

Reducing Time-to-Solution Using Distributed High-Throughput Mega-
Workflows – Experiences from SCEC CyberShake

Scott Callaghan1, Philip Maechling1, Ewa Deelman2, Karan Vahi2, Gaurang Mehta2, Gideon
Juve1, Kevin Milner1, Robert Graves3, Edward Field4, David Okaya1, Dan Gunter5, Keith

Beattie5, Thomas Jordan1

(1) University of Southern California, Los Angeles, CA 90089
{scottcal, maechlin, juve, kmilner, okaya, tjordan}@usc.edu

(2) USC Information Sciences Institute, Marina Del Rey, CA 90292; {deelman, vahi, gmehta}@isi.edu
(3) URS Corporation, Pasadena, CA 91101; Robert_Graves@URSCorp.com

(4) U.S. Geological Survey, Pasadena, CA 91106; field@caltech.edu
(5) Lawrence Berkeley National Laboratory, Livermore, CA 94551; dkgunter,ksbeattie}@lbl.gov

Abstract
 Researchers at the Southern California
Earthquake Center (SCEC) use large-scale grid-based
scientific workflows to perform seismic hazard
research as a part of SCEC’s program of earthquake
system science research. The scientific goal of the
SCEC CyberShake project is to calculate probabilistic
seismic hazard curves for sites in Southern California.
For each site of interest, the CyberShake platform
includes two large-scale MPI calculations and
approximately 840,000 embarrassingly parallel post-
processing jobs. In this paper, we describe the
computational requirements of CyberShake and detail
how we meet these requirements using grid-based,
high-throughput, scientific workflow tools. We
describe the specific challenges we encountered and
we discuss workflow throughput optimizations we
developed that reduced our time to solution by a factor
of three and we present runtime statistics and propose
further optimizations.

1. Introduction

 Researchers from the Southern California
Earthquake Center (SCEC) [1] are using high
performance computing to advance their program of
earthquake system science research. As a part of this
research program, SCEC scientists have developed a
new technique in which full 3D waveform modeling is
used in probabilistic seismic hazard analysis
calculations (PSHA). However, the complexity and
scale of the required calculations prevented actual
implementation of this new approach to PSHA. Since
that time, SCEC computer scientists have gathered the
seismological processing codes and the

cyberinfrastructure tools required for this research.
The codes and tools have been assembled into what
we call the CyberShake computational platform [2]. In
SCEC terminology, a computational platform is a
vertically integrated and well-validated collection of
hardware, software, and people that can produce a
useful research result. The CyberShake computational
platform is designed to perform physics-based PSHA
calculations for sites in the Southern California region.
In this paper, we describe CyberShake and our
experiences using it to produce this important new
type of PSHA hazard curves.

2. CyberShake Science Description

 Seismologists quantify the earthquake hazard for
a location or region using the PSHA technique by
estimating the probability that the ground motions at a
site will exceed some intensity measure (IM) over a
given time period. These intensity measures include
peak ground acceleration, peak ground velocity, and
spectral acceleration. PSHA seismic hazard estimates
are expressed in statements such as: a specific site
(e.g. the USC University Park Campus) has a 10%
chance of experiencing 0.5g acceleration in the next
50 years. This type of ground motion estimate is
useful for civic planners and building engineers
because it provides a probable “upper limit” on the
ground motions.
 PSHA estimates are delivered as PSHA hazard
curves (Fig. 1) that present ground motion values (e.g.
accelerations in g) on one axis, and the probability of
exceeding these ground motion level within one year
on the other axis.
 A set of hazard curves, for many sites in a
geographical region, may be integrated into a regional

Figure 1. Three hazard curves for the Whittier
Narrows site near Los Angeles. The black line is the
physics-based CyberShake simulation results. The blue
and green lines are two common attenuation
relationships.

