

at the University of Hawai‘i at Mānoa (UHM) who volunteered due to their

desire to learn more about PDC. They were given an assignment in which they

completed modules (I) and (II) on their own. A week later, in a 1-hour session,

the pedagogic team (the first and second author) together with the students

16

Figure 4: Module (IV): Sample core utilization time-line for a platform with 3 6-core compute

nodes.

completed module (III), fielding questions. A week later, in another 1-hour

session, the participants completed as many questions as possible in module

(IV), with the pedagogic team providing scaffolding. Detailed feedback from

these students led us to make many improvements to the pedagogic narrative

and the simulation visualizations.

5.2. Classroom Evaluation

The first author regularly teaches the undergraduate Operating Systems

course at UHM. The PDC topic was added to the course syllabus for the Spring

2019 semester as follows:

1. A 30-minute lecture on PDC to motivate the topic;

2. A reading assignment in which students complete modules (I) and (II) on

17

their own;

3. A 75-minute in-class interactive session during which the pedagogic team

goes through module (III), soliciting participation from students and field-

ing questions;

4. A 75-minute in-class interactive session during which students, either in-

dividually or in groups of up to 3, start on module (IV) with scaffolding

provided by the pedagogic team;

5. A homework assignment in which students answer four of the last (and

most challenging) questions of module (IV), with solutions to preceding

questions provided to them; and

6. Three problems on the final exam (covering SLOs #1 to #13 in Table 1),

worth 10% of the final exam grade.

We gathered qualitative and quantitative data:

• Anonymous post questionnaires about experience and perceived learning

in step 3 and 4 above;

• Anonymous pre and post knowledge tests in step 3 and 4 above;

• Informal feedback volunteered by students directly and/or entered in UHM’s

course evaluation system;

• Anonymized time-stamped trace data of student interactions with the sim-

ulation web app;

• Anonymized correlation between number of simulator invocations and

grade for relevant final exam questions.

What is missing from our evaluation data is a control group, i.e., another

group of students that are taught the same material but without using simu-

lation. A comparison to a version of the module taught without any hands-on

experience for student would only evaluate the benefit of hands-on education,

which is already well documented. What is needed instead is a comparison to

teaching this module using a real-world PDC platform. However, as explained

in Section 1, this is difficult and typically not done (especially at the undergrad-

uate level). This is why we advocate the use of simulation in the first place.

Besides, given the steep pedagogic challenges of using a real-world platform, the

18

Figure 5: Daily numbers of simulations executed by students (Spring 2019).

control group students would receive a vastly inferior educational experience as

part of their undergraduate education (which, from a human subject research

perspective, goes against the principle of justice).

5.3. Results

In this section, we analyze the collected data to answer three key questions.

Question #1: Are students using the simulation?

45 of the 55 students who took the final exam ran simulations. Daily sim-

ulation execution totals are shown in Figure 5. Overall 1,008 simulations were

executed in a 16-day period, with expected peak days when the reading assign-

ment was posted, during the two in-class sessions, and leading up the homework

assignment’s due date. Note that during the first in-class session it was not a

requirement for students to run simulations, but many of them opted to “follow

along” on their own computers. For the 16-day period, and only considering

students who ran at least one simulation, each student executed 22 simulations

on average (with a maximum of 61 simulations for one student).

19

Table 2: Correlation between numbers of simulations executed and average grades on PDC-

focused final exam questions (Spring 2019).

of simulations # of students grade average grade coeff. var.

0 10 67.6 14.8%

1-10 14 88.8 27.6%

11-20 13 99.8 18.1%

21-30 6 81.0 21.7%

31+ 12 75.5 37.0%

Module (IV), which was started in the 2nd in-class session and completed

in the homework assignment, explicitly asks students to run the simulator 7

times for particular input settings. But we find that 82% of students ran more

than 7 simulations (with the average at 21). Furthermore, we find that 40% of

simulation runs were for input settings that were not suggested to students. We

conclude that most students used simulation independently for better learning

the material and completing their assignments. And indeed, in the classroom

the pedagogic team observed groups of students “trying out” various simula-

tion configurations out of curiosity. However, students who struggle with the

material could also be running many simulations haphazardly.

Question #2: Are students learning the material?

