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Abstract—Cloud computing with its on-demand access to 
resources has emerged as a tool used by researchers from a wide 
range of domains to run computer-based experiments. In this 
paper we introduce a flexible experiment management API, 
written in Python, that simplifies and formalizes the execution of 
scientific experiments on cloud infrastructures. We describe the 
features and functionality of PRECIP (Pegasus Repeatable 
Experiments for the Cloud in Python), and how PRECIP can be 
used to set up experiments on academic clouds such as 
OpenStack Eucalyptus, Nimbus, and commercial clouds such as 
Amazon EC2. 

Keywords—Cloud; Experiment Management; Cloud 
Provisioning, OpenStack; Eucalyptus; Nimbus; Amazon EC2 

I. INTRODUCTION 

A. Motivation 
The foundations of modern science are to observe a 

phenomenon, formulate a hypothesis, develop an experiment, 
and analyze the results. In many scientific fields, experimental 
conditions are carefully controlled, and experiments are 
required to be described in enough detail to be reproducible by 
other researchers. Computer science experiments are often 
conducted with a less formal approach, using computer 
apparatus and configuration that is not easily described or 
reproducible outside the researcher’s laboratory. In addition, 
researchers might not have sufficient local computer resources 
for the experiments required to test their hypothesis. One 
solution to these problems is to use cloud computing 
infrastructures, which are becoming increasingly popular due 
to the configurability and flexibility they provide [1]. A 
popular experiment infrastructure is FutureGrid [2][3], a NSF-
funded cloud test bed designed for use in academic research. It 
currently has 303 active projects [4], the majority of which are 
computer science experiments. These projects span many 
domains, including computer science (48%), education (14%), 
life science (10%), and others. While setting up an experiment 
in a cloud environment can be straightforward, important 
components of the scientific method, such as the recording of 
the experiment and the ability to later reproduce the 
experiment, are frequently left unresolved. 

Keeping good records of an experiment is critical in order 
to present and defend findings. In traditional science 

experiments, a laboratory notebook is maintained as an 
official record of the experiment. These notebooks enable the 
scientist to go back and reproduce the experiment, re-examine 
the data, and compare the procedure and results with other 
experiments. Similar to a laboratory notebook, computer 
science experiments should result in a similar recording that 
captures what steps were taken, at what point in time. For 
example, a verbose log with timestamps can fulfill the 
recording requirement. 

Researchers have to be able to reproduce experiments for 
several reasons; to iterate on the scientific method, to evaluate 
the process and results of other researchers’ experiments, and 
to share their own experiments with other researchers for 
collaborative or peer reviewing purposes. In cloud-based 
computer science experiments, reproducibility can be aided by 
the cloud infrastructure by storing virtual machines used for 
the experiment, but with the current tools the steps of the 
experiment are not usually captured automatically. Just as for 
the manual experiments, the scientist can maintain a 
laboratory notebook with the steps, but this is not scalable for 
computer science experiments with a large number of 
resources or steps. Also, it is common for computer science 
experiments to require precise timing of the steps, which can 
be difficult to do manually. To enable reproducibility and 
automatic recording, new innovative tools are needed. These 
tools should guide the researcher to provide self-contained, 
fully described, reproducible, and peer reviewable cloud 
experiments. 

While formalizing computer science cloud experiments for 
the scientific method was the main motivation for this work, 
there are additional challenges a scientist faces when setting 
up experiments on cloud infrastructures. One such challenge is 
API fragmentation. FutureGrid provides a number of different 
cloud management systems, including: OpenStack [5], 
Eucalyptus [6], and Nimbus [7]. Even though all of these 
provide an Amazon EC2 interface, they all differ in small and 
subtle ways. These differences mean that the researcher could 
spend more time learning how to execute their experiment on 
the various infrastructures than they do running the 
experiment itself. The fragmentation also adds more 
complexity on running experiments across infrastructures. 
Therefore, a secondary goal of our work is to provide a thin 
abstraction layer on top of the available cloud interfaces. 



B. Contribution 
Our main contribution is an experiment management API 

called PRECIP (Pegasus Repeatable Experiments for the 
Cloud In Python). Python was chosen because of its ease of 
use and ubiquity in academic computing. Only a minimal 
amount of Python knowledge is required to use PRECIP. 
Although Python is used to orchestrate the experiment, the 
experiment itself is not required to use Python. In summary, 
PRECIP provides: 

1. A thin abstraction API to support cloud 
interoperability. The researcher only needs to learn 
one API in order to run experiments across multiple 
clouds, or to move an experiment from one cloud to 
another.  

