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Abstract 
 Researchers at the Southern California 
Earthquake Center (SCEC) use large-scale grid-based 
scientific workflows to perform seismic hazard 
research as a part of SCEC’s program of earthquake 
system science research. The scientific goal of the 
SCEC CyberShake project is to calculate probabilistic 
seismic hazard curves for sites in Southern California. 
For each site of interest, the CyberShake platform 
includes two large-scale MPI calculations and 
approximately 840,000 embarrassingly parallel post-
processing jobs. In this paper, we describe the 
computational requirements of CyberShake and detail 
how we meet these requirements using grid-based, 
high-throughput, scientific workflow tools. We 
describe the specific challenges we encountered and 
we discuss workflow throughput optimizations we 
developed that reduced our time to solution by a factor 
of three and we present runtime statistics and propose 
further optimizations. 
 
 
1.  Introduction 
 
 Researchers from the Southern California 
Earthquake Center (SCEC) [1] are using high 
performance computing to advance their program of 
earthquake system science research. As a part of this 
research program, SCEC scientists have developed a 
new technique in which full 3D waveform modeling is 
used in probabilistic seismic hazard analysis 
calculations (PSHA). However, the complexity and 
scale of the required calculations prevented actual 
implementation of this new approach to PSHA. Since 
that time, SCEC computer scientists have gathered the 
seismological processing codes and the 

cyberinfrastructure tools required for this research. 
The codes and tools have been assembled into what 
we call the CyberShake computational platform [2]. In 
SCEC terminology, a computational platform is a 
vertically integrated and well-validated collection of 
hardware, software, and people that can produce a 
useful research result. The CyberShake computational 
platform is designed to perform physics-based PSHA 
calculations for sites in the Southern California region. 
In this paper, we describe CyberShake and our 
experiences using it to produce this important new 
type of PSHA hazard curves. 
 
2.  CyberShake Science Description 
 
 Seismologists quantify the earthquake hazard for 
a location or region using the PSHA technique by 
estimating the probability that the ground motions at a 
site will exceed some intensity measure (IM) over a 
given time period.  These intensity measures include 
peak ground acceleration, peak ground velocity, and 
spectral acceleration. PSHA seismic hazard estimates 
are expressed in statements such as: a specific site 
(e.g. the USC University Park Campus) has a 10% 
chance of experiencing 0.5g acceleration in the next 
50 years. This type of ground motion estimate is 
useful for civic planners and building engineers 
because it provides a probable “upper limit” on the 
ground motions.  
 PSHA estimates are delivered as PSHA hazard 
curves (Fig. 1) that present ground motion values (e.g. 
accelerations in g) on one axis, and the probability of 
exceeding these ground motion level within one year 
on the other axis. 
 A set of hazard curves, for many sites in a 
geographical region, may be integrated into a regional 



 

 
 
Figure 1.  Three hazard curves for the Whittier 
Narrows site near Los Angeles. The black line is the 
physics-based CyberShake simulation results. The blue 
and green lines are two common attenuation 
relationships. 

 
 
Figure 2.  An example hazard map for the Southern 
California area generated using OpenSHA with 
attenuation relationships. Colors show the probability 
that ground motions will exceed 0.1g within next 50 
years.  
 

hazard map (Fig. 2) by keeping either the IM or 
probability constant and plotting the other as a 
function of geographic location.  PSHA calculations 
require two essential inputs. First, a list of all possible 
future earthquakes that might affect a site is needed 
(this information is available from an Earthquake 
Rupture Forecast (ERF)). Secondly, a way of 
calculating the ground motions that will be produced 
by each earthquake in the list is needed. Traditionally, 
the ground motions produced by each earthquake are 
calculated using empirical attenuation-based 
relationships.  However, this approach has limitations. 
The data used to develop the attenuation relationships 
do not cover the full range of possible earthquake 
magnitudes. Also, attenuation relationships do not 
include basin or rupture directivity effects. 
 To address these issues, CyberShake uses physics-
based 3D ground motion simulations with anelastic 
wave propagation models to calculate the ground 
motions that would be produced by each of the 
earthquakes in the ERF. The scientists involved in 
CyberShake believe that this new approach to PSHA 
has clear scientific advantages and can improve the 
accuracy of the seismic hazard information currently 
available.  For a typical site in Los Angeles, the latest 
ERF available from the USGS (UCERF 2.0) identifies 
more than 7,000 earthquake ruptures with magnitude > 
5.5 that might affect the site.  For each rupture, we 
must capture the possible variability in the earthquake 
rupture process. So we create a variety of hypocenter, 
slip distribution, and rise times for each rupture to 
produce over 415,000 rupture variations, each 
representing a potential earthquake. In CyberShake 
processing, there is a fairly technical, but important, 
distinction between ruptures (~7,000) and rupture 