Table 2 shows how grades obtained by students on PDC-related final exam

questions correlate with the number of simulations that students have executed.

For each range of number of simulations executed the table shows the corre-

sponding number of students, the average grade, and the coefficient of variance

(i.e., the standard deviation divided by the mean) as a percentage. During

in-class sessions students often worked in groups, meaning that for some stu-

dents lower numbers of simulations were recorded. We find that students who

have executed no simulations perform worse than other students. Interestingly,

students who ran a lot of simulations also do not perform well, scoring a C on

average (although a few performed well, hence the higher coefficient of variance).

20

This may be because most of these students struggled with the material. We

find that students who ran between 11 and 20 simulations performed best, with

almost a perfect score on average. Overall, out of the 55 students who took the

final exam, the grade distribution for the PDC-related questions was as follows:

A: 25; B: 10; C: 5; D: 6; F: 9. In Module (IV)’s pre knowledge test, only 23% of

students answered correctly the multiple-choice question: “You have two 4-core

machines, and your application has 10 independent tasks. Each task runs in 1

minute on a single core and uses only a few bytes of RAM. How fast can you

run your application?”. Scores on the final exam show that close to 82% of

students answered similar, but more difficult, questions correctly. Based on our

own observations and experience, we believe that these good results are due to

our simulation-driven approach. But due to the lack a control group, we cannot

draw a definite conclusion regarding the reason for these results.

Question #3: Are students having a positive experience?

Student feedback on their experience collected via anonymous questionnaires

was unanimously positive, with written-in comments such as “I’ve really enjoyed

the simulations and feel like they were a nice simplified introduction to some

complicated ideas” or “It was engaging and educational”. In terms of perceived

difficult of the material, 60% of students deemed it “just right”, 23% “too hard

but useful”, 10% “too hard to be useful”, and 7% answered “too easy but

useful”.

5.4. Updates to the Pedagogic Modules

Anonymous questionnaires asked students for feedback on the pedagogic con-

tent. Based on this feedback we re-structured some of the longer modules, and

added more examples and explanatory figures throughout. We also made one

significant structural change. The pedagogic modules used workflow applica-

tions as a motivating context. Because workflows are ubiquitous and compelling

(i.e., “workflows were used for computations that led to the discovery of gravi-

tational waves”) they are a good class of application to use for motivating the

21

material. But for teaching basic PDC concepts the use of workflows adds com-

plexity to the pedagogic content, which can be overwhelming for some students.

We thus added three preliminary modules, with three new simulators, for tar-

geting basic PDC SLOs without mentioning workflows. Finally, to our surprise,

several students had technical difficulties running Docker on their Windows 10

Home computers. So instead of enforcing the use of Docker, we opted for also

hosting our web app on a static server to which students can authenticate for

running simulations remotely. These updated pedagogic modules, which were

used in the subsequent semester, are available at [52].

6. Fall 2019 Evaluation

We used our (updated) pedagogic modules in the Fall 2019 offering of the

Operating Systems course at UHM, and performed another evaluation.

6.1. Classroom Evaluation

The PDC topic added to the course syllabus was identical to that in the

previous semester (see Section 5.2), and the pedagogic team (the first and third

authors of this paper) performed the evaluation by collecting the following qual-

itative and quantitative data:

• One anonymous post questionnaire about experience and perceived learn-

ing;

• Anonymized time-stamped trace data of student interactions with the sim-

ulation web app;

• Anonymized correlation between number of simulator invocations and

grade for relevant final exam questions.

6.2. Results

In this section, we revisit the same questions as in Section 5.3.

Question #1: Are students using the simulation?

58 students took the final exam and 52 of these students ran simulations. This

22

1
1
/2

7

1
1
/2

8

1
1
/2

9

1
1
/3

0

1
2
/1

1
2
/2

1
2
/3

1
2
/4

1
2
/5

1
2
/6

1
2
/7

1
2
/8

1
2
/9

1
2
/1

0

1
2
/1

1

1
2
/1

2

1
2
/1

3

1
2
/1

4

1
2
/1

50

50

100

150

200

250

300

350

400

450

n
u
m

b
e
r

o
f

si
m

u
la

to
r

e
x
e
cu

ti
o
n
s

 Reading
Assignment
 posted

 1st
in-class
session

 2nd
in-class
session

Homework
 due

Figure 6: Daily numbers of simulations executed by students.