2. Reproducibility through scripting. The researcher can 
easily run the same experiment over and over again 
with reproducible results.  

3. Automatic logging. PRECIP steps are time stamped 
and logged.  

4. Powerful instance tagging features to simplify the 
management of experiment resources.  

5. Basic handling of provisioning, SSH keys, and 
security groups in a fault tolerant manner.  

The rest of this paper is organized as follows. Section 2 
presents an overview of targeted experiments requirements. 
Section 3 describes PRECIP’s design and its main 
functionalities. Fault tolerance is discussed in section 4. A 
sample experiment is shown in Section 5. Section 6 is about 
related work, and Section 7 concludes the paper. 

II. TARGETED EXPERIMENTS REQUIREMENTS 
In order to develop PRECIP into a widely usable product, 

we examined registered FutureGrid projects, and loosely 
grouped them based on a high-level view of the experiment 
requirements. Some of these classifications, or experiment 
patterns, seemed common enough to be used as drivers for the 
PRECIP development. In this paper we present a subset of the 
patterns categorized as follows: (i) domain focused, (ii) 
networking, (iii) mapReduce, and (iv) educational. 

Bioinformatics projects, for example, aim at developing 
and improving methods for storing, retrieving, and analyzing 
biological data. A major activity in bioinformatics projects is 
to develop software tools to generate useful biological 
knowledge. These projects have a wide range of applications 
including image and signal processing for extraction of results 
from large amounts of raw data; sequencing and annotating 
genomes and their observed mutations; textual mining of 
biological literature and the development of biological and 
gene ontologies to organize and query biological data; and 
simulation and modeling of DNA, RNA, and protein 
structures. In the context of these projects, PRECIP can be 
used, for instance, for testing software tools and techniques, 
sending and receiving files to/from the cloud, or for running 
biological extractions of knowledge and data.  

Networking projects are, in general, primarily about 
simulation and improving networks, peer-to-peer networks, 
sensor networks, and social networks. In such projects there 
may be some methods for testing enhancements either 
manually or automatically. PRECIP can be used for 
simulating networking scenarios and for running dynamic 
network experiments on the cloud, such as removing and/or 
adding nodes during an experiment execution to evaluate 
routing strategies. PRECIP can also be used to perform 
algorithm evaluations and comparisons across infrastructures. 

MapReduce is a programming model for processing large 
datasets with a parallel, distributed algorithm on a cluster [8]. 
Projects using MapReduce are basically about analysis, 
enhancement and performance evaluations of systems in 
MapReduce environments, fault management, predictive 
systems, and use of Hadoop [9] as one of the implementations 
of MapReduce. The purpose of these projects is to present an 
improved version of MapReduce in different scientific areas. 
A subset of FutureGrid projects related to MapReduce are 
“Climate Data Analytics Using MapReduce”, in which 
PRECIP can be used as an API to execute climate data 
experiments on a workflow management system to compare 
the execution time and I/O file sizes against their proposed 
methods. Besides, file system benchmarking can also be done. 
For instance, in the “Wide area distributed file system for 
MapReduce applications on FutureGrid platform” FutureGrid 
project, PRECIP may be used for benchmarking the proposed 
file system for comparison with the shared file system.  

Educational projects include course projects, 
understanding of the uses for FutureGrid and similar cloud 
computing services, data analysis, visualization and simulation 
of real world experiments in distributed computing, real time 
prediction, comparison of different cloud infrastructures, and 
systems evaluations. In this context, PRECIP can be used as a 
tool for ease of access to cloud infrastructures and testing 
scenarios used in this area. It can also be used for 
benchmarking different infrastructures and performance 
comparisons. Projects such as “Cloud Computing In 
Education” and “Experiments in Distributed Computing” may 
use PRECIP to teach the interaction between users and the 
cloud, and to see how virtual machine (VM) instances can be 
assembled for further collaborations. 

III. PRECIP DESIGN 
Figure 1 shows an overview of the PRECIP's architecture. 

We use a layered architecture presented as concentric regions, 
where the user interface is represented in the center layer, the 
internal experiment layer represents the steps involved in an 
experiment, the external layer represents the components used 
to manage resources, and the surrounding layer contains 
grouped sets of cloud instances. Shaded areas around 
instances denote tag groups. 