variations (~415,000). These distinctions impact our 
workflows. The SGTs calculations generate data for 
each rupture, but post-processing must be done for 
each rupture variation. 
 Once we define the ruptures and their variations, 
CyberShake uses an anelastic wave propagation 
simulation to calculate strain Green tensors (SGTs) 
around the site of interest. Seismic reciprocity is used 
to post-process the SGTs and obtain synthetic 
seismograms [3].  These seismograms are then 
processed to obtain peak spectral acceleration values, 
which are combined into a hazard curve (Fig. 1).  Fig. 
3 contains a workflow illustrating these steps. 
Ultimately, CyberShake hazard curves from hundreds 
of sites will be interpolated to construct a physics-
based seismic hazard map for Southern California.  
 In 2005, the CyberShake curves were calculated 
using a smaller number of ruptures, and a smaller 
number of rupture variations, only about 100,000 
rupture variations per site [4]. Since then, a new ERF 
(UCERF 2.0) was released by the Working Group on 
California Earthquake Probabilities [5]. This new ERF 
identifies more possible future ruptures than were used 
in 2005. In addition, based on initial CyberShake 
results, SCEC scientists decided to specify more 
variability in the rupture processes. As a result, the 
number of rupture variations we must manage 
increased by more than a factor of 4. 
 
3.  Computing Requirements 
 
 The CyberShake platform must run many jobs, 
and manage many data files. Thus, it requires 
extensive computational resources. An outline of 
computational and data requirements is given in Table 



 

 
 

Figure 3:  A high-level Cybershake workflow. 
 
1.  To compute the SGTs, a mesh of about 1.5 billion 
points must be constructed and populated with seismic 
wave velocity information.  The velocity mesh is then 
used in a wave propagation simulation for 20,000 time 
steps. 
 Once the SGTs are calculated, the post-processing 
is performed. Processing is done for each of the 
rupture variations and there are approximately 415,000 
rupture variations for each hazard curve. Post-
processing begins by selecting a rupture variation. 
Then, SGTs corresponding to the location of the 
rupture are extracted from the volume and used to 
generate synthetic seismograms which represent the 
ground motions that the rupture variation would 
produce at the site we are studying. Next the 
seismograms are processed to obtain the IM of 
interest, which, in our current study, is peak spectral 
acceleration at 3.0 seconds. Each execution of these 
post processing steps takes no more than a few 
minutes, but SGT extraction must be performed for 
each rupture, and seismogram synthesis and peak 
spectral acceleration processing must be performed for 
each rupture variation.  On average, 7,000 ruptures 

and 415,000 rupture variations must be considered for 
each site.  Therefore, each site requires approximately 
840,000 executions, 17,000 CPU-hours and generates 
about 66 GB of data. 
 Considering only the computational time, 
performing these calculations on a single processor 
would take almost 2 years. In addition, the large 
number of independent post-processing jobs 
necessitates a high degree of automation, to help 
submit jobs, manage data, and provide error recovery 
capabilities should jobs fail. The velocity mesh 
creation and SGT simulation are large MPI jobs which 
run on a cluster using spatial decomposition. The post-
processing jobs have a very different character, as they 
are “embarrassingly parallel” – no communication is 
required between jobs.   
 These processing requirements indicated that the 
CyberShake computational platform requires both 
high-performance computing (for the SGT 
calculations) and high-throughput computing (for the 
post-processing). To make a Southern California 
hazard map practical, time-to-solution per site needs to 
be short, on the order of 24-48 hours. This emphasis 
on reducing time-to-solution, rather than categorizing 
the system as a capability or capacity platform, pushes 
the CyberShake computational platform into the high 
productivity computing category which is emerging as 
the key capability needed by science groups.  In 
contrast to capability computing (a single, large job) 
and capacity computing (smaller, multiple jobs, often 
in preparation for a capability run), high productivity 
computing focuses on high throughput jobs with 
extremely short runtimes.  The challenge is to 
minimize overhead and increase throughput to reduce 
end-to-end wallclock time. 
 