Table 3: Correlation between numbers of simulations executed and average grades on PDC-

focused final exam questions (Fall 2019).

of simulations # of students grade average grade coeff. var.

0 6 47.5 18.4%

1-10 11 69.4 15.3%

11-20 16 86.5 19.4%

21-30 4 75.3 20.4%

31+ 21 81.1 48.3%

represents 89.6% of students, vs. 81% in Spring 2019. Daily simulation execu-

tion totals are shown in Figure 6. Overall 1,576 simulations were executed by 52

students in a 19-day period. On average, each student executed 30 simulations,

vs. 22 in Spring 2019 (the updated version of the pedagogic modules did not

explicitly require that students run more simulations than in their Spring 2019

versions. The pattern in Figure 6 is similar to that in Figure 5. One difference

is that more students ran simulations in between the two in-class interactive

sessions, which may indicate a higher level of engagement.

23

Question #2: Are students learning the material?

Table 3, like Table 2 shows final exam grade results. As for Spring 2019, we find

that students who ran few simulations did not do well, and that students who ran

between 11 and 20 simulations did best on average. A different pattern is seen

for students who ran large number of simulations. Examining the data, we find

that, unlike in Spring 2019, about half of the students who ran 31+ simulations

score 100% on the final exam but the other half scored relatively poorly, leading

to a good average overall (but a high coefficient of variance). So although we

again see students who might have run many simulations haphazardly, we now

see students who have mastered the material and still ran many simulations

(perhaps out of curiosity).

On average, students did not do as well as in the previous semester. In the

previous semester the grade point average for the PDC questions on the final

exam is 83.8%, but for this semester it is 76.5%. To determine whether the

reason for this difference was due to the updates to our pedagogic modules,

we computed average grades for the final exam excluding PDC questions.

We find that the Spring 2019 students overall also did much better than the

Fall 2019 students (82.4% vs. 75.1% average grade), just as they did for the

PDC questions. Such differences in levels of performance between classes in

subsequent semesters is not uncommon.

Question #3: Are students having a positive experience?

Students were asked for feedback on their experience via an anonymous ques-

tionnaire. 31 of the 58 students in the class completed the questionnaire. Ta-

ble 4 shows student answers to key questions. The main take-away is that most

students found the material useful and are interested in learning more about

PDC. Importantly, 80% of students felt that using simulation was very useful

for learning, and the remaining 20% felt that it was somewhat useful. Just

like in the previous semester, written-in comments were unanimously positive,

such as “I think that the simulations were really helpful in understanding the

concepts and fundamentals in action” or “I liked the simulation. It was a nice

24

Table 4: Highlighted post questionnaire questions and student answers (Fall 2019).

How easy/difficult is the material?

very easy: 4

somewhat easy: 5

neither: 8

somewhat difficult: 12

very difficult: 2

How useful/not useful is the material?

very useful: 22

somewhat useful: 9

not useful at all: 0

To what extent did the module help you learn

new things?

to a great extent: 22

to some extent: 9

not at all: 0

Are you interested in learning more about

Parallel and Distributed Computing?

yes: 27

no: 4

How useful is simulation to learn about Parallel

and Distributed computing?

very useful: 25

somewhat useful: 6

not at all useful: 0

cannot tell: 0

How valuable is the overall learning experience

in the module?

very valuable: 24

somewhat valuable: 7

not valuable at all: 0

addition to visually see as well as check my work”

6.3. Updates to the Pedagogic Modules

Based on feedback from the Fall 2019 student, we integrated the simulation

app in the same web page as the pedagogic narrative and we have added prac-

tice questions throughout the pedagogic narratives. We have also created new

modules to cover more PDC SLOS (e.g., Amdahl’s law, disk I/O, client-server,

coordinator-worker), raising the number of simulators to 10. Given the large

increase in pedagogic content, we have also added an easily accessible glossary

25

of terms.

This improved and expanded set of pedagogic modules is available on-line

at https://eduwrench.org. For reference purposes we still maintain the sites

that contain the versions of our pedagogic modules used in Spring 2019 [51] and

Fall 2019 [52].

