
GriPhyN technical report 2004-23

Please send comments to deelman@isi.edu

Types of Editors and Specifications
James Blythe, Richard Cavanaugh, Ewa Deelman, Ian Foster, Seung-Hye Jang, Carl

Kesselman, Keith Marzullo, Reagan Moore, Valerie Taylor, Xianan Zhang

December 2003

Metadata Workflow Description

Partial Workflow Description

Abstract Workflow Description

Concrete Workflow Description

Metadata attributes and
their values

Partial descriptions in terms of logical
transformations and logical file names

Workflow description in terms of logical
transformations and logical file names

Workflow description in terms of
executables, data movement,

physical files, access to catalogs
Figure 1: Various levels of workflow from the most abstract down to the most concrete.

1. Metadata Resolver
Input: Metadata Workflow Description

Output: Abstract Workflow Description

Functionality: The resolver takes a metadata workflow description and based on the
knowledge of application components (transformations) and the required data,
generates an abstract workflow identifying the input data, transformations and their
dependencies necessary to produce the requested data. The experimental version of
Pegasus that targets the LIGO application is able to map between various types of
requests (pulsar search, short Fourier transform, and time interval) and produce an
abstract workflow which includes all the steps necessary for the computation.

Use case scenario: A user provides a high-level data description, such as conduct a
pulsar search over a particular time interval in a particular frequency range and particular
location in the sky. The editor takes that description and produces an abstract workflow
that contains the description of the Fourier transforms and pulsar search codes that
need to be applied to the raw data.

GriPhyN technical report 2004-23

Please send comments to deelman@isi.edu

Notes: The metadata workflow description could also be called a “concept-based
workflow”. The workflow at that level requires an understanding of the relationships
between the physics names used to describe a process, the collections that contain the
associated data, and the transformations that create the desired physical data quantities.
These are expressed using concept spaces. The concept spaces define semantic terms,
and either logical relationships between terms ("isa", "hasa"), or procedural relationships
(generation of flux from velocity and density), or structural relationships (how to build a
mosaic given images from different sky surveys).

2. Abstract Workflow Generator
Input: Partial Workflow Description, Data Product Name

Output: Abstract Workflow Description

Functionality: The generator takes a partial description and a logical name of a desired
data product and connects the necessary partial workflows into a full workflow
descriptions where all the transformations and necessary files are identified by their
logical names. An example of such a generator is Chimera, which takes the partial
workflows expressed in VDL and a logical file name and returns a full abstract
workflows, which includes all the names of all necessary logical input files and logical
transformations and their dependencies.

Use case scenario: A user provides the VDL, that contains all possible partial workflow
description and the logical file name, Chimera finds the appropriate derivations and
chains them together to form an abstract workflow.

Note: It could be desirable to be able to include access to collections as part of the
workflow. The query to the collection generates a result set that is then processed as a
dataflow through specified services. This means that the file names are not known a
priori. An implication is that the dataflow can loop over the files in the result set, that
conditional execution is supported (not all files may be processed by each step of the
workflow), that state information is maintained about each element in the result set.

3. Graph Evaluator
Input: Abstract Workflow Description

Output: Abstract Workflow Description (annotated)

Functionality: Using the request submitter’s distinguished name, policy information,
resource descriptions, and grid weather, a scheduled completion time is estimated for
each node and a resulting completion time for the graph estimated within some
confidence level. We can use systems such as Prophesy to predict the expected
completion time of each node in the workflow or of the entire graph on all the available
resources. A QoS confidence level can be estimated by computing the probability that
the graph will complete on or before the requested deadline.

Use case scenario: A “Production Group” submits a large workflow (graph) for
execution. In order that the produced data is available to scientists in time for winter
conferences, the Production Manager would like to know the current probability
estimate that the workflow will be able to finish before 31 December.

GriPhyN technical report 2004-23

Please send comments to deelman@isi.edu

Note: We should be able to execute the workflow using available grid services. This may
make the performance prediction harder or impossible as the services may perform
their own optimization. In case of grid services, the graph evaluator might focus on the
identification of clusters within the dataflow related to operations on data from the
same collection, and then call an aggregate web service on that cluster of data files or
result sets. The invoked service would then plan the execution of the files in the cluster.

4. Graph Predictor
Input: Abstract Workflow Description

Output: Abstract Workflow Description (annotated)

Functionality: Using either the request submitter’s stated resource requirements (if
given), or domain knowledge (like performance as a function of input parameter, I/O
types, etc), or statistical resource usage (such as benchmarking, or provenance
information from previous executions, profiling, etc), the Graph Predictor estimates the
resource usage (within some confidence level) for every node as well as the graph as a
whole. Initial resource usage predictions may include the number of nodes and disk
space required to run the abstract workflow. The confidence level of declared resource
usage requirements might be considered very high (e.g 100 %), whereas historical
information might be considered with high or low confidence, depending on the size and
character of the statistics gathered. The confidence level may be established based on the
accuracy of the analytical model used to estimate the resource usage.

Use case scenario: A user generates an abstract workflow (either indirectly or directly)
and wishes to estimate how much resources are required to successfully complete the
workflow execution.

5. Graph Aggregator
Input: Partial (or Abstract) Workflow Description

Output: Modified Partial (or Abstract) Workflow Description

Functionality: The Aggregation Editor examines the graph for sub-graph regions which
are logically associated according to execution locality, data locality, or possibly a
submitter supplied aggregation metric. All nodes within some local distance would be
clustered into an aggregate node within the output “aggregated” graph. Each aggregate
node would be treated as a single entity by subsequent editors, but internally consist of
the sub-graph corresponding to the aggregated region in the original graph.

Use case scenario: Several nodes are connected in a pipeline-like sub-graph. By treating
the pipeline-like part of the graph as an aggregated node, use of bandwidth resources
can be minimised by taking advantage of data locality.

6. Graph Reducer
Input: abstract workflow specification

Output: abstract workflow specification

Functionality: It reduces the abstract workflow based on some algorithm. One
algorithm could be based on the availability of intermediate data products. In this case

GriPhyN technical report 2004-23

Please send comments to deelman@isi.edu

the editor would assume that it is more efficient to access available data than to
recompute it (*). An example of such an editor is Pegasus that takes an abstract
workflow and queries the RLS to find out which data products specified in the
workflow can be already found in the Grid. The node whose output files have been
found are removed from the workflow and their antecedents (if applicable) are
removed. During the reduction process, the benefit of accessing the data versus
regenerating it needs to be examined to evaluate whether the assumption * is accurate.

Use case scenario: An abstract workflow of the form “a -> b -> c” is given to the
system. The graph reducer finds out that the data produced by b is already available and
reduces the workflow to “c”.

7. Graph Expander
Input: Partial (or Abstract) Workflow Description

Output: Modified Partial (or Abstract) Workflow Description

Functionality: The Expansion Editor examines the graph for sub-graph regions which
may be parallelised according to execution or data parallelism, or possibly a submitter
supplied expansion hint. Once identified, the expansion editor replicates the sub-graph
(or job) one or more times.

Use case scenario: A huge-throughput graph for Monte Carlo Event Simulation is
presented to the Expansion Editor. Using domain specific expansion hints, the editor
determines that the graph may be replicated many times over, taking advantage of the
current grid weather as well as the parallel properties of Monte Carlo Event Simulation.

8. Graph Rewriter
Input: Partial (or Abstract) Workflow Description

Output: Modified Partial (or Abstract) Workflow Description

Functionality: It is possible that an editor is neither a graph expander nor a graph
reducer. For example, a wide-area mater-worker may

9. Graph Partitioner
Input: Abstract Workflow Specification

Output: A set of Abstract Workflow Specification and dependencies between them.

Functionality: The idea behind the partitioner is to divide the graph into sections which
can be scheduled. The paritioner allows for setting the planning horizon for the
following editors such as the Concrete Workflow Generator. The Partitioner takes an
abstract workflow graph and partitions it into subgraphs, maintaining data and
computation dependencies between the subgraphs as shown in the Figure below. The
subgraphs can then be edited by other editors that take an abstract workflow as an
input.

GriPhyN technical report 2004-23

Please send comments to deelman@isi.edu

Figure 2: An example of partitioning the abstract workflow.

Use case scenario: Because the state of the Grid can change frequently, it is often
beneficial to schedule only portions of the workflow at a time. Given a large workflow,
one would partition it into smaller workflows and schedules the top most nodes then as
these get executed, schedules the graphs dependent on the executed graphs.

10. Concrete Workflow Generator
Input: Abstract Workflow Specification

Output: Concrete Workflow Specification

The Concrete Workflow Generator takes an abstract workflow description (possibly
already reduced by another editor and generates a workflow which can be executed on
the Grid. An example of such a generator is Pegasus, which locates the resources that
can execute the transformations, selects the replicas of data to access. Additionally,
Pegasus schedules the necessary data movement for staging data in and out of the
computations. Additionally, it augments the workflow with the registration on new data
products into the Grid.

Use case scenario: Let’s assume we have a workflow containing a single transformation
(A) and it takes a file f_a as input and produces f_b as output. The editor will produce a
concrete workflow that moves f_a to resource X schedules (A) to be executed at X,
stages f_b from X to the user-defined location and possibly registers f_b in RLS.

Note: We may also want to specify control operations on the workflow beyond the
simple mapping of output files to input files. Examples are error handling, partial
completion, looping, gather/scatter, etc.

11. Graph Execution
Input: A concrete workflow

Output: A workflow whose nodes are marked “done” or “failed”

Functionality: This editor takes a concrete workflow description and executes the nodes
in the workflow on the resources specified in the nodes in the order specified in the
workflow. If failures occur the executor can retry the computation (or data movement)
or it can mark the node as failed. An example of such an editor is DAGMan, which
takes a concrete workflow in the form of a DAG and executes the operations specified
in it. The DAGMan can also do last-minute node scheduling. If the DAG fails,
DAGMan returns a rescue DAG containing the nodes still to be executed.

partitioning

GriPhyN technical report 2004-23

Please send comments to deelman@isi.edu

Use case scenario: Continuing from the previous example, DAGMan will move f_a to
X, schedule the execution of A on X and move f_b to the user-defined location.

Note: We may need to add control structures to the execution.

12. Graph Recorder
Input: Concrete Workflow Description

Output: Completed Concrete Workflow Description annotated with Provenance
Information

Functionality: This editor takes a concrete workflow description and records
provenance information about the environment and conditions in which each node
executes.

Use case scenario: In order to debug a problem, or validate a workflow, a user who
submitted perhaps a workflow description would like to know the environment and
conditions in which the workflow actually executed.

Note: We need a more general mechanism that will allow state information generated
about the execution of each process within the dataflow to be mapped into an
appropriate context catalog.

An example is the use of a dataflow environment to support curation of documents for
a digital library. We would like to map the state information onto the attributes that are
used by the digital library to assert provenance. A similar mapping is needed for the
application of archival processes. We need to map state information that is generated
by the processing onto the authenticity attributes managed by the persistent archive.