Figure 2. An example hazard map for the Southern
California area generated using OpenSHA with
attenuation relationships. Colors show the probability
that ground motions will exceed 0.1g within next 50
years.

hazard map (Fig. 2) by keeping either the IM or
probability constant and plotting the other as a
function of geographic location. PSHA calculations
require two essential inputs. First, a list of all possible
future earthquakes that might affect a site is needed
(this information is available from an Earthquake
Rupture Forecast (ERF)). Secondly, a way of
calculating the ground motions that will be produced
by each earthquake in the list is needed. Traditionally,
the ground motions produced by each earthquake are
calculated using empirical attenuation-based
relationships. However, this approach has limitations.
The data used to develop the attenuation relationships
do not cover the full range of possible earthquake
magnitudes. Also, attenuation relationships do not
include basin or rupture directivity effects.
 To address these issues, CyberShake uses physics-
based 3D ground motion simulations with anelastic
wave propagation models to calculate the ground
motions that would be produced by each of the
earthquakes in the ERF. The scientists involved in
CyberShake believe that this new approach to PSHA
has clear scientific advantages and can improve the
accuracy of the seismic hazard information currently
available. For a typical site in Los Angeles, the latest
ERF available from the USGS (UCERF 2.0) identifies
more than 7,000 earthquake ruptures with magnitude >
5.5 that might affect the site. For each rupture, we
must capture the possible variability in the earthquake
rupture process. So we create a variety of hypocenter,
slip distribution, and rise times for each rupture to
produce over 415,000 rupture variations, each
representing a potential earthquake. In CyberShake
processing, there is a fairly technical, but important,
distinction between ruptures (~7,000) and rupture

variations (~415,000). These distinctions impact our
workflows. The SGTs calculations generate data for
each rupture, but post-processing must be done for
each rupture variation.
 Once we define the ruptures and their variations,
CyberShake uses an anelastic wave propagation
simulation to calculate strain Green tensors (SGTs)
around the site of interest. Seismic reciprocity is used
to post-process the SGTs and obtain synthetic
seismograms [3]. These seismograms are then
processed to obtain peak spectral acceleration values,
which are combined into a hazard curve (Fig. 1). Fig.
3 contains a workflow illustrating these steps.
Ultimately, CyberShake hazard curves from hundreds
of sites will be interpolated to construct a physics-
based seismic hazard map for Southern California.
 In 2005, the CyberShake curves were calculated
using a smaller number of ruptures, and a smaller
number of rupture variations, only about 100,000
rupture variations per site [4]. Since then, a new ERF
(UCERF 2.0) was released by the Working Group on
California Earthquake Probabilities [5]. This new ERF
identifies more possible future ruptures than were used
in 2005. In addition, based on initial CyberShake
results, SCEC scientists decided to specify more
variability in the rupture processes. As a result, the
number of rupture variations we must manage
increased by more than a factor of 4.

3. Computing Requirements

 The CyberShake platform must run many jobs,
and manage many data files. Thus, it requires
extensive computational resources. An outline of
computational and data requirements is given in Table

Figure 3: A high-level Cybershake workflow.

1. To compute the SGTs, a mesh of about 1.5 billion
points must be constructed and populated with seismic
wave velocity information. The velocity mesh is then
used in a wave propagation simulation for 20,000 time
steps.
 Once the SGTs are calculated, the post-processing
is performed. Processing is done for each of the
rupture variations and there are approximately 415,000
rupture variations for each hazard curve. Post-
processing begins by selecting a rupture variation.
Then, SGTs corresponding to the location of the
rupture are extracted from the volume and used to
generate synthetic seismograms which represent the
ground motions that the rupture variation would
produce at the site we are studying. Next the
seismograms are processed to obtain the IM of
interest, which, in our current study, is peak spectral
acceleration at 3.0 seconds. Each execution of these
post processing steps takes no more than a few
minutes, but SGT extraction must be performed for
each rupture, and seismogram synthesis and peak
spectral acceleration processing must be performed for
each rupture variation. On average, 7,000 ruptures