7. Adoption in University Courses

Adopting our pedagogic modules in existing university courses requires no

technology buy-in since all pedagogic material, including the simulation-driven

activities, are available in the browser. The instructor can simply point stu-

dents to the pages hosted at https://eduwrench.org. Students can then go

through the material, simulation-driven activities, and practice questions on the

page, whether on their own or during a lecture with instructor-provided scaf-

folding. Finally, the instructor can include non-practice questions provided

on that site in homework assignments and exams (solutions to these ques-

tions are provided to instructors upon request). Instructors can select which

modules, or subset thereof, to include in their courses based on their listed

SLOs. Up-to-date coverage of the NSF/IEEE-TCPP curriculum’s SLOs is listed

at http://eduwrench.org/teachers.

Our current modules focus on knowledge and quantitative reasoning SLOs,

and do not target PDC programming SLOs. Furthermore, because they require

no PDC platforms, they do not target SLOs that focus on the practical skills

that are necessary for using these platforms (note that the NSF/IEEE-TCPP

curriculum does not include such SLOs). As a result, our modules are not

sufficient for full coverage of PDC topics as there are PDC skills that can only

be acquired by developing programs and running them on real-world platforms.

This said, our modules can be adopted by instructors for (i) injecting PDC

content into courses without requiring programming; or (ii) enhancing teaching

in courses that already include PDC content and in particular that include PDC

programming. We discuss both adoption paths hereafter.

26

https://eduwrench.org
https://eduwrench.org
http://eduwrench.org/teachers

The undergraduate Operating Systems course for which we performed our

pedagogic evaluations originally had no PDC content besides a mere introduc-

tion to the concepts of threads and mutual exclusion. Our modules made it

straightforward to inject PDC content into the course. We included coverage

of many of our modules, but it should be straightforward to include only a few

or even a single module into an existing course. Some modules are prerequi-

site to others, but backward references are included so that students who need

to review prerequisite material can do so (also, our web site includes an easily

accessible glossary of terms). We are currently working with instructors at our

and other institutions to include one or two of our modules in lower division

courses. A challenge may be to motivate the new PDC content, especially since

our modules only focus on knowledge and quantitative SLOs, albeit with hands-

on experience with simulation. In our case, we provided such motivation via a

1/2-hour lecture as a preamble to going through our pedagogic modules. This

lecture introduced PDC and motivated it in the overall context of the course.

Based on student feedback, we found that this was amply sufficient. In addition,

many students were aware that PDC is a crucial topic that is not sufficiently

covered in the standard curriculum, which provided inherent motivation.

Our pedagogic modules can also be used to enhance teaching in courses that

already include coverage of PDC, including courses in which students engage

in PDC programming. Rather than replacing hands-on learning via program-

ming, our modules provide complementary hands-on learning opportunities via

simulation. One option is for the instructor to design programming activities

related to our pedagogic modules, something we did not do in the Operating

Systems course due to lack of time in the semester. For instance, our second

module focuses on multi-core architectures, and one of the topics it covers is

load-balancing of independent tasks onto cores. It would be straightforward to

design a relevant programming assignment in which students develop a multi-

threaded program, using whatever programming language, and run it on their

own multi-core computers. The material in our module would (i) provide the

initial concepts necessary for students to embark on the programming assign-

27

ments for a particular application on their computers; and (ii) allow students

to experiment, in simulation, with a broader range of application and computer

scenarios.

Given the above, we hypothesize that our modules can both facilitate and

reinforce learning achieved via programming activities. To obtain some prelim-

inary insight into whether this hypothesis holds, we have used several of our

modules in an upper-division Concurrent and High-Performance Programming

elective course at UHM (Fall 2020, 30 students). This course is programming-

heavy as students develop many multi-threaded programs (in Java and C), as

part of a semester-long project. Students learn about fundamental parallel

computing concepts such as Amdahl’s law, overlap of I/O and computation

in multi-threaded programs, task graphs, mixed task- and data-parallelism, etc.

The programming assignments, because of the time constraints and because they

were designed around a specific real-world application, do not allow students to

experience hands-on all the ways in which the above concepts impact parallel

program executions. To complement students’ experience we have used our ped-

agogic modules, and in particular their simulation-driven activities. Although

we did not perform a systematic evaluation, informal student feedback as well

as the level of achievement of SLOs indicate that combining PDC programming

with in-simulation experiments was very effective. Based on this successful, if

preliminary, experience, we have started adding suggested programming activi-

ties to our pedagogic modules.