Running PRECIP experiments in a distributed environment 
is a simple 4-step procedure: (i) experiment setup, (ii) resource 
provisioning, (iii) experiment execution, and (iv) resource de-
provisioning. We detail these steps, and some basic PRECIP 
features, in the following subsections. 

A. Virtual Machine Images 
In PRECIP, researchers can use their own virtual machine 

images (VMI). These images do not need to contain any 
PRECIP-specific software; otherwise porting an experiment to  
PRECIP would not be affordable. Any interaction with 
instances is done over SSH connections and any standard 
Unix-like VMI can be used. An experiment can also use 
cloud-provided base VMIs, and for more complex 
experiments, more complex VMIs can be used. This feature 
enables researchers to use VMIs that require special software 
stacks or custom kernels. An alternative to a complex VMI is 
to use the PRECIP API to run bootstrap scripts on the VMIs to 
install or configure the required software. 

B. Instance Tags 
Another important feature of PRECIP are tags. Instance 

tagging is a powerful and flexible concept, which simplifies 
interactions with a potentially large number of instances. The 
concept of Tags was first used in an interactive experiment 
system on FutureGrid [2]. Tags are used throughout PRECIP to 
identify, manipulate and interact with instances. Arbitrary tags 
can be associated with an instance during its provisioning 
phase; these tags are global and available during the whole 
experiment. A tag describes a logical group of instances, so 
that API methods such as running a remote command or 
copying files can be performed to all instances matching a 
given tag. Tag groups are illustrated in Figure 1 by shaded 
ovals. Note that an instance can have an arbitrary number of 
tags, and the researcher can use the tags to create subsets, 
which can intersect in any number of ways. 

C. Experiment Setup 
Internally to PRECIP, setting up an experiment consists of 

three phases: (i) establishing a new connection to the cloud 
endpoint, (ii) registering a pair of SSH keys for internal 
connections, and (iii) setting up a default security group. All 
that a researcher needs to provide is an endpoint, a region, and 
their security credentials; then PRECIP sets up the experiment 
on behalf of the researcher.  

PRECIP manages communication with cloud instances in 
a separate context from the user’s local system. This ensures 
that the experiment management does not interfere with an 
existing cloud setup of the system. Communication is 
performed through SSH key pairs and security groups. The 
latter can be considered as the firewalls of cloud instances. 
PRECIP uses the Boto [10] and Paramiko [11] libraries to 
communicate with the cloud providers and to manage SSH 
connections to the VM instances.  

Boto provides an integrated API to access cloud services. 
It includes support for the Amazon EC2 and private cloud 
systems such as Eucalyptus, OpenStack, and Open Nebula that 
implement EC2 compatible interfaces. Paramiko provides 

 
Figure 1: Overview of PRECIP’s Architecture. The figure shows the functional layers in the system, starting with the user in the center, instance 
management in the next layer, and supporting libraries (Boto and Paramiko) as the outer layer. The figure also highlights the fact that PRECIP can 
concurrently interact with multiple cloud infrastructures, and how instance tags can be used to create logical subsets of running instances. 

 
Figure 2: PRECIP uses the Boto library to communicate with the 
cloud infrastructures and the Paramiko library to run commands 

on running instances.   



secure (encrypted and authenticated) connections to remote 
instances through the SSH2 protocol. 

Figure 2 shows how Boto and Paramiko are used to set up 
an experiment in PRECIP. On PRECIP's first execution, a 
PRECIP specific SSH key pair is created and stored on 
researcher’s local machine. On the remote cloud 
infrastructure, the key pair is automatically registered and a 
PRECIP security group is created. A security group is defined 
as a named collection of access rules. For instance, if an 
experiment requires a specific set of opened ports, the rules 
that infer those ports can be added to the PRECIP security 
group. By default, the PRECIP security group is fully open to 
accept all connections the experiment may require. 

D. Resource provisioning/ de-provisioning 
The second step to perform an experiment is resource 

provisioning. In this step, a large number of instances can be 
started at the same time. Internally, PRECIP uses Boto for 
resource provisioning. To provision an instance, all a 
researcher has to do is to provide a VMI identification, the 
number of instances and their types, and an arbitrary number 
of tags used to identify the instance later.  