and 415,000 rupture variations must be considered for
each site. Therefore, each site requires approximately
840,000 executions, 17,000 CPU-hours and generates
about 66 GB of data.
 Considering only the computational time,
performing these calculations on a single processor
would take almost 2 years. In addition, the large
number of independent post-processing jobs
necessitates a high degree of automation, to help
submit jobs, manage data, and provide error recovery
capabilities should jobs fail. The velocity mesh
creation and SGT simulation are large MPI jobs which
run on a cluster using spatial decomposition. The post-
processing jobs have a very different character, as they
are “embarrassingly parallel” – no communication is
required between jobs.
 These processing requirements indicated that the
CyberShake computational platform requires both
high-performance computing (for the SGT
calculations) and high-throughput computing (for the
post-processing). To make a Southern California
hazard map practical, time-to-solution per site needs to
be short, on the order of 24-48 hours. This emphasis
on reducing time-to-solution, rather than categorizing
the system as a capability or capacity platform, pushes
the CyberShake computational platform into the high
productivity computing category which is emerging as
the key capability needed by science groups. In
contrast to capability computing (a single, large job)
and capacity computing (smaller, multiple jobs, often
in preparation for a capability run), high productivity
computing focuses on high throughput jobs with
extremely short runtimes. The challenge is to
minimize overhead and increase throughput to reduce
end-to-end wallclock time.

Table 1: Data and CPU requirements for the CyberShake

components, per site of interest.

Component Data CPU hours
Mesh generation 15 GB 150
SGT simulation 40 GB 10,000
SGT extraction 1 GB 250
Seismogram synthesis 10 GB 6,000
PSA calculation 90 MB 100
Total 66 GB 17,000

4. Technical Approach

 We developed a technical approach to
CyberShake which meets the computational
requirements defined by the domain scientists and also
minimizes the time-to-solution. First, we recognized
that we need to distribute the calculations because
SCEC does not own the necessary computational

Site List

Rupture
Generator

SGT
Generator

Rupture
Files

SGT
Files

Seismogram
synthesis

Seismograms

IM
Calculator

IM
Values

Hazard Curve

Hazard
Curve

Generator

Grid
Description
with CVM

Earthquake
Rupture
Forecast

resources. However, we do have HPC allocations at
the USC Center for High Performance Computing and
Communications and on the NSF TeraGrid [6]. Grid
computing enables us to acquire and use resources on
large, remote clusters. Second, the large number of
small jobs suggests a distributed, high-throughput
solution, such as Condor [7]. Third, the automation
required including job submission, data management,
and error recovery led us to the use of scientific
workflow tools. Using workflows increases the degree
of automation and provides a concise way to enforce
dependencies between jobs. We constructed the
CyberShake computational platform using grid
computing tools, high throughput capabilities of
Condor, and scientific workflows using Pegasus-WMS
[8, 9] to plan and run the very large workflows.
 To calculate a PSHA hazard curve, we first create
an abstract representation of a workflow called a DAX
(directed acyclic graph in XML format), which
contains jobs related by dependencies. The DAX is
supported by Pegasus and uses logical filenames for
executables and input and output files, making it
execution platform independent. Next, Pegasus is used
to plan the DAX to run on a specific platform. The
planning process converts the abstract DAX into a
concrete DAG. Pegasus uses its Transformation
Catalog [10] to resolve the logical names into physical
paths, specific to the remote execution system.
Additionally, Pegasus automatically augments the
DAG to include the transfer in (stage-in) of required
input files, found using the Globus Replica Location
Service (RLS) [11], and the transfer out (stage-out) of
final data files. Pegasus also wraps the jobs with
kickstart [12], which allows us to check the return
codes for successful execution and is easy to mine for
usage statistics using Netlogger-based tools
[http://acs.lbl.gov/NetLoggerWiki].
 The DAG is then submitted to the workflow
execution component of Pegasus-WMS, DAGMan
[http://www.cs.wisc.edu/condor/dagman]. DAGMan
manages the job execution by determining when jobs
are ready to run, submitting jobs via Globus to remote
resources, and throttling the number of jobs so as to
not overwhelm either the submission host (where the
jobs originate) or the remote platform (where the jobs
execute). If a job fails, DAGMan will automatically
retry the failed job and create a rescue DAG if the job
cannot be completed successfully. This restart
capability is critical for CyberShake. Jobs will fail for
a variety of reasons, and being able to resume
execution easily is a major benefit. These tools enable
CyberShake to be run on a variety of platforms and be
managed from a single local job submission host.
 Since the SGT simulation requires large MPI
calculations while the post-processing involves high