Table 1: Data and CPU requirements for the CyberShake 

components, per site of interest. 
 

Component Data CPU hours 
Mesh generation 15 GB 150 
SGT simulation 40 GB 10,000 
SGT extraction 1 GB 250 
Seismogram synthesis 10 GB 6,000 
PSA calculation 90 MB 100 
Total 66 GB 17,000 

 
4.  Technical Approach 

 
 We developed a technical approach to 
CyberShake which meets the computational 
requirements defined by the domain scientists and also 
minimizes the time-to-solution. First, we recognized 
that we need to distribute the calculations because 
SCEC does not own the necessary computational 
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resources.  However, we do have HPC allocations at 
the USC Center for High Performance Computing and 
Communications and on the NSF TeraGrid [6]. Grid 
computing enables us to acquire and use resources on 
large, remote clusters. Second, the large number of 
small jobs suggests a distributed, high-throughput 
solution, such as Condor [7].  Third, the automation 
required including job submission, data management, 
and error recovery led us to the use of scientific 
workflow tools. Using workflows increases the degree 
of automation and provides a concise way to enforce 
dependencies between jobs. We constructed the 
CyberShake computational platform using grid 
computing tools, high throughput capabilities of 
Condor, and scientific workflows using Pegasus-WMS 
[8, 9] to plan and run the very large workflows. 
 To calculate a PSHA hazard curve, we first create 
an abstract representation of a workflow called a DAX 
(directed acyclic graph in XML format), which 
contains jobs related by dependencies. The DAX is 
supported by Pegasus and uses logical filenames for 
executables and input and output files, making it 
execution platform independent. Next, Pegasus is used 
to plan the DAX to run on a specific platform.  The 
planning process converts the abstract DAX into a 
concrete DAG.  Pegasus uses its Transformation 
Catalog [10] to resolve the logical names into physical 
paths, specific to the remote execution system.  
Additionally, Pegasus automatically augments the 
DAG to include the transfer in (stage-in) of required 
input files, found using the Globus Replica Location 
Service (RLS) [11], and the transfer out (stage-out) of 
final data files.  Pegasus also wraps the jobs with 
kickstart [12], which allows us to check the return 
codes for successful execution and is easy to mine for 
usage statistics using Netlogger-based tools 
[http://acs.lbl.gov/NetLoggerWiki]. 
 The DAG is then submitted to the workflow 
execution component of Pegasus-WMS, DAGMan 
[http://www.cs.wisc.edu/condor/dagman].  DAGMan 
manages the job execution by determining when jobs 
are ready to run, submitting jobs via Globus to remote 
resources, and throttling the number of jobs so as to 
not overwhelm either the submission host (where the 
jobs originate) or the remote platform (where the jobs 
execute).  If a job fails, DAGMan will automatically 
retry the failed job and create a rescue DAG if the job 
cannot be completed successfully.  This restart 
capability is critical for CyberShake.  Jobs will fail for 
a variety of reasons, and being able to resume 
execution easily is a major benefit.  These tools enable 
CyberShake to be run on a variety of platforms and be 
managed from a single local job submission host. 
 Since the SGT simulation requires large MPI 
calculations while the post-processing involves high 