A common problem, especially for academic clouds, is 
that cloud instances may not start correctly. They may fail to 
boot correctly, may reach a timeout during boot, or may not be 
able to properly execute instance setup scripts, which could 
indicate that the networking was not set up correctly for the 
instance. As a result, in the provisioning phase, whenever an 
instance has initialization problems, PRECIP will 
automatically retry the provisioning operation up to the 
specified maximum number of retries. This fault-tolerant 
mechanism enables an experiment to autonomously recover 
from initialization failures, and prevents the entire experiment 
from being aborted due to provisioning faults. During the 
experiment, the researcher can de-provision instances by using 
tags, a feature commonly used in experiments when testing 
fault tolerance and fail over of third party software. At the end 
of the experiment, all instances are de-provisioned 
automatically. 

E. Experiment Execution 
Once all instances are initialized and configured, PRECIP 

uses Paramiko to give the researcher the capability to 
effortlessly run commands on the subset of provisioned virtual 
machines, and copy files to/from subsets of instances 
identified by tags. Figure 3 shows an example where two files 
are uploaded to instances. The first operation requests a file 
transfer to instances tagged as Tag A, while the second to 
instances tagged as Tag C. 

Figure 4 shows an example of an experiment performed on 
multiple infrastructures (Amazon EC2 and FutureGrid 
OpenStack in this case). The experiment starts by setting up a 
SSH connection between the user and the virtual machine 
instances (step 1). Then, two virtual machines are 
provisioned: one tagged as [A,T] to Amazon EC2, and 
another tagged as [B,T] to OpenStack. As initialization 
times may differ among infrastructures, PRECIP waits until 

all instances are initialized (i.e. all instances are in Ready 
status) to perform computations (step 3). 

The first operation pushes two files into the provisioned 
instance. Note that each file is transferred according to the 
specified tag on the request (step 4). In step 5, a run 
command is used to execute a shell script on instances tagged 
as [T]. Now, both instances execute the same operation 
producing result files that are transferred to the researcher’s 
machine (step 6). At the end of the experiment, instances 
matching the tag [T] are de-provisioned. 

F. Logging 
To provide a complete record of the experiment, all major 

events in PRECIP get logged to the console using Python’s 
standard logging framework. The events are time stamped in 
the ISO 8601 format (YYYY-MM-DD hh:mm:ss). Instance 
provisioning events include time when instances are 
requested, time out, fail or are fully provisioned and ready to 
use, and when an instance de-provisioning is requested. File 
transfers and remote command executions are logged as well. 
Researchers can add their own events simply by also using the 
Python logging framework. There is a discussion in the 
PRECIP community to possibly integrate Netlogger [12] to 
support more extensive and structured experiment logging. 

G. PRECIP API 
As mentioned earlier little Python knowledge is required 

for using PRECIP. In this subsection, we provide an overview 
of the most common parts of the API. To start the cycle of 
providing new instances, researchers have to provide the 
image ID, instance type, number of instances, tags, and 
optionally timeout and max retires: 

provision(image_id, instance_type, count, 
tags, boot_timeout,  
boot_max_tries) 

The provision function does not block for the instance 
to finish booting. Therefore, we use a separate wait() 
method that acts as a barrier for all instances, blocking them 
until all instances have finished booting and are accessible via 
their external hostnames: 

 
Figure 3: Uploading files to subset of instances identified by instance tags. 

 



wait(tags=[]) 

The API contains methods for transferring files from or to 
a set of remote machines matching the tags: 

get(tags, remote_path, local_path, user) 

put(tags, local_path, remote_path, user) 

For running commands on the instances matching the tags 
we use: 

run(tags, cmd, user) 

For copying a script from the local machine to the remote 
instances and executing the script: 

copy_and_run(tags, local_script, user) 

The deprovision(tags) function terminates all the 
provided instances and clean up after itself. 

IV. EVALUATION 
In this section we use a sample experiment to evaluate 

PRECIP. In the first subsection, we present error categories 
we faced when running experiments. In the second subsection, 
we explain the time durations consumed by each part of the 
experiment, and we assess overhead times added by PRECIP 
to the overall experiment execution time. We also show details 
of how PRECIP detects infrastructure faults on OpenStack, 
how it addresses such issues, and finally recovers from them. 
The PRECIP script used for this experiment is available for 
download and reproducibility at 
http://pegasus.isi.edu/precip/paper2013/. 

A. Error Classification 
There are two types of errors that commonly occur when 

performing an experiment: (i) infrastructure and (ii) 
communication related errors. Infrastructure errors include 
exceeding the maximum number of allowed instance requests 
for a cloud infrastructure, and internal server failures, which 
lead to timeouts. Communication errors are related to the 
inability to establish a connection to an instance, and getting 
errors due to overloaded services. 