throughput embarrassingly parallel jobs, we decided to
separate these stages into two independent workflows.
This gives us flexibility to run the two pieces at
different times on different platforms, since some
environments may be optimized for MPI jobs while
others are more efficient for short serial jobs.
 Many remote execution environments limit the
number of jobs a single user can put in their queue.
Additionally, remote cluster schedulers often have a
scheduling cycle of several minutes, meaning that
when jobs finish it can take some time for another job
to be scheduled. To address these concerns, we use
Condor glideins, a type of multi-level scheduling.
Fig. 4 shows the steps involved in using glideins to
create a temporary Condor pool:
 (1) The user requests a group of nodes for a
specified duration via Condor. Condor sends the
request to the Globus gatekeeper on the remote host,
which submits the request on to the batch scheduler.
(2) After waiting in the remote queue, the glidein job
begins on the requested nodes. (3) The nodes start up
the Condor startd process and advertise themselves
back to the Condor collector on the local job
submission host as available nodes. This creates a
temporary Condor pool on the remote platform. (4)
The local submission host can then schedule directly
on the remote nodes by matching queued jobs to
available resources and sending the job to the node’s
startd process, which then begins the job.

5. Implementation

 We targeted the NSF-funded TeraGrid as an
execution environment due to their support for grid
computing as well as past SCEC success.
 To run CyberShake on the TeraGrid, we have
established interoperability between the local SCEC
grid and the TeraGrid through a TeraGrid science
gateway. We initiate the CyberShake workflows on
our local SCEC job submission machine, which
communicates to TeraGrid resources using Globus.
Our CyberShake jobs run in a TeraGrid gateway
account that exists on multiple TeraGrid resources. We
map the SCEC researcher submitting CyberShake
workflows on SCEC machines to an authorized
account on the TeraGrid.
 Initially, we targeted our CyberShake workflows
at the NCSA’s Abe cluster for both SGT and post-
processing workflows. However, we ran into
complications. We attempted to verify the SGTs by
using them to generate a seismogram for a certain
source and comparing it against a previously generated
seismogram for the same source. However, we were
unable to successfully verify the SGTs and despite
investigation were unable to pinpoint the source of the

error. The post-processing workflow also presented
unexpected challenges. Sometimes seismogram
synthesis jobs would experience a segmentation fault
which would not reoccur if the job was rerun. After
extensive memory profiling of the seismogram
synthesis code (written in C) and examination of the
runtime environment, we concluded that the version of
the Linux kernel used by Abe, 2.6.9, may contain a
memory management bug. On multi-core systems
memory claimed by the cache is not made properly
available to running code and therefore segmentation
faults can occur even though there is sufficient
memory available. This problem was exacerbated by
the short runtimes (<1 min) and high memory
requirements (1.6 GB) of the synthesis jobs. As a
result of these issues, we postponed running
CyberShake on Abe until the kernel is upgraded.
 We switched our target platforms to NCSA’s
Mercury cluster for the post-processing workflow and
USC’s HPCC for the SGT generation. Separating the
two stages onto different platforms was trivial; we
only had to transfer the two SGT files that are the
result of the first workflow to Mercury and register
them in the Globus RLS. This also permitted us to
utilize computational resources at two remote sites,
more than at either site alone. This demonstrates the
value of the Pegasus workflow approach which
defines abstract workflows. Modifying the workflow
to run on a difference physical system is simply a
matter of changing configuration information, and
replanning the workflow.