8. Conclusion

We have presented pedagogic modules for teaching PDC concepts and prac-

tices. The key aspect of this work is that these modules include simulation-based

pedagogic activities through which students can learn in a hands-on manner by

experimenting with various application and platform scenarios. These mod-

ules have few pre-requisites and, in their current form, do not require any pro-

gramming. These modules can be used to inject PDC content into university

28

courses. We have done so ourselves in two consecutive offerings of an under-

graduate Operating Systems course, for which we have conducted pedagogic

valuations. Evaluation results show that students were engaged and actively

used the simulation, learned the material, and had an overall very positive ex-

perience. Our modules can also be used to enhance coverage of PDC content in

university courses. We have done so for an undergraduate elective Concurrent

and High-Performance Programming course, in which the modules’ simulation-

driven activities were used to complement PDC programming assignments.

A clear future direction is to develop more pedagogic modules, and in par-

ticular modules that target more advanced PDC topics. These include modules

for teaching students cyberinfrastructure concepts and their underlying tech-

nologies. For instance, we have begun developing a “batch scheduler module” in

which students interact with a simulated batch-scheduled cluster subject to sim-

ulated background load, using a subset of the Slurm [53] interface. WRENCH al-

ready provides the simulation capabilities necessary for easily implementing this

and many other kinds of more advanced simulation scenarios. Broader future

plans include conducting user studies, with small groups of students, in order to

quantify the extent to which knowledge acquired through our simulation-driven

pedagogic activities translates to proficiency when using real-world systems.

We encourage instructors to browse the growing set of available pedagogic

modules at https://eduwrench.org, provide feedback, and consider adoption

of these modules in their courses.

Acknowledgments

This work is funded by NSF contracts #1642369 and #1642335, and partly

funded by NSF contracts #1923539 and #1923621: “CyberTraining: Implemen-

tation: Small: Integrating core CI literacy and skills into university curricula

via simulation-driven activities”.

29

https://eduwrench.org

References

References

[1] G. Zarza, D. Lugones, D. Franco, E. Luque, An Innovative Teaching Strat-

egy to Understand High-Performance Systems through Performance Eval-

uation, in: Proc. of International Comference on Computational Science,

2012.

[2] A. Kozinov, E.and Shtanyuk, Learning Parallel Computations with Par-

aLab, in: Proc. of the 1st Ural Workshop on Parallel, Distributed, and

Cloud Computing for Young Scientists, 2015, pp. 11–20.

[3] H. Casanova, M. Quinson, A. Legrand, F. Suter, SMPI Courseware: Teach-

ing Distributed-Memory Computing with MPI in Simulation, in: Proc. of

the Workshop on Education for High-Performance Computing (EduHPC),

2018.

[4] R. Tanaka, R. Ferreira da Silva, H. Casanova, Teaching parallel and

distributed computing concepts in simulation with wrench, in: Work-

shop on Education for High-Performance Computing (EduHPC), 2019.

doi:10.1109/EduHPC49559.2019.00006.

[5] NSF/IEEE-TCPP Curriculum Initiative on Parallel and Distributed Com-

puting, http://www.cs.gsu.edu/~tcpp/curriculum/ (2020).

[6] H. Casanova, S. Pandey, J. Oeth, R. Tanaka, F. Suter, R. Ferreira da

Silva, WRENCH: A Framework for Simulating Workflow Management Sys-

tems, in: 13th Workshop on Workflows in Support of Large-Scale Science

(WORKS’18), 2018, pp. 74–85. doi:10.1109/WORKS.2018.00013.

[7] H. Casanova, R. Ferreira da Silva, R. Tanaka, S. Pandey, G. Jethwani,

W. Koch, S. Albrecht, J. Oeth, F. Suter, Developing accurate and scalable

simulators of production workflow management systems with wrench, Fu-

ture Generation Computer Systems 112 (2020) 162–175. doi:10.1016/j.

future.2020.05.030.