throughput embarrassingly parallel jobs, we decided to 
separate these stages into two independent workflows.  
This gives us flexibility to run the two pieces at 
different times on different platforms, since some 
environments may be optimized for MPI jobs while 
others are more efficient for short serial jobs. 
 Many remote execution environments limit the 
number of jobs a single user can put in their queue.  
Additionally, remote cluster schedulers often have a 
scheduling cycle of several minutes, meaning that 
when jobs finish it can take some time for another job 
to be scheduled.  To address these concerns, we use 
Condor glideins, a type of multi-level scheduling.   
Fig. 4 shows the steps involved in using glideins to 
create a temporary Condor pool: 
 (1) The user requests a group of nodes for a 
specified duration via Condor.  Condor sends the 
request to the Globus gatekeeper on the remote host, 
which submits the request on to the batch scheduler.  
(2) After waiting in the remote queue, the glidein job 
begins on the requested nodes.  (3) The nodes start up 
the Condor startd process and advertise themselves 
back to the Condor collector on the local job 
submission host as available nodes.  This creates a 
temporary Condor pool on the remote platform.  (4)  
The local submission host can then schedule directly 
on the remote nodes by matching queued jobs to 
available resources and sending the job to the node’s 
startd process, which then begins the job.   
 
5.  Implementation 

 
 We targeted the NSF-funded TeraGrid as an 
execution environment due to their support for grid 
computing as well as past SCEC success.  
 To run CyberShake on the TeraGrid, we have 
established interoperability between the local SCEC 
grid and the TeraGrid through a TeraGrid science 
gateway. We initiate the CyberShake workflows on 
our local SCEC job submission machine, which 
communicates to TeraGrid resources using Globus. 
Our CyberShake jobs run in a TeraGrid gateway 
account that exists on multiple TeraGrid resources. We 
map the SCEC researcher submitting CyberShake 
workflows on SCEC machines to an authorized 
account on the TeraGrid. 
 Initially, we targeted our CyberShake workflows 
at the NCSA’s Abe cluster for both SGT and post-
processing workflows.  However, we ran into 
complications.  We attempted to verify the SGTs by 
using them to generate a seismogram for a certain 
source and comparing it against a previously generated 
seismogram for the same source. However, we were 
unable to successfully verify the SGTs and despite 
investigation were unable to pinpoint the source of the 



 

error.  The post-processing workflow also presented 
unexpected challenges. Sometimes seismogram 
synthesis jobs would experience a segmentation fault 
which would not reoccur if the job was rerun.  After 
extensive memory profiling of the seismogram 
synthesis code (written in C) and examination of the 
runtime environment, we concluded that the version of 
the Linux kernel used by Abe, 2.6.9, may contain a 
memory management bug. On multi-core systems 
memory claimed by the cache is not made properly 
available to running code and therefore segmentation 
faults can occur even though there is sufficient 
memory available.  This problem was exacerbated by 
the short runtimes (<1 min) and high memory 
requirements (1.6 GB) of the synthesis jobs.  As a 
result of these issues, we postponed running 
CyberShake on Abe until the kernel is upgraded. 
 We switched our target platforms to NCSA’s 
Mercury cluster for the post-processing workflow and 
USC’s HPCC for the SGT generation.  Separating the 
two stages onto different platforms was trivial; we 
only had to transfer the two SGT files that are the 
result of the first workflow to Mercury and register 
them in the Globus RLS.  This also permitted us to 
utilize computational resources at two remote sites, 
more than at either site alone. This demonstrates the 
value of the Pegasus workflow approach which 
defines abstract workflows. Modifying the workflow 
to run on a difference physical system is simply a 
matter of changing configuration information, and 
replanning the workflow. 
 
6.  Workflow challenges and solutions 

 
 An immediate problem was how to execute over 
800,000 jobs without overwhelming the scheduler on 
either the submit host or on the execution platform.  

The average runtime for SGT extraction jobs 
(“extraction jobs”) is 139 seconds; for seismogram 
synthesis jobs (“synthesis jobs”), 48 seconds; and for 
peak spectral acceleration jobs (“PSA jobs”), 1 second.  
Running these short runtime jobs individually through 
the scheduler would mean that computing resources 
would sit idle much of the time, waiting for the 
scheduler to schedule jobs, and the scheduler would be 
under intense load to schedule new jobs to waiting idle 
processors. 
 To reduce the load on the remote platform, we use 
Condor glide-ins, discussed in Section 4.  Since the 
remote scheduler (on Mercury, PBS) sees only a single 
job, minimal load is added. 
 On our local job submission host, we use a 
Pegasus technique called “clustering” in which jobs of 
the same type are grouped together.  Pegasus alters the 
DAX so that a number of individual jobs are replaced 
by a single call to seqexec (a Pegasus remote-site 
executable), which iterates over a Pegasus-created file 
containing a list of jobs and sequentially executes 
them on a remote resource.  Each DAX, and therefore 
each DAG, contains fewer jobs, reducing the load on 
the local Condor scheduler.  We selected clustering 
values of 20 for the extraction jobs, 40 for seismogram 
synthesis jobs, and 200 for PSA jobs. 
 Another challenge was to create and plan the 
DAX.  Previously CyberShake was run with a smaller 
number of jobs, only about 200,000, using a single 
DAX, with label-based workflow partitioning to 
divide up the DAX into 40 partitions.  Workflow 
partitioning separates a workflow into multiple pieces 
(“partitions”), using user-assigned labels.  It is used by 
Pegasus-WMS to improve the scalability and the 
reliability of the workflow mapping and execution. 
Dependencies between the partitions follow the 
dependencies of the original workflow. Partitions are 
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Figure 4: Steps involved in acquiring glideins 
 



 

then mapped and executed according to the 
dependencies. Since each partition corresponds to a 
execution directory on the remote host, running 
multiple partitions reduces the number of files per 
directory, improving filesystem response.  Initially we 
attempted to extend this technique to all 840,000 jobs 
and continue to use label-based partitioning.  
However, the size of the single DAX file – about 1 GB 
-- made it too memory-intensive to partition or plan on 
any of SCEC’s servers.  We altered the workflow 
generator to create 40 independent DAXes rather than 
a single DAX with 40 partitions.  This gave us similar 
benefits to partitioning but reduced the memory 
requirements of planning, only requiring about two 
minutes of wall-time and 1 GB of memory to plan 
each DAX. 
 
7. Optimizations 

 
 We were able to introduce optimizations to 
decrease the runtime of a single workflow and reduce 
the manual effort involved. 
 Monitoring our execution, we discovered we had 
poor utilization; many available processors spent long 
periods of time idle.  This was due to high clustering 
values.  Each DAX has only about 20 extraction jobs, 
but each extraction job has between 2 and 1568 
synthesis child jobs.  In order to keep processors busy, 
the extraction jobs must be completed quickly so the 
more numerous synthesis jobs can begin execution and 
claim idle processors.  When clustering is used, 
dependencies are moved to the cluster level.  So 
instead of a synthesis job having an extraction job 
parent, a synthesis cluster has an extraction cluster 
parent.  Using a cluster factor of 20, it took at least 45 
minutes before any synthesis clusters would start 
execution.  We found that for most of the duration of 
the workflow not all the processors were used as a 
result. 
 The clustering parameters were adjusted to 2 for 
extraction jobs, 10 for synthesis jobs, and 60 for PSA 
jobs.  With these new parameters, extraction clusters 
completed in a few minutes, allowing synthesis 
clusters to start more quickly and run on previously 
idle processors.  Although this increased the total 
number of clusters fourfold, it reduced average 
workflow completion times by a factor of three since 
the processors spent much less time idle.  We also 
doubled the number of DAXes, from 40 to 80, so that 
the number of files per directory on the remote host 
was kept to a reasonable level (around 30,000). 
 Increasing to 80 DAXes made manual submission 
and monitoring unwieldy and labor-intensive.  To 
increase automation, we use a Pegasus construct called 
a PDAX.  A PDAX is a recursive workflow 

description, in the form of a DAX.  The PDAX is 
constructed so that it contains Condor prescript jobs, 
which plan the DAXes into DAGs, and main jobs 
which submit the DAGs to Condor.  The PDAX is 
planned into a PDAG and submitted to Condor.  Since 
having all 80 DAXes running simultaneously could 
put excessive load on the submission host and the 
GridFTP servers [13] we initially set up “pipelines”, 
chains of DAXes with parent-child relationships so the 
chain executes serially.  We used 10 pipelines, each 
with 8 DAXes, so that 10 DAXes run simultaneously.  
When one of the 10 initial DAXes finished, its child 
DAX would be planned and run, and so on until all 10 
pipelines completed. 
 If a DAX failed, the pipeline of the failed DAX 
would stop execution, since jobs further down the 
pipeline cannot run until their parent DAX finishes. 
The artificial dependencies we introduced to throttle w 
had an inadvertent impact on failure recovery. Over 
time the number of concurrent DAXes running would 
decrease as pipelines stalled.  This resulted in poor use 
of the available processors.  Eventually the entire 
workflow had to be manually halted and resumed, 
which would retry the failed jobs and begin again with 
10 concurrent DAXes. 
 To eliminate the negative impact of the 
dependencies, we altered the workflow to contain a 
pool of 80 independent DAXes rather than pipelines.  
Using the Condor parameter maxjobs, we were able to 
limit the number of concurrent DAXes.  If one failed, 
it did not hold up other DAXes; instead, a new DAX 
was pulled from the pool, planned, and run.  Changing 
to a pool approach increased the amount of 
automation, and decreased runtime for the workflow. 
 We noticed that the most common cause of DAX 
failure was an error with the GridFTP stageout job at 
the end of the workflow. The transfer jobs were 
inserted automatically by Pegasus to transfer data 
products back to SCEC servers after completion of 
each DAX. If the transfer failed, the workflow was 
configured to retry it three times before failing and 
throwing a rescue DAG, which registered as a failure 
in the PDAX.  The PDAX would respond by starting 
the DAX over from the planning stage, and since for 
reasons of space we did not use the Pegasus 
checkpoint feature, all of the successful computations 
were thrown out and rerun. To avoid redoing 
completed computations, the PDAX was altered to tap 
into the auto-restart feature of Condor 7.1, which 
checks to see if a rescue DAG exists and, if so, restart 
from it. This prevented us from duplicating 
computations which had already been successfully 
executed. 
 Further investigation of the transfer failures 
revealed that the main factor was the large number of 



 

files being transferred. Each DAX had two transfer 
jobs of approximately 5,000 files, one job for 
seismograms and one for peak spectral acceleration 
files. Additionally, the files are quite small; the 
seismogram files are 24 KB each, and the spectral 
acceleration files are just 216 bytes. Using GridFTP to 
transfer so many small files was not efficient. We 
added two additional jobs to each DAX which would 
zip all of each kind of file before transfer, reducing the 
number of files to transfer from over 800,000 to 160, 
two per DAX. Additionally, transferring larger files 
lets us utilize the speedup advantage of GridFTP. Even 
with the additional time required for zipping, these 
improvements sped up the stageout of data products 
by a factor of ten. This helped us improve our 
processor utilization, as DAXes could now quickly 
perform their transfers, finish, and clear the way for a 
new DAX to start execution and claim any available 
resources. Modifying the workflow also had the side 
effect of improving our local processing. After 
stageout, we insert the peak spectral acceleration 
values into a local database. We then use the database 
to generate a hazard curve, the final result. Performing 
the database insertions from a zip file is much faster 
than from a large number of small files, by a factor of 
four in our case.  
 
8. Results 
 
 The computational results reported in this paper 
were the result of performing ten CyberShake runs, 
occurring from June 26, 2008 – July 18, 2008.  All 
calculations were performed using a reservation of 400 
nodes (800 processors) on NCSA’s IA-64 Mercury 
TeraGrid cluster.  The first site was calculated using a 
mix of varied methods, and so is not included in the 
total statistics.  A detailed discussion of the science 
results can be found in [14]. The results below were 
obtained using the Netlogger toolkit [15].  To 
normalize and correlate the resulting flood of 
information, the NetLogger Toolkit uses a relational 

database back-end. In order to analyze large amounts 
of data, often consisting of a million records, it 
leverages existing log processing capabilities. The log 
parser converts the kickstart and Condor logs from 
their native format to NetLogger’s standard format. 
The database loader loads NetLogger-formatted log 
files into a pre-defined schema. Troubleshooting and 
performance analysis proceeds from these database 
tables, e.g., through direct SQL queries, Python 
programs, or with the “R” statistical language. 
 The specific numbers of jobs for each of the other 
nine sites are listed in Table 2.  The number of Pegasus 
jobs varies since it includes transfer job failures, which 
varied among sites.  We used a single glidein job to 
claim all 800 processors.  Since the maximum job 
length allowed in the main queue on Mercury is 25 
hours, we resubmitted the glidein request daily to 
reclaim the processors. 
 Average wall-time for each workflow was 18.3 ± 
3.9 hours.  In total, approximately 90 GB of output 
was produced in 7.5 million individual data files. 
There were a total of 4,307 job failures, or 
approximately 0.06% of the total jobs.  All but one 
occurred on stageout.  This increases our confidence 
that the segmentation faults we saw on Abe were due 
to operating system memory management issues, 
rather than application code problems. 
 The execution time by job type for all nine sites is 
shown in Table 3. 

 
Table 3:  Runtime per job type 

 

Job type Hours % of total time 
Directory creation 0.16 0.0003 
Registration 0.82 0.002 
Transfer 150.42 0.3 
Extraction 2423.72 4.5 
Synthesis 50443.52 92.7 
PSA 1212.23 2.2 
Zip jobs 1028.05 0.3 
Total 54420.77 100.0 

Table 2:  Number of jobs by type and site 
 

Site Pegasus jobs Extraction Synthesis PSA Zip Total jobs Failed jobs Walltime (min) 
1 504 7000 417886 417886 80 843356 264 1042 
2 950 7093 418256 418256 154 844709 483 1066 
3 1074 7026 417954 417954 156 844164 624 1287 
4 896 6932 415416 415416 158 838818 422 988 
5 736 6912 415778 415778 156 839360 268 1542 
6 703 7045 426740 426740 156 861384 235 964 
7 946 6823 416090 416090 158 840107 472 792 
8 1552 6919 418946 418946 156 846519 1084 1287 
9 923 6947 417772 417772 156 843570 455 890 
All 8284 62697 3764838 3764838 1330 7601987 4307 1095 

 



 

The Pegasus jobs have been broken down further, into 
directory creation, registration (in the Globus RLS), 
and transfer jobs. Clearly, the majority of time is spent 
in synthesis jobs.  This suggests examining both the 
workflow environment and the synthesis C code itself 
for optimization opportunities. 
 
9. Conclusions 
 
 The CyberShake computational platform uses 
high-throughput grid computing to produce a new and 
important type of probabilistic seismic hazard curve. 
Full 3D waveform modeling is currently not in general 
use by PSHA researchers because, until now, it has 
been considered too computationally expensive and 
computationally challenging to perform. Through the 
work we are performing on CyberShake, we hope to 
bring the use of full 3D waveform modeling into 
regular use within the seismological community by 
showing that the computational challenges can be met 
and that CyberShake is a practical technology. 
CyberShake is an outstanding example of how 
advances in high performance computing provide 
opportunities for improved scientific information. 
 Through the process of designing and executing 
CyberShake, we made a series of optimizations 
enabling us to run end-to-end workflows of over 
800,000 jobs in 18 hours on 800 processors.  Over the 
course of three weeks, a single individual was able to 
execute over 7.5 million jobs using grid computing.  
There is still potential for further improvement.  
Approximately one third of the end-to-end time is 
overhead, suggesting further optimizations may be 
possible.  We plan to continue the optimization 
process as we progress with new CyberShake sites, 
including further modifications of the clustering 
factor, staggered DAX start times, and adjustments to 
the Condor scheduler parameters. 
 The improvements suggested in this paper have 
application outside of CyberShake.  Many of our 
developments are applicable to a wide range of 
embarrassingly parallel, high throughput computing 
applications.  As more simulations and more resource 
providers support this kind of HPC, there will likely 
be continued investigation into optimization for the 
execution of large-scale embarrassingly parallel 
scientific workflows. 
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