6. Workflow challenges and solutions

 An immediate problem was how to execute over
800,000 jobs without overwhelming the scheduler on
either the submit host or on the execution platform.

The average runtime for SGT extraction jobs
(“extraction jobs”) is 139 seconds; for seismogram
synthesis jobs (“synthesis jobs”), 48 seconds; and for
peak spectral acceleration jobs (“PSA jobs”), 1 second.
Running these short runtime jobs individually through
the scheduler would mean that computing resources
would sit idle much of the time, waiting for the
scheduler to schedule jobs, and the scheduler would be
under intense load to schedule new jobs to waiting idle
processors.
 To reduce the load on the remote platform, we use
Condor glide-ins, discussed in Section 4. Since the
remote scheduler (on Mercury, PBS) sees only a single
job, minimal load is added.
 On our local job submission host, we use a
Pegasus technique called “clustering” in which jobs of
the same type are grouped together. Pegasus alters the
DAX so that a number of individual jobs are replaced
by a single call to seqexec (a Pegasus remote-site
executable), which iterates over a Pegasus-created file
containing a list of jobs and sequentially executes
them on a remote resource. Each DAX, and therefore
each DAG, contains fewer jobs, reducing the load on
the local Condor scheduler. We selected clustering
values of 20 for the extraction jobs, 40 for seismogram
synthesis jobs, and 200 for PSA jobs.
 Another challenge was to create and plan the
DAX. Previously CyberShake was run with a smaller
number of jobs, only about 200,000, using a single
DAX, with label-based workflow partitioning to
divide up the DAX into 40 partitions. Workflow
partitioning separates a workflow into multiple pieces
(“partitions”), using user-assigned labels. It is used by
Pegasus-WMS to improve the scalability and the
reliability of the workflow mapping and execution.
Dependencies between the partitions follow the
dependencies of the original workflow. Partitions are

SCEC job submission host
Remote cluster

Batch

Scheduler
Globus

gatekeeper

Node 1

...

Node 2

Node 3

Node N

Pegasus -WMS

Condor central manager

Job 1

Job 2

Job 3

 …

Job N

Job queue

C ollector

1

2

3

4

Figure 4: Steps involved in acquiring glideins

then mapped and executed according to the
dependencies. Since each partition corresponds to a
execution directory on the remote host, running
multiple partitions reduces the number of files per
directory, improving filesystem response. Initially we
attempted to extend this technique to all 840,000 jobs
and continue to use label-based partitioning.
However, the size of the single DAX file – about 1 GB
-- made it too memory-intensive to partition or plan on
any of SCEC’s servers. We altered the workflow
generator to create 40 independent DAXes rather than
a single DAX with 40 partitions. This gave us similar
benefits to partitioning but reduced the memory
requirements of planning, only requiring about two
minutes of wall-time and 1 GB of memory to plan
each DAX.

7. Optimizations

 We were able to introduce optimizations to
decrease the runtime of a single workflow and reduce
the manual effort involved.
 Monitoring our execution, we discovered we had
poor utilization; many available processors spent long
periods of time idle. This was due to high clustering
values. Each DAX has only about 20 extraction jobs,
but each extraction job has between 2 and 1568
synthesis child jobs. In order to keep processors busy,
the extraction jobs must be completed quickly so the
more numerous synthesis jobs can begin execution and
claim idle processors. When clustering is used,
dependencies are moved to the cluster level. So
instead of a synthesis job having an extraction job
parent, a synthesis cluster has an extraction cluster
parent. Using a cluster factor of 20, it took at least 45
minutes before any synthesis clusters would start
execution. We found that for most of the duration of
the workflow not all the processors were used as a
result.
 The clustering parameters were adjusted to 2 for
extraction jobs, 10 for synthesis jobs, and 60 for PSA
jobs. With these new parameters, extraction clusters
completed in a few minutes, allowing synthesis
clusters to start more quickly and run on previously
idle processors. Although this increased the total
number of clusters fourfold, it reduced average
workflow completion times by a factor of three since
the processors spent much less time idle. We also
doubled the number of DAXes, from 40 to 80, so that
the number of files per directory on the remote host
was kept to a reasonable level (around 30,000).
 Increasing to 80 DAXes made manual submission
and monitoring unwieldy and labor-intensive. To
increase automation, we use a Pegasus construct called
a PDAX. A PDAX is a recursive workflow