B. Overhead Characterization 
The execution of a PRECIP experiment is steered by a 

provisioning phase, the experiment execution itself, and a de-
provisioning phase (DP). As it is shown in Figure 5, the time 
consumed by the provisioning phase is an aggregation of five 
time intervals. The waiting time for the instance response 
(WTIR) includes the time span from the instant PRECIP 
connects to the endpoint, and the instant the instance is 
assigned to the user; the waiting time added by the wait() 
method (step 3 in Figure 4); and, the time to establish a 
SSH connection to the instance. The waiting operation adds an 
overhead to the experiment execution that may be negligible if 
instances initialize successfully, but may be important if some 
instances have failures during their initialization phase. As 
described in the previous section, several errors may occur 
during an experiment execution, and then fault-tolerant 
techniques are applied to mitigate these failures. However, 
these mechanisms may add overheads to the experiment 
execution. We characterize these overheads as the time to 
discover errors (TDE), and the time to retry an operation 
(TRO). If the experiment requires complex images, bootstrap 
scripts can be run by the experiment API on the images to 
install or configure required software. This time partition is 
identified as the time to run bootstrap scripts on the VM 
instances (TRBS). Finally, the provisioning phase ends when 
instance initializations are accomplished so that instances are 
ready and bootstrapped (TRB). 

Table 1 shows the metrics that we have evaluated for an 

 
Figure 4: Sample experiment across multiple cloud infrastructures. 

 

 
Figure 5: Time Portions of an Experiment. 



experiment in which 20 VM instances are set up on Amazon 
EC2. After all the instances have booted, we run a simple 
“hello world” experiment and then de-provision the instances. 

Table 1: Metrics Evaluation on Amazon EC2 (Times are in milliseconds) 

Metrics Average Std. Dev. Min Max. 
WTIR 3879 802 2214 5222 
TRBS 538 287 66 945 
TRB 473 320 22 989 
TDE - - - - 
Number of Failures 0 - - - 
Number of Retries 0 - - - 
De-provision Time 451 290 12 945 

 

Table 2 shows the same metrics as in Table 1 on 
OpenStack (FutureGrid’s India resource). Comparing both 
executions, Amazon EC2 performs better in metrics such as 
De-provision Time, while India performs better in metrics 
such as WTIR and TRB. 

Table 2: Metrics Evaluation on OpenStack on India (Times are in 
milliseconds) 

 

Running experiments using PRECIP on OpenStack cleared 
some infrastructures issues that were mainly due to Boto 
having a problem with Nova when assigning a security group 
to booting instances. Thus, running experiments on India led 
to failures in the network setup for several instances and all 
those instances got timeout with error code 500, which is 
internal server error. 

After investigating the cause of those failures, we figured 
out that the bug is infrastructure related. Since India's 
OpenStack is Essex version, and the volume service is Nova, 
it turned out that Nova has problem with assigning security 
groups to the starting instances.  For the experiment, we 
temporarily suppressed the assigning of security groups to the 
instances on OpenStack until India’s upgrade. After starting 
instances without security groups, all instances booted 
successfully and we were able to run our experiment on those 
instances.   

V. SAMPLE EXPERIMENT 
In this section we illustrate the use of PRECIP for database 

scalability experiment. The goal of this experiment is to 
evaluate the performance of various distributed configurations 
of MongoDB [13]. Document-oriented databases can be used 
as alternative to traditional relational databases or distributed 
file systems for storing and processing large amounts of data 
by scientific applications. Examples come from 
bioinformatics, where MongoDB can be used as a convenient 
way of storing results of genetic sequence similarity searches 
[14] or for data analysis in materials science [15]. In this 
experiment we evaluate the scalability of MongoDB in the 

configuration where the data is partitioned between multiple 
MongoDB servers, called shards, to handle the increasing load 
of concurrent clients (e.g. compute jobs on a cluster).  

As shown in Figure 6, the experiment consists of two 
logical machine groups. The ‘MongoDB cluster’ group 
includes VMs hosting the DB. The ‘Workers’ group is 
responsible for processing and pushing data to database. All 
the VMs are hosted in the same cloud and are managed by a 
single PRECIP script. 

Hosts from the first group run MongoDB applications to 
create one distributed database. They always include one low-
spec virtual machine for running the Mongo configuration 
service and a variable number of hosts responsible for shards, 
running the ‘mongod’ program connected to the configuration 
service. 