30

https://doi.org/10.1109/EduHPC49559.2019.00006
http://www.cs.gsu.edu/~tcpp/curriculum/
https://doi.org/10.1109/WORKS.2018.00013
https://doi.org/10.1016/j.future.2020.05.030
https://doi.org/10.1016/j.future.2020.05.030

[8] M. Ludin, A. Weeden, J. Houchins, S. Thompson, C. Peck, I. Babic,

K. Muterspaw, E. Sergienko, LittleFe: The high performance computing

education appliance, in: Proc. of the International Conference on Cluster

Computing, 2013.

[9] S. Holt, A. Meaux, J. Roth, D. Toth, Making the One Cluster Per Student

Method of Teaching Parallel Computing Financially Practical, Journal of

Computing Sciences in Colleges 33 (4) (2018) 106–113.

[10] R. Brown, J. Adams, S. Matthews, E. Shoop, Teaching Parallel and Dis-

tributed Computing with MPI on Raspberry Pi Clusters, in: Proc. of the

49th ACM Technical Symposium on Computer Science Education, 2018,

pp. 1054–1054.

[11] A. M. Pfalzgraf, J. A. Driscoll, A low-cost computer cluster for high-

performance computing education, in: Proc. of the International Confer-

ence on Electro/Information Technology, 2014, pp. 362–366.

[12] K. Doucet, J. Zhang, Learning Cluster Computing by Creating a Raspberry

Pi Cluster, in: Proc. of the SouthEast Conference, 2017, pp. 191–194.

[13] O. Abuzaghleh, K. Goldschmidt, Y. Elleithy, J. Lee, Implementing an

Affordable High-performance Computing for Teaching-oriented Computer

Science Curriculum, ACM Transactions on Computing Education 13 (1)

(2013) 3:1–3:14.

[14] C. Ivica, J. T. Riley, C. Shubert, StarHPC – Teaching parallel programming

within elastic compute cloud, in: Proc. if the 31st International Conference

on Information Technology Interfaces, 2009, pp. 353–356.

[15] P. Marshall, M. Oberg, N. Rini, T. Voran, M. Woitaszek, Virtual Clusters

for Hands-on Linux Cluster Construction Education, in: Proc. of the 11th

LCI International Conference on High-Performance Clustered Computing,

2010.

31

[16] N. A. Robison, T. J. Hacker, Comparison of VM Deployment Methods for

HPC Education, in: Proc. of the 1st Annual Conference on Research in

Information Technology, 2012, pp. 43–48.

[17] D. Johnson, S. Mason, B. Hartpence, Designing, Constructing and Im-

plementing a Low-Cost Virtualization Cluster for Education, in: Proc. of

International Multi-Conference on Society, Cybernetics and Informatics,

2013.

[18] M. Tikir, M. Laurenzano, L. Carrington, A. Snavely, PSINS: An Open

Source Event Tracer and Execution Simulator for MPI Applications, in:

Proc. of the 15th International Euro-Par Conference on Parallel Processing,

no. 5704 in LNCS, Springer, 2009, pp. 135–148.

[19] T. Hoefler, T. Schneider, A. Lumsdaine, LogGOPSim - Simulating Large-

Scale Applications in the LogGOPS Model, in: Proc. of the ACM Workshop

on Large-Scale System and Application Performance, 2010, pp. 597–604.

[20] G. Zheng, G. Kakulapati, L. Kalé, BigSim: A Parallel Simulator for Per-

formance Prediction of Extremely Large Parallel Machines, in: Proc. of

the 18th International Parallel and Distributed Processing Symposium

(IPDPS), 2004.

[21] R. Bagrodia, E. Deelman, T. Phan, Parallel Simulation of Large-Scale Par-

allel Applications, IJHPCA 15 (1) (2001) 3–12.

[22] W. H. Bell, D. G. Cameron, A. P. Millar, L. Capozza, K. Stockinger,

F. Zini, OptorSim - A Grid Simulator for Studying Dynamic Data Repli-

cation Strategies, IJHPCA 17 (4) (2003) 403–416.

[23] R. Buyya, M. Murshed, GridSim: A Toolkit for the Modeling and Simula-

tion of Distributed Resource Management and Scheduling for Grid Com-

puting, Concurrency and Computation: Practice and Experience 14 (13-15)

(2002) 1175–1220.

32

[24] S. Ostermann, R. Prodan, T. Fahringer, Dynamic Cloud Provisioning for

Scientific Grid Workflows, in: Proc. of the 11th ACM/IEEE International

Conference on Grid Computing (Grid), 2010, pp. 97–104.

[25] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, R. Buyya,

CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing En-

vironments and Evaluation of Resource Provisioning Algorithms, Software:

Practice and Experience 41 (1) (2011) 23–50.

[26] A. Núñez, J. Vázquez-Poletti, A. Caminero, J. Carretero, I. M. Llorente,

Design of a New Cloud Computing Simulation Platform, in: Proc. of the

11th International Conference on Computational Science and its Applica-

tions, 2011, pp. 582–593.

[27] G. Kecskemeti, DISSECT-CF: A simulator to foster energy-aware schedul-

ing in infrastructure clouds, Simulation Modelling Practice and Theory

58 (2) (2015) 188–218. doi:10.1016/j.simpat.2015.05.009.

[28] A. Montresor, M. Jelasity, PeerSim: A Scalable P2P Simulator, in: Proc.

of the 9th International Conference on Peer-to-Peer, 2009, pp. 99–100.

[29] I. Baumgart, B. Heep, S. Krause, OverSim: A Flexible Overlay Network

Simulation Framework, in: Proc. of the 10th IEEE Global Internet Sym-

posium, IEEE, 2007, pp. 79–84.

[30] M. Taufer, A. Kerstens, T. Estrada, D. Flores, P. J. Teller, SimBA: A Dis-

crete Event Simulator for Performance Prediction of Volunteer Computing

Projects, in: Proc. of the 21st International Workshop on Principles of

Advanced and Distributed Simulation, 2007, pp. 189–197.

[31] T. Estrada, M. Taufer, K. Reed, D. P. Anderson, EmBOINC: An Emulator

for Performance Analysis of BOINC Projects, in: Proc. of the Workshop

on Large-Scale and Volatile Desktop Grids (PCGrid), 2009.

33

https://doi.org/10.1016/j.simpat.2015.05.009

[32] D. Kondo, SimBOINC: A Simulator for Desktop Grids and Volunteer

Computing Systems, Available at http://simboinc.gforge.inria.fr/

(2007).

[33] H. Casanova, A. Giersch, A. Legrand, M. Quinson, F. Suter, Versatile, Scal-

able, and Accurate Simulation of Distributed Applications and Platforms,

Journal of Parallel and Distributed Computing 74 (10) (2014) 2899–2917.

[34] C. D. Carothers, D. Bauer, S. Pearce, ROSS: A High-Performance,

Low Memory, Modular Time Warp System, in: Proc. of the 14th

ACM/IEEE/SCS Workshop of Parallel on Distributed Simulation, 2000,

pp. 53–60.

[35] The ns-3 Network Simulator, http://www.nsnam.org.

[36] E. León, R. Riesen, A. Maccabe, P. Bridges, Instruction-Level Simulation

of a Cluster at Scale, in: Proc. of the Intl. Conf. for High Performance

Computing and Communications (SC), IEEE, 2009, pp. 1–12. doi:10.

1145/1654059.1654063.

[37] P. Velho, L. Mello Schnorr, H. Casanova, A. Legrand, On the Validity of

Flow-level TCP Network Models for Grid and Cloud Simulations, ACM

Transactions on Modeling and Computer Simulation 23 (4) (2013).

[38] P. Bedaride, A. Degomme, S. Genaud, A. Legrand, G. Markomanolis,

M. Quinson, M. Stillwell, F. Suter, B. Videau, Toward Better Simula-

tion of MPI Applications on Ethernet/TCP Networks, in: Prod. of the

4th Intl. Workshop on Performance Modeling, Benchmarking and Simula-

tion of High Performance Computer Systems, Springer, 2013, pp. 158–181.

doi:10.1007/978-3-319-10214-6_8.

[39] P. Velho, A. Legrand, Accuracy Study and Improvement of Network Sim-

ulation in the SimGrid Framework, in: Proc. of the 2nd Intl. Conf. on

Simulation Tools and Techniques, 2009, pp. 1–10. doi:10.4108/ICST.