description, in the form of a DAX. The PDAX is
constructed so that it contains Condor prescript jobs,
which plan the DAXes into DAGs, and main jobs
which submit the DAGs to Condor. The PDAX is
planned into a PDAG and submitted to Condor. Since
having all 80 DAXes running simultaneously could
put excessive load on the submission host and the
GridFTP servers [13] we initially set up “pipelines”,
chains of DAXes with parent-child relationships so the
chain executes serially. We used 10 pipelines, each
with 8 DAXes, so that 10 DAXes run simultaneously.
When one of the 10 initial DAXes finished, its child
DAX would be planned and run, and so on until all 10
pipelines completed.
 If a DAX failed, the pipeline of the failed DAX
would stop execution, since jobs further down the
pipeline cannot run until their parent DAX finishes.
The artificial dependencies we introduced to throttle w
had an inadvertent impact on failure recovery. Over
time the number of concurrent DAXes running would
decrease as pipelines stalled. This resulted in poor use
of the available processors. Eventually the entire
workflow had to be manually halted and resumed,
which would retry the failed jobs and begin again with
10 concurrent DAXes.
 To eliminate the negative impact of the
dependencies, we altered the workflow to contain a
pool of 80 independent DAXes rather than pipelines.
Using the Condor parameter maxjobs, we were able to
limit the number of concurrent DAXes. If one failed,
it did not hold up other DAXes; instead, a new DAX
was pulled from the pool, planned, and run. Changing
to a pool approach increased the amount of
automation, and decreased runtime for the workflow.
 We noticed that the most common cause of DAX
failure was an error with the GridFTP stageout job at
the end of the workflow. The transfer jobs were
inserted automatically by Pegasus to transfer data
products back to SCEC servers after completion of
each DAX. If the transfer failed, the workflow was
configured to retry it three times before failing and
throwing a rescue DAG, which registered as a failure
in the PDAX. The PDAX would respond by starting
the DAX over from the planning stage, and since for
reasons of space we did not use the Pegasus
checkpoint feature, all of the successful computations
were thrown out and rerun. To avoid redoing
completed computations, the PDAX was altered to tap
into the auto-restart feature of Condor 7.1, which
checks to see if a rescue DAG exists and, if so, restart
from it. This prevented us from duplicating
computations which had already been successfully
executed.
 Further investigation of the transfer failures
revealed that the main factor was the large number of

files being transferred. Each DAX had two transfer
jobs of approximately 5,000 files, one job for
seismograms and one for peak spectral acceleration
files. Additionally, the files are quite small; the
seismogram files are 24 KB each, and the spectral
acceleration files are just 216 bytes. Using GridFTP to
transfer so many small files was not efficient. We
added two additional jobs to each DAX which would
zip all of each kind of file before transfer, reducing the
number of files to transfer from over 800,000 to 160,
two per DAX. Additionally, transferring larger files
lets us utilize the speedup advantage of GridFTP. Even
with the additional time required for zipping, these
improvements sped up the stageout of data products
by a factor of ten. This helped us improve our
processor utilization, as DAXes could now quickly
perform their transfers, finish, and clear the way for a
new DAX to start execution and claim any available
resources. Modifying the workflow also had the side
effect of improving our local processing. After
stageout, we insert the peak spectral acceleration
values into a local database. We then use the database
to generate a hazard curve, the final result. Performing
the database insertions from a zip file is much faster
than from a large number of small files, by a factor of
four in our case.

8. Results

 The computational results reported in this paper
were the result of performing ten CyberShake runs,
occurring from June 26, 2008 – July 18, 2008. All
calculations were performed using a reservation of 400
nodes (800 processors) on NCSA’s IA-64 Mercury
TeraGrid cluster. The first site was calculated using a
mix of varied methods, and so is not included in the
total statistics. A detailed discussion of the science
results can be found in [14]. The results below were
obtained using the Netlogger toolkit [15]. To
normalize and correlate the resulting flood of
information, the NetLogger Toolkit uses a relational

database back-end. In order to analyze large amounts
of data, often consisting of a million records, it
leverages existing log processing capabilities. The log
parser converts the kickstart and Condor logs from
their native format to NetLogger’s standard format.
The database loader loads NetLogger-formatted log
files into a pre-defined schema. Troubleshooting and
performance analysis proceeds from these database
tables, e.g., through direct SQL queries, Python
programs, or with the “R” statistical language.
 The specific numbers of jobs for each of the other
nine sites are listed in Table 2. The number of Pegasus
jobs varies since it includes transfer job failures, which
varied among sites. We used a single glidein job to
claim all 800 processors. Since the maximum job
length allowed in the main queue on Mercury is 25
hours, we resubmitted the glidein request daily to
reclaim the processors.
 Average wall-time for each workflow was 18.3 ±
3.9 hours. In total, approximately 90 GB of output
was produced in 7.5 million individual data files.
There were a total of 4,307 job failures, or
approximately 0.06% of the total jobs. All but one
occurred on stageout. This increases our confidence
that the segmentation faults we saw on Abe were due
to operating system memory management issues,
rather than application code problems.
 The execution time by job type for all nine sites is
shown in Table 3.

Table 3: Runtime per job type

Job type Hours % of total time
Directory creation 0.16 0.0003
Registration 0.82 0.002
Transfer 150.42 0.3
Extraction 2423.72 4.5
Synthesis 50443.52 92.7
PSA 1212.23 2.2
Zip jobs 1028.05 0.3
Total 54420.77 100.0

Table 2: Number of jobs by type and site

Site Pegasus jobs Extraction Synthesis PSA Zip Total jobs Failed jobs Walltime (min)
1 504 7000 417886 417886 80 843356 264 1042
2 950 7093 418256 418256 154 844709 483 1066
3 1074 7026 417954 417954 156 844164 624 1287
4 896 6932 415416 415416 158 838818 422 988
5 736 6912 415778 415778 156 839360 268 1542
6 703 7045 426740 426740 156 861384 235 964
7 946 6823 416090 416090 158 840107 472 792
8 1552 6919 418946 418946 156 846519 1084 1287
9 923 6947 417772 417772 156 843570 455 890
All 8284 62697 3764838 3764838 1330 7601987 4307 1095

The Pegasus jobs have been broken down further, into
directory creation, registration (in the Globus RLS),
and transfer jobs. Clearly, the majority of time is spent
in synthesis jobs. This suggests examining both the
workflow environment and the synthesis C code itself
for optimization opportunities.

9. Conclusions

 The CyberShake computational platform uses
high-throughput grid computing to produce a new and
important type of probabilistic seismic hazard curve.
Full 3D waveform modeling is currently not in general
use by PSHA researchers because, until now, it has
been considered too computationally expensive and
computationally challenging to perform. Through the
work we are performing on CyberShake, we hope to
bring the use of full 3D waveform modeling into
regular use within the seismological community by
showing that the computational challenges can be met
and that CyberShake is a practical technology.
CyberShake is an outstanding example of how
advances in high performance computing provide
opportunities for improved scientific information.
 Through the process of designing and executing
CyberShake, we made a series of optimizations
enabling us to run end-to-end workflows of over
800,000 jobs in 18 hours on 800 processors. Over the
course of three weeks, a single individual was able to
execute over 7.5 million jobs using grid computing.
There is still potential for further improvement.
Approximately one third of the end-to-end time is
overhead, suggesting further optimizations may be
possible. We plan to continue the optimization
process as we progress with new CyberShake sites,
including further modifications of the clustering
factor, staggered DAX start times, and adjustments to
the Condor scheduler parameters.
 The improvements suggested in this paper have
application outside of CyberShake. Many of our
developments are applicable to a wide range of
embarrassingly parallel, high throughput computing
applications. As more simulations and more resource
providers support this kind of HPC, there will likely
be continued investigation into optimization for the
execution of large-scale embarrassingly parallel
scientific workflows.

Acknowledgments
 This work was partially supported by the National
Center for Supercomputing Applications under TG-
MCA03S012 (SCEC PetaScale Research: An
Earthquake System Science Approach to Physics-
based Seismic Hazard Research) and utilized NCSA’s
Mercury cluster. This work was supported in part by

the Center for High Performance Computing and
Communications at the University of Southern
California. The Southern California Earthquake
Center is funded by NSF Cooperative Agreement
EAR-0106924 and USGS Cooperative Agreement
02HQAG0008. The SCEC contribution number for
this paper is 1237. This work was also supported by
NSF under OCI-0722019 and OCI-0749313.

References

[1] “Southern California Earthquake Center,”
http://www.scec.org.
[2] Jordan, T.H., P. Maechling, P. “The SCEC Community
Modeling Environment -- An Information Infrastructure for
System-Level Earthquake Science.” Seismol. Res. Lett., 74
(3), pp 324-328.
[3] Zhao, L., P, Chen, and T. H. Jordan. “Strain Green's
tensors, reciprocity, and their applications to seismic source
and structure studies.” Bulletin of the Seismological Society
of America, 96 (5), pp 1753-1763.
[4] Deelman, E., et al. “Managing Large-Scale Workflow
Execution from Resource Provisioning to Provenance
tracking: The CyberShake Example.” IEEE e-Science and
Grid Computing 2006, Amsterdam, Netherlands, December
4-6 2006.
[5] 2007 Working Group on California Earthquake
Probabilities, 2008, The Uniform California Earthquake
Rupture Forecast, Version 2 (UCERF 2): U.S. Geological
Survey Open-File Report 2007-1437 and California
Geological Survey Special Report 203
[http://pubs.usgs.gov/of/2007/1437/].
[6] “TeraGrid,” http://www.teragrid.org.
[7] “Condor project homepage,”
http://www.cs.wisc.edu/condor.
[8] “Pegasus,” http://pegasus.isi.edu
[9] Deelman, E., et al. “Pegasus: a Framework for Mapping
Complex Scientific Workflows onto Distributed Systems.”
Scientific Programming Journal, 2005. 13(3): p. 219-237.
[10] Deelman, E., C. Kesselman, and G. Mehta.
“Transformation Catalog Design for GriPhyN.” Technical
Report, GriPhyN-2001-17, 2001.
[11] Chervenak, A., et al. “Giggle: A Framework for
Constructing Sclable Replica Location Services.”
Proceedings of Supercomputing 2002 (SC2002). 2002.
[12] Voeckler, J., Mehta, G., Zhao, Y., Deelman, E., Wilde.,
M. Kickstarting Remote Applications. Presented at GCE06
Second International Workshop on Grid Computing
Environments, Tampa, Florida.
[13] Allcock, W., et al. “Secure, Efficient Data Transport and
Replica Management for High-Performance Data-Intensive
Computing.” Mass Storage Conference. 2001.
[14] Graves, R. “Physics Based Probabilistic Seismic
Hazard Calculations for Southern California.” 14th World
Conference on Earthquake Engineering, Beijing, China, Oct
12-17 2008.
[15] Tierney, B. and D. Gunter. “NetLogger: A Toolkit for
Distributed System Performance Tuning and Debugging.”
Proceedings of the 8th IFIP/IEEE International Symposium
on Integrated Network Management, 2003.