The second group consists of machines responsible for 
reading, parsing and storing bioinformatics experiment results 
in MongoDB. Each machine runs the ‘mongos’ program, 
which acts as a routing service for the sharded database. The 
custom ‘worker’ native application takes a list of documents 
as an input and reads them in order to extract the data and 
store it in the database using mongos. 

The ‘User script’ component is a single program written in 
Python that uses PRECIP library to connect to cloud 
providers, create instances, and set up them. The script is 
available for download and reproducibility at 
http://pegasus.isi.edu/precip/paper2013. 

The experiment implemented in PRECIP has the following 
steps. 

1. In the boot phase the machines are created and the 
script waits until all machines can be accessed via 
SSH protocol. 

2. During the setup phase all the programs are 
installed, compiled if necessary, and configured. This 
bootstrap phase assumes that all the VMs are running 

Metrics Average Std. Dev. Min Max. 
WTIR 1112 445 225 1809 
TRBS 479 306 33 989 
TRB 405 255 8 901 
TDE - - - - 
Number of Failures 0 - - - 
Number of Retries 0 - - - 
De-provision Time 538 293 66 993 

 
Figure 6: Conceptual diagram showing components used in MongoDB 

experiment. 



basic Centos Linux. The script installs MongoDB 
using RPM packages, pushes the sources of the 
worker application to be compiled in the target 
environment, and downloads input files. At the end 
of this phase the monitoring tools, including 
sysstat and mongostat, are started. 

3. After the setup is done the experiment enters the test 
phase where worker applications start to process and 
push the data to the DB. 

4. When the workers complete, the upload phase is 
initiated and data collected during the experiment is 
pushed to the Amazon S3 storage service. This data 
consists of monitoring data and worker application 
results. 

5. At the end of the experiment, the cleanup phase is 
started to ensure that all resources are freed and that 
experiment execution measurements are saved. 

We ran this experiment on Amazon EC2 and on a 
FutureGrid OpenStack cluster. Example results are shown in 
Figure 7 and Figure 8. Figure 7 shows the execution times of a 
sample experiment, broken into phases. Figure 8 shows 
example results of measured insert ratio for the configuration 
using 2 shards. In this particular setup, we observe that the 
write speed was not constant during the test and the shards 
were not equally loaded. This means that MongoDB was not 
able to take full advantage of the sharded configuration. Using 
PRECIP allows us to repeat the experiments multiple times to 
identify such performance problems and fine tune the 
configuration parameters.  

Conducting the experiment in cloud environment has 
several advantages. One reason behind it is that it requires 
complex setup consisting of many different services 
depending on each other. In addition, most of the setup 
involves operations applied to the host OS (starting services, 
editing configuration files, etc.). This cannot be done easily in 
a classical cluster or grid environment, where security settings 
are strict and the environment is not configurable. However, 
the drawback of the cloud environment is the need for another 
layer managing virtual appliances (starting, installing, 
stopping virtual machines etc.). 

Using PRECIP, which provides such a layer, results in 
faster and simpler experiment development by simplifying the 
process of acquiring, configuring, and releasing the resources. 
Using PRECIP also enables users to easily switch between 
cloud providers. The experiment can be reproduced using 
many different environments located within independent 
clouds, providing information not only about MongoDB 
performance, but also about cloud performance. 

VI. RELATED WORK 
Cloud management tools from the experiment point of 

view are categorized in two ways: (i) provisioning tools and 
(ii) experiment management tools. 

Provisioning tools are those that are developed for 
automatic provisioning, configuration and management of 
virtual machine instances, these tools provide allocated 
individual VMs with configuration of CPU, memory, disk 
space and so on. On the other hand, experiment management 

tools are those, which include automatic provisioning tools, 
experiment running, and de-provisioning of assigned 
instances. The goal of provisioning tools is to develop a 
capability for automatically deploying virtual machine images 
in the cloud. The overall systems should allow for the 
dynamic configuration of the images, so that a variety of 
services can be deployed based on the needs of the user. An 
example system of this type is Wrangler [16] that 
automatically provisions and configures virtual clusters in the 
cloud. It is used to provision virtual clusters for workflow 
applications on Amazon EC2, the Magellan cloud at NERSC, 
the Sierra and India clouds on the FutureGrid, and the Skynet 
cloud at ISI. Wrangler requires the desired cloