
Introducing PRECIP: An API for Managing
Repeatable Experiments in the Cloud

Sepideh Azarnoosh, Mats Rynge,
Gideon Juve, Ewa Deelman

University of Southern California
Information Sciences Institute

Marina del Rey, U.S.A.
{azarnoos, rynge, gideon,

deelman}@isi.edu

Michal Nieć, Maciej Malawski
AGH University of Science and Technology

Department of Computer Science

Krakow, Poland
michalniec@gmail.com

malawski@agh.edu.pl

Rafael Ferreira da Silva
Univ. Lyon, CNRS, CREATIS

Villeurbanne, France
rafael.silva@creatis.insa-lyon.fr

Abstract—Cloud computing with its on-demand access to
resources has emerged as a tool used by researchers from a wide
range of domains to run computer-based experiments. In this
paper we introduce a flexible experiment management API,
written in Python, that simplifies and formalizes the execution of
scientific experiments on cloud infrastructures. We describe the
features and functionality of PRECIP (Pegasus Repeatable
Experiments for the Cloud in Python), and how PRECIP can be
used to set up experiments on academic clouds such as
OpenStack Eucalyptus, Nimbus, and commercial clouds such as
Amazon EC2.

Keywords—Cloud; Experiment Management; Cloud
Provisioning, OpenStack; Eucalyptus; Nimbus; Amazon EC2

I. INTRODUCTION

A. Motivation
The foundations of modern science are to observe a

phenomenon, formulate a hypothesis, develop an experiment,
and analyze the results. In many scientific fields, experimental
conditions are carefully controlled, and experiments are
required to be described in enough detail to be reproducible by
other researchers. Computer science experiments are often
conducted with a less formal approach, using computer
apparatus and configuration that is not easily described or
reproducible outside the researcher’s laboratory. In addition,
researchers might not have sufficient local computer resources
for the experiments required to test their hypothesis. One
solution to these problems is to use cloud computing
infrastructures, which are becoming increasingly popular due
to the configurability and flexibility they provide [1]. A
popular experiment infrastructure is FutureGrid [2][3], a NSF-
funded cloud test bed designed for use in academic research. It
currently has 303 active projects [4], the majority of which are
computer science experiments. These projects span many
domains, including computer science (48%), education (14%),
life science (10%), and others. While setting up an experiment
in a cloud environment can be straightforward, important
components of the scientific method, such as the recording of
the experiment and the ability to later reproduce the
experiment, are frequently left unresolved.

Keeping good records of an experiment is critical in order
to present and defend findings. In traditional science

experiments, a laboratory notebook is maintained as an
official record of the experiment. These notebooks enable the
scientist to go back and reproduce the experiment, re-examine
the data, and compare the procedure and results with other
experiments. Similar to a laboratory notebook, computer
science experiments should result in a similar recording that
captures what steps were taken, at what point in time. For
example, a verbose log with timestamps can fulfill the
recording requirement.

Researchers have to be able to reproduce experiments for
several reasons; to iterate on the scientific method, to evaluate
the process and results of other researchers’ experiments, and
to share their own experiments with other researchers for
collaborative or peer reviewing purposes. In cloud-based
computer science experiments, reproducibility can be aided by
the cloud infrastructure by storing virtual machines used for
the experiment, but with the current tools the steps of the
experiment are not usually captured automatically. Just as for
the manual experiments, the scientist can maintain a
laboratory notebook with the steps, but this is not scalable for
computer science experiments with a large number of
resources or steps. Also, it is common for computer science
experiments to require precise timing of the steps, which can
be difficult to do manually. To enable reproducibility and
automatic recording, new innovative tools are needed. These
tools should guide the researcher to provide self-contained,
fully described, reproducible, and peer reviewable cloud
experiments.

While formalizing computer science cloud experiments for
the scientific method was the main motivation for this work,
there are additional challenges a scientist faces when setting
up experiments on cloud infrastructures. One such challenge is
API fragmentation. FutureGrid provides a number of different
cloud management systems, including: OpenStack [5],
Eucalyptus [6], and Nimbus [7]. Even though all of these
provide an Amazon EC2 interface, they all differ in small and
subtle ways. These differences mean that the researcher could
spend more time learning how to execute their experiment on
the various infrastructures than they do running the
experiment itself. The fragmentation also adds more
complexity on running experiments across infrastructures.
Therefore, a secondary goal of our work is to provide a thin
abstraction layer on top of the available cloud interfaces.