SIMUTOOLS2009.5592.

34

http://simboinc.gforge.inria.fr/
http://www.nsnam.org
https://doi.org/10.1145/1654059.1654063
https://doi.org/10.1145/1654059.1654063
https://doi.org/10.1007/978-3-319-10214-6_8
https://doi.org/10.4108/ICST.SIMUTOOLS2009.5592
https://doi.org/10.4108/ICST.SIMUTOOLS2009.5592

[40] K. Fujiwara, H. Casanova, Speed and Accuracy of Network Simulation in

the SimGrid Framework, in: Proc. of the 1st Intl. Workshop on Network

Simulation Tools, 2007, pp. 1–10.

[41] A. Lèbre, A. Legrand, F. Suter, P. Veyre, Adding Storage Simulation Ca-

pacities to the SimGrid Toolkit: Concepts, Models, and API, in: Proc. of

the 8th IEEE Intl. Symp. on Cluster Computing and the Grid, IEEE, 2015,

pp. 251–260. doi:10.1109/CCGrid.2015.134.

[42] E. Luque, R. Suppi, J. Sorribes, A Quantitative Approach for Teaching

Parallel Computing, in: Proc. of the 23rd SIGCSE Technical Symposium

on Computer Science Education, 1992, pp. 286–298.

[43] A. N. Pears, Using the DiST Simulator to Teach Parallel Computing Con-

cepts, in: Proc. of the 1st International Forum on Parallel Computing

Curricula, 1995.

[44] B. Lester, The Art of Parallel Programming, Prentice Hall, 1993.

[45] J. Hartman, D. Sanders, Teaching parallel processing using free resources,

in: Proc. 26th IEEE Frontiers in Education Conference, Vol. 3, 1996, pp.

1483–1486.

[46] V. Gergel, A. Labutina, ParaLab System for Investigating the Parallel Al-

gorithms, in: Proc. of the Russia-Taiwan Symposium on Methods and Tools

of Parallel Processing, 2010, pp. 95–104.

[47] A. Nunez, C. Manoso, A. P. de Madrid, S. Pickin, SIMCAN: A simulator

to improve the learning of distributed and high-performance computing

systems in engineering degrees, Computer Applications in Engineering Ed-

ucation 27 (5) (2019) 1126–1138.

[48] The SimGrid Project, https://simgrid.org (2021).

[49] G. Kecskemeti, S. Ostermann, R. Prodan, Fostering Energy-Awareness in

Simulations Behind Scientific Workflow Management Systems, in: Proc. of

35

https://doi.org/10.1109/CCGrid.2015.134
https://simgrid.org

the 7th IEEE/ACM Intl. Conf. on Utility and Cloud Computing, 2014, pp.

29–38.

[50] The WRENCH Project, http://wrench-project.org (2021).

[51] Spring 2019 WRENCH Pedagogic Activities, https://henricasanova.

github.io/wrench-pedagogic-modules/ (2021).

[52] Fall 2019 WRENCH Pedagogic Activities, http://wrench-project.org/

wrench-pedagogic-modules/ (2021).

[53] A. B. Yoo, M. A. Jette, M. Grondona, Slurm: Simple Linux Utility for Re-

source Management, in: Proc. 9th International Workshop on Job Schedul-

ing Strategies for Parallel Processing (JSSPP), 2003, pp. 44–60.

36

http://wrench-project.org
https://henricasanova.github.io/wrench-pedagogic-modules/
https://henricasanova.github.io/wrench-pedagogic-modules/
http://wrench-project.org/wrench-pedagogic-modules/
http://wrench-project.org/wrench-pedagogic-modules/

	Introduction
	Related Work
	Using WRENCH for Simulation-driven Education
	The WRENCH Simulation Framework
	Implementing Simulation-driven Pedagogic Activities with WRENCH

	The WRENCH Pedagogic Modules
	Relationship to the DPC Curriculum
	Initial Modules
	Overview of Module (IV)

	Spring 2019 Evaluation
	Preliminary Evaluation
	Classroom Evaluation
	Results
	Updates to the Pedagogic Modules

	Fall 2019 Evaluation
	Classroom Evaluation
	Results
	Updates to the Pedagogic Modules

	Adoption in University Courses
	Conclusion