B. Contribution
Our main contribution is an experiment management API

called PRECIP (Pegasus Repeatable Experiments for the
Cloud In Python). Python was chosen because of its ease of
use and ubiquity in academic computing. Only a minimal
amount of Python knowledge is required to use PRECIP.
Although Python is used to orchestrate the experiment, the
experiment itself is not required to use Python. In summary,
PRECIP provides:

1. A thin abstraction API to support cloud
interoperability. The researcher only needs to learn
one API in order to run experiments across multiple
clouds, or to move an experiment from one cloud to
another.

2. Reproducibility through scripting. The researcher can
easily run the same experiment over and over again
with reproducible results.

3. Automatic logging. PRECIP steps are time stamped
and logged.

4. Powerful instance tagging features to simplify the
management of experiment resources.

5. Basic handling of provisioning, SSH keys, and
security groups in a fault tolerant manner.

The rest of this paper is organized as follows. Section 2
presents an overview of targeted experiments requirements.
Section 3 describes PRECIP’s design and its main
functionalities. Fault tolerance is discussed in section 4. A
sample experiment is shown in Section 5. Section 6 is about
related work, and Section 7 concludes the paper.

II. TARGETED EXPERIMENTS REQUIREMENTS
In order to develop PRECIP into a widely usable product,

we examined registered FutureGrid projects, and loosely
grouped them based on a high-level view of the experiment
requirements. Some of these classifications, or experiment
patterns, seemed common enough to be used as drivers for the
PRECIP development. In this paper we present a subset of the
patterns categorized as follows: (i) domain focused, (ii)
networking, (iii) mapReduce, and (iv) educational.

Bioinformatics projects, for example, aim at developing
and improving methods for storing, retrieving, and analyzing
biological data. A major activity in bioinformatics projects is
to develop software tools to generate useful biological
knowledge. These projects have a wide range of applications
including image and signal processing for extraction of results
from large amounts of raw data; sequencing and annotating
genomes and their observed mutations; textual mining of
biological literature and the development of biological and
gene ontologies to organize and query biological data; and
simulation and modeling of DNA, RNA, and protein
structures. In the context of these projects, PRECIP can be
used, for instance, for testing software tools and techniques,
sending and receiving files to/from the cloud, or for running
biological extractions of knowledge and data.

Networking projects are, in general, primarily about
simulation and improving networks, peer-to-peer networks,
sensor networks, and social networks. In such projects there
may be some methods for testing enhancements either
manually or automatically. PRECIP can be used for
simulating networking scenarios and for running dynamic
network experiments on the cloud, such as removing and/or
adding nodes during an experiment execution to evaluate
routing strategies. PRECIP can also be used to perform
algorithm evaluations and comparisons across infrastructures.

MapReduce is a programming model for processing large
datasets with a parallel, distributed algorithm on a cluster [8].
Projects using MapReduce are basically about analysis,
enhancement and performance evaluations of systems in
MapReduce environments, fault management, predictive
systems, and use of Hadoop [9] as one of the implementations
of MapReduce. The purpose of these projects is to present an
improved version of MapReduce in different scientific areas.
A subset of FutureGrid projects related to MapReduce are
“Climate Data Analytics Using MapReduce”, in which
PRECIP can be used as an API to execute climate data
experiments on a workflow management system to compare
the execution time and I/O file sizes against their proposed
methods. Besides, file system benchmarking can also be done.
For instance, in the “Wide area distributed file system for
MapReduce applications on FutureGrid platform” FutureGrid
project, PRECIP may be used for benchmarking the proposed
file system for comparison with the shared file system.

Educational projects include course projects,
understanding of the uses for FutureGrid and similar cloud
computing services, data analysis, visualization and simulation
of real world experiments in distributed computing, real time
prediction, comparison of different cloud infrastructures, and
systems evaluations. In this context, PRECIP can be used as a
tool for ease of access to cloud infrastructures and testing
scenarios used in this area. It can also be used for
benchmarking different infrastructures and performance
comparisons. Projects such as “Cloud Computing In
Education” and “Experiments in Distributed Computing” may
use PRECIP to teach the interaction between users and the
cloud, and to see how virtual machine (VM) instances can be
assembled for further collaborations.

III. PRECIP DESIGN
Figure 1 shows an overview of the PRECIP's architecture.

We use a layered architecture presented as concentric regions,
where the user interface is represented in the center layer, the
internal experiment layer represents the steps involved in an
experiment, the external layer represents the components used
to manage resources, and the surrounding layer contains
grouped sets of cloud instances. Shaded areas around
instances denote tag groups.

Running PRECIP experiments in a distributed environment
is a simple 4-step procedure: (i) experiment setup, (ii) resource
provisioning, (iii) experiment execution, and (iv) resource de-
provisioning. We detail these steps, and some basic PRECIP
features, in the following subsections.

A. Virtual Machine Images
In PRECIP, researchers can use their own virtual machine

images (VMI). These images do not need to contain any
PRECIP-specific software; otherwise porting an experiment to
PRECIP would not be affordable. Any interaction with
instances is done over SSH connections and any standard
Unix-like VMI can be used. An experiment can also use
cloud-provided base VMIs, and for more complex
experiments, more complex VMIs can be used. This feature
enables researchers to use VMIs that require special software
stacks or custom kernels. An alternative to a complex VMI is
to use the PRECIP API to run bootstrap scripts on the VMIs to
install or configure the required software.

B. Instance Tags
Another important feature of PRECIP are tags. Instance

tagging is a powerful and flexible concept, which simplifies
interactions with a potentially large number of instances. The
concept of Tags was first used in an interactive experiment
system on FutureGrid [2]. Tags are used throughout PRECIP to
identify, manipulate and interact with instances. Arbitrary tags
can be associated with an instance during its provisioning
phase; these tags are global and available during the whole
experiment. A tag describes a logical group of instances, so
that API methods such as running a remote command or
copying files can be performed to all instances matching a
given tag. Tag groups are illustrated in Figure 1 by shaded
ovals. Note that an instance can have an arbitrary number of
tags, and the researcher can use the tags to create subsets,
which can intersect in any number of ways.

C. Experiment Setup
Internally to PRECIP, setting up an experiment consists of

three phases: (i) establishing a new connection to the cloud
endpoint, (ii) registering a pair of SSH keys for internal
connections, and (iii) setting up a default security group. All
that a researcher needs to provide is an endpoint, a region, and
their security credentials; then PRECIP sets up the experiment
on behalf of the researcher.

PRECIP manages communication with cloud instances in
a separate context from the user’s local system. This ensures
that the experiment management does not interfere with an
existing cloud setup of the system. Communication is
performed through SSH key pairs and security groups. The
latter can be considered as the firewalls of cloud instances.
PRECIP uses the Boto [10] and Paramiko [11] libraries to
communicate with the cloud providers and to manage SSH
connections to the VM instances.

Boto provides an integrated API to access cloud services.
It includes support for the Amazon EC2 and private cloud
systems such as Eucalyptus, OpenStack, and Open Nebula that
implement EC2 compatible interfaces. Paramiko provides

Figure 1: Overview of PRECIP’s Architecture. The figure shows the functional layers in the system, starting with the user in the center, instance
management in the next layer, and supporting libraries (Boto and Paramiko) as the outer layer. The figure also highlights the fact that PRECIP can
concurrently interact with multiple cloud infrastructures, and how instance tags can be used to create logical subsets of running instances.

Figure 2: PRECIP uses the Boto library to communicate with the
cloud infrastructures and the Paramiko library to run commands

on running instances.

secure (encrypted and authenticated) connections to remote
instances through the SSH2 protocol.

Figure 2 shows how Boto and Paramiko are used to set up
an experiment in PRECIP. On PRECIP's first execution, a
PRECIP specific SSH key pair is created and stored on
researcher’s local machine. On the remote cloud
infrastructure, the key pair is automatically registered and a
PRECIP security group is created. A security group is defined
as a named collection of access rules. For instance, if an
experiment requires a specific set of opened ports, the rules
that infer those ports can be added to the PRECIP security
group. By default, the PRECIP security group is fully open to
accept all connections the experiment may require.

D. Resource provisioning/ de-provisioning
The second step to perform an experiment is resource

provisioning. In this step, a large number of instances can be
started at the same time. Internally, PRECIP uses Boto for
resource provisioning. To provision an instance, all a
researcher has to do is to provide a VMI identification, the
number of instances and their types, and an arbitrary number
of tags used to identify the instance later.

A common problem, especially for academic clouds, is
that cloud instances may not start correctly. They may fail to
boot correctly, may reach a timeout during boot, or may not be
able to properly execute instance setup scripts, which could
indicate that the networking was not set up correctly for the
instance. As a result, in the provisioning phase, whenever an
instance has initialization problems, PRECIP will
automatically retry the provisioning operation up to the
specified maximum number of retries. This fault-tolerant
mechanism enables an experiment to autonomously recover
from initialization failures, and prevents the entire experiment
from being aborted due to provisioning faults. During the
experiment, the researcher can de-provision instances by using
tags, a feature commonly used in experiments when testing
fault tolerance and fail over of third party software. At the end
of the experiment, all instances are de-provisioned
automatically.

E. Experiment Execution
Once all instances are initialized and configured, PRECIP

uses Paramiko to give the researcher the capability to
effortlessly run commands on the subset of provisioned virtual
machines, and copy files to/from subsets of instances
identified by tags. Figure 3 shows an example where two files
are uploaded to instances. The first operation requests a file
transfer to instances tagged as Tag A, while the second to
instances tagged as Tag C.

Figure 4 shows an example of an experiment performed on
multiple infrastructures (Amazon EC2 and FutureGrid
OpenStack in this case). The experiment starts by setting up a
SSH connection between the user and the virtual machine
instances (step 1). Then, two virtual machines are
provisioned: one tagged as [A,T] to Amazon EC2, and
another tagged as [B,T] to OpenStack. As initialization
times may differ among infrastructures, PRECIP waits until

all instances are initialized (i.e. all instances are in Ready
status) to perform computations (step 3).

The first operation pushes two files into the provisioned
instance. Note that each file is transferred according to the
specified tag on the request (step 4). In step 5, a run
command is used to execute a shell script on instances tagged
as [T]. Now, both instances execute the same operation
producing result files that are transferred to the researcher’s
machine (step 6). At the end of the experiment, instances
matching the tag [T] are de-provisioned.

F. Logging
To provide a complete record of the experiment, all major

events in PRECIP get logged to the console using Python’s
standard logging framework. The events are time stamped in
the ISO 8601 format (YYYY-MM-DD hh:mm:ss). Instance
provisioning events include time when instances are
requested, time out, fail or are fully provisioned and ready to
use, and when an instance de-provisioning is requested. File
transfers and remote command executions are logged as well.
Researchers can add their own events simply by also using the
Python logging framework. There is a discussion in the
PRECIP community to possibly integrate Netlogger [12] to
support more extensive and structured experiment logging.

G. PRECIP API
As mentioned earlier little Python knowledge is required

for using PRECIP. In this subsection, we provide an overview
of the most common parts of the API. To start the cycle of
providing new instances, researchers have to provide the
image ID, instance type, number of instances, tags, and
optionally timeout and max retires:

provision(image_id, instance_type, count,
tags, boot_timeout,
boot_max_tries)

The provision function does not block for the instance
to finish booting. Therefore, we use a separate wait()
method that acts as a barrier for all instances, blocking them
until all instances have finished booting and are accessible via
their external hostnames:

Figure 3: Uploading files to subset of instances identified by instance tags.

wait(tags=[])

The API contains methods for transferring files from or to
a set of remote machines matching the tags:

get(tags, remote_path, local_path, user)

put(tags, local_path, remote_path, user)

For running commands on the instances matching the tags
we use:

run(tags, cmd, user)

For copying a script from the local machine to the remote
instances and executing the script:

copy_and_run(tags, local_script, user)

The deprovision(tags) function terminates all the
provided instances and clean up after itself.

IV. EVALUATION
In this section we use a sample experiment to evaluate

PRECIP. In the first subsection, we present error categories
we faced when running experiments. In the second subsection,
we explain the time durations consumed by each part of the
experiment, and we assess overhead times added by PRECIP
to the overall experiment execution time. We also show details
of how PRECIP detects infrastructure faults on OpenStack,
how it addresses such issues, and finally recovers from them.
The PRECIP script used for this experiment is available for
download and reproducibility at
http://pegasus.isi.edu/precip/paper2013/.

A. Error Classification
There are two types of errors that commonly occur when

performing an experiment: (i) infrastructure and (ii)
communication related errors. Infrastructure errors include
exceeding the maximum number of allowed instance requests
for a cloud infrastructure, and internal server failures, which
lead to timeouts. Communication errors are related to the
inability to establish a connection to an instance, and getting
errors due to overloaded services.

B. Overhead Characterization
The execution of a PRECIP experiment is steered by a

provisioning phase, the experiment execution itself, and a de-
provisioning phase (DP). As it is shown in Figure 5, the time
consumed by the provisioning phase is an aggregation of five
time intervals. The waiting time for the instance response
(WTIR) includes the time span from the instant PRECIP
connects to the endpoint, and the instant the instance is
assigned to the user; the waiting time added by the wait()
method (step 3 in Figure 4); and, the time to establish a
SSH connection to the instance. The waiting operation adds an
overhead to the experiment execution that may be negligible if
instances initialize successfully, but may be important if some
instances have failures during their initialization phase. As
described in the previous section, several errors may occur
during an experiment execution, and then fault-tolerant
techniques are applied to mitigate these failures. However,
these mechanisms may add overheads to the experiment
execution. We characterize these overheads as the time to
discover errors (TDE), and the time to retry an operation
(TRO). If the experiment requires complex images, bootstrap
scripts can be run by the experiment API on the images to
install or configure required software. This time partition is
identified as the time to run bootstrap scripts on the VM
instances (TRBS). Finally, the provisioning phase ends when
instance initializations are accomplished so that instances are
ready and bootstrapped (TRB).

Table 1 shows the metrics that we have evaluated for an

Figure 4: Sample experiment across multiple cloud infrastructures.

Figure 5: Time Portions of an Experiment.

experiment in which 20 VM instances are set up on Amazon
EC2. After all the instances have booted, we run a simple
“hello world” experiment and then de-provision the instances.

Table 1: Metrics Evaluation on Amazon EC2 (Times are in milliseconds)

Metrics Average Std. Dev. Min Max.
WTIR 3879 802 2214 5222
TRBS 538 287 66 945
TRB 473 320 22 989
TDE - - - -
Number of Failures 0 - - -
Number of Retries 0 - - -
De-provision Time 451 290 12 945

Table 2 shows the same metrics as in Table 1 on
OpenStack (FutureGrid’s India resource). Comparing both
executions, Amazon EC2 performs better in metrics such as
De-provision Time, while India performs better in metrics
such as WTIR and TRB.

Table 2: Metrics Evaluation on OpenStack on India (Times are in
milliseconds)

Running experiments using PRECIP on OpenStack cleared
some infrastructures issues that were mainly due to Boto
having a problem with Nova when assigning a security group
to booting instances. Thus, running experiments on India led
to failures in the network setup for several instances and all
those instances got timeout with error code 500, which is
internal server error.

After investigating the cause of those failures, we figured
out that the bug is infrastructure related. Since India's
OpenStack is Essex version, and the volume service is Nova,
it turned out that Nova has problem with assigning security
groups to the starting instances. For the experiment, we
temporarily suppressed the assigning of security groups to the
instances on OpenStack until India’s upgrade. After starting
instances without security groups, all instances booted
successfully and we were able to run our experiment on those
instances.

V. SAMPLE EXPERIMENT
In this section we illustrate the use of PRECIP for database

scalability experiment. The goal of this experiment is to
evaluate the performance of various distributed configurations
of MongoDB [13]. Document-oriented databases can be used
as alternative to traditional relational databases or distributed
file systems for storing and processing large amounts of data
by scientific applications. Examples come from
bioinformatics, where MongoDB can be used as a convenient
way of storing results of genetic sequence similarity searches
[14] or for data analysis in materials science [15]. In this
experiment we evaluate the scalability of MongoDB in the

configuration where the data is partitioned between multiple
MongoDB servers, called shards, to handle the increasing load
of concurrent clients (e.g. compute jobs on a cluster).

As shown in Figure 6, the experiment consists of two
logical machine groups. The ‘MongoDB cluster’ group
includes VMs hosting the DB. The ‘Workers’ group is
responsible for processing and pushing data to database. All
the VMs are hosted in the same cloud and are managed by a
single PRECIP script.

Hosts from the first group run MongoDB applications to
create one distributed database. They always include one low-
spec virtual machine for running the Mongo configuration
service and a variable number of hosts responsible for shards,
running the ‘mongod’ program connected to the configuration
service.

The second group consists of machines responsible for
reading, parsing and storing bioinformatics experiment results
in MongoDB. Each machine runs the ‘mongos’ program,
which acts as a routing service for the sharded database. The
custom ‘worker’ native application takes a list of documents
as an input and reads them in order to extract the data and
store it in the database using mongos.

The ‘User script’ component is a single program written in
Python that uses PRECIP library to connect to cloud
providers, create instances, and set up them. The script is
available for download and reproducibility at
http://pegasus.isi.edu/precip/paper2013.

The experiment implemented in PRECIP has the following
steps.

1. In the boot phase the machines are created and the
script waits until all machines can be accessed via
SSH protocol.

2. During the setup phase all the programs are
installed, compiled if necessary, and configured. This
bootstrap phase assumes that all the VMs are running

Metrics Average Std. Dev. Min Max.
WTIR 1112 445 225 1809
TRBS 479 306 33 989
TRB 405 255 8 901
TDE - - - -
Number of Failures 0 - - -
Number of Retries 0 - - -
De-provision Time 538 293 66 993

Figure 6: Conceptual diagram showing components used in MongoDB

experiment.

basic Centos Linux. The script installs MongoDB
using RPM packages, pushes the sources of the
worker application to be compiled in the target
environment, and downloads input files. At the end
of this phase the monitoring tools, including
sysstat and mongostat, are started.

3. After the setup is done the experiment enters the test
phase where worker applications start to process and
push the data to the DB.

4. When the workers complete, the upload phase is
initiated and data collected during the experiment is
pushed to the Amazon S3 storage service. This data
consists of monitoring data and worker application
results.

5. At the end of the experiment, the cleanup phase is
started to ensure that all resources are freed and that
experiment execution measurements are saved.

We ran this experiment on Amazon EC2 and on a
FutureGrid OpenStack cluster. Example results are shown in
Figure 7 and Figure 8. Figure 7 shows the execution times of a
sample experiment, broken into phases. Figure 8 shows
example results of measured insert ratio for the configuration
using 2 shards. In this particular setup, we observe that the
write speed was not constant during the test and the shards
were not equally loaded. This means that MongoDB was not
able to take full advantage of the sharded configuration. Using
PRECIP allows us to repeat the experiments multiple times to
identify such performance problems and fine tune the
configuration parameters.

Conducting the experiment in cloud environment has
several advantages. One reason behind it is that it requires
complex setup consisting of many different services
depending on each other. In addition, most of the setup
involves operations applied to the host OS (starting services,
editing configuration files, etc.). This cannot be done easily in
a classical cluster or grid environment, where security settings
are strict and the environment is not configurable. However,
the drawback of the cloud environment is the need for another
layer managing virtual appliances (starting, installing,
stopping virtual machines etc.).

Using PRECIP, which provides such a layer, results in
faster and simpler experiment development by simplifying the
process of acquiring, configuring, and releasing the resources.
Using PRECIP also enables users to easily switch between
cloud providers. The experiment can be reproduced using
many different environments located within independent
clouds, providing information not only about MongoDB
performance, but also about cloud performance.

VI. RELATED WORK
Cloud management tools from the experiment point of

view are categorized in two ways: (i) provisioning tools and
(ii) experiment management tools.

Provisioning tools are those that are developed for
automatic provisioning, configuration and management of
virtual machine instances, these tools provide allocated
individual VMs with configuration of CPU, memory, disk
space and so on. On the other hand, experiment management

tools are those, which include automatic provisioning tools,
experiment running, and de-provisioning of assigned
instances. The goal of provisioning tools is to develop a
capability for automatically deploying virtual machine images
in the cloud. The overall systems should allow for the
dynamic configuration of the images, so that a variety of
services can be deployed based on the needs of the user. An
example system of this type is Wrangler [16] that
automatically provisions and configures virtual clusters in the
cloud. It is used to provision virtual clusters for workflow
applications on Amazon EC2, the Magellan cloud at NERSC,
the Sierra and India clouds on the FutureGrid, and the Skynet
cloud at ISI. Wrangler requires the desired cloud setup to be
statically defined in an XML file and does not allow the
experiment to easily modify the configuration, for example
adding or removing instances. It also requires some services to
be installed on the VM image, which can be a burden for
users. Another potential drawback with Wrangler is that it is
not fault tolerant and assumes once a node is started it will not
fail, but a single failure on any VM instances will lead to
unusable clusters and at the same time being charged by
commercial cloud service providers.

Experiment management tools add more overheads to the
systems but at the same time allow users to automatically run

Figure 7: Example execution times of all phases of MongoDB experiment on

Amazon EC2.

Figure 8: Example measurements of insert ratio of MongoDB, in

configuration with 2 shards and 5 workers.

different kinds of scientific experiments. One example of
these tools is Zoo [17], a desktop experiment management
environment. Zoo mainly focuses on data-intensive
experiments and is interested mostly in data collection,
exploration and database management.

There are a few other projects, which provide some of the
features that PRECIP does. Moses [18], the Experiment
Management System, is used for preparing training data and
building, tuning, testing, scoring, and analyzing language and
translation models. B-Fabric [19] is an all-in-one tool for the
integrated management of experimental and annotation data in
the life sciences. B-Fabric is a data management system,
which is mainly used for data intensive experiments while our
system covers both data intensive and computationally
intensive experiments. Each project concentrates on different
user communities, so comparisons with our approach are not
always relevant. In general, the most important aspects of our
idea are its generic nature to run experiments across multiple
cloud infrastructures, having control over instances using
tagging, automatic handling of provisioning, being fault
tolerant via retrying to boot new instances in case of failures,
setup of SSH keys and security groups, and ability to
repeatedly run the same experiment and gather results. Many
of the other projects are not as focused on generic experiment
management as PRECIP is. For example, B-Fabric is a
complete project management tool, of which experiment
management is just one part, and some of its concepts are life
science specific.

VII. CONCLUSIONS
In this paper we have introduced PRECIP features and

concepts, and how it provides a generic cloud experiment
management tool for computer science based experiments,
cloud systems evaluations, and scalability experiments. The
goal of designing this API is to prepare the foundation for
repeatable, shareable and peer reviewable experiments. We
presented experiment domains PRECIP can be used for, the
details of experiment execution, and provided and overview of
the important methods of the API. We then demonstrated
PRECIP features by performing a simple instance
provisioning and database scalability experiment.

Looking forward, we are exploring adding several new
features to PRECIP, such as automatic gathering and
comparing performance information of experiments, and
providing a set of modules for common tasks such as
HTCondor, Hadoop, and shared file system setups. We would
also like to be able to handle stale instances, which are not
terminated correctly in previous experiments. We are planning
to help running and testing experiments in FutureGrid projects
as well as improve logging feature of the system by using
other logging frameworks such as NetLogger.

VIII. ACKNOWLEDGMENT
This material is based upon work supported in part by the

National Science Foundation under Grant No. 0910812 to
Indiana University for "FutureGrid: An Experimental, High-
Performance Grid Test-bed." Partners in the FutureGrid
project include U. Chicago, U. Florida, San Diego

Supercomputer Center - UC San Diego, U. Southern
California, U. Texas at Austin, U. Tennessee at Knoxville, U.
of Virginia, Purdue U., and T-U. Dresden. We would also like
to express our thanks to Tomasz Gubała for his help with
MongoDB experiments. The use of Amazon EC2 resources
was supported by an AWS in Education research grant.

IX. REFERENCES
[1] Y. Jiang, C. Perng, T. Li, and R. Chang, “ASAP: A Self-Adaptive

Prediction System for Instant Cloud Resource Demand Provisioning,”
IEEE 11th International Conference on in Data Mining (ICDM), 2011,
pp. 1104–1109.

[2] G. Fox, G. von Laszewski, J. Diaz, K. Keahey, J. Fortes, R. Figueiredo,
S. Smallen, W. Smith, and A. Grimshaw, “FutureGrid - a reconfigurable
testbed for Cloud, HPC, and Grid Computing,” in Contemporary High
Performance Computing: From Petascale toward Exascale, J. Vetter,
Ed. Chapman & Hall, 2013.

[3] G. von Laszewski, G. C. Fox, F. Wang, A. J. Younge, A. Kulshrestha,
G. G. Pike, W. Smith, J. Vöckler, R. J. Figueiredo, J. Fortes, and K.
Keahey, “Design of the FutureGrid experiment management
framework,” in Gateway Computing Environments Workshop (GCE),
2010, 2010, pp. 1–10.

[4] “FutureGrid Project Statistics,” Jul-2013. [Online]. Available:
https://portal.futuregrid.org/projects-statistics.

[5] “OpenStack,” Jul-2013. [Online]. Available: http://www.openstack.org/.
[6] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L.

Youseff, and D. Zagorodnov, “The eucalyptus open-source cloud-
computing system,” in Cluster Computing and the Grid, 2009.
CCGRID’09, pp. 124–131.

[7] K. Keahey and T. Freeman, “Nimbus or an Open Source Cloud
Platform or the Best Open Source EC2 No Money Can Buy.,”
Supercomputing 2008.

[8] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Commun Acm, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[9] T. White, Hadoop: The Definitive Guide, 1st ed. O’Reilly Media, Inc.,
2009.

[10] "Boto: A Python interface to Amazon Web Services," Sep-2013.
[Online]. Available: https://github.com/boto/boto.

[11] “Paramiko: Python SSH module,” Jul-2013. [Online]. Available:
https://github.com/paramiko/paramiko.

[12] B. Tierney, W. Johnston, B. Crowley, G. Hoo, C. Brooks, and D.
Gunter, “The NetLogger Methodology for High Performance
Distributed Systems Performance Analysis,” in Proceedings of the 7th
IEEE International Symposium on High Performance Distributed
Computing, Washington, DC, USA, 1998, p. 260–.

[13] “MongoDB,” Jul-2013. [Online]. Available: http://www.mongodb.org/.
[14] M. Malawski, J. Meizner, M. Bubak, and P. Gepner, “Component

Approach to Computational Applications on Clouds,” Procedia
Comput. Sci., vol. 4, pp. 432 – 441, 2011.

[15] E. Dede, M. Govindaraju, D. Gunter, R. S. Canon, and L.
Ramakrishnan, “Performance evaluation of a MongoDB and hadoop
platform for scientific data analysis,” in Proceedings of the 4th ACM
workshop on Scientific cloud computing, New York, NY, 2013, pp. 13–
20.

[16] G. Juve and E. Deelman, “Wrangler: virtual cluster provisioning for the
cloud,” in Proceedings of the 20th international symposium on High
performance distributed computing, NY, USA, 2011, pp. 277–278.

[17] Y. Ioannidis, M. Livny, S. Gupta, and N. Ponnekanti, “ZOO: A Desktop
Experiment Management Environment,” in In Proc. 22nd International
VLDB Conference, 1996, pp. 274–285.

[18] “Moses - Experiment Management System,” Jul-2013. [Online].
Available: http://www.statmt.org/moses/?n=FactoredTraining.EMS.

[19] C. Türker, E. Stolte, D. Joho, and R. Schlapbach, “B-Fabric: A Data and
Application Integration Framework for Life Sciences Research,” in
Data Integration in the Life Sciences, vol. 4544, S. Cohen-Boulakia and
V. Tannen, Eds. Springer Berlin Heidelberg, 2007, pp. 37–47.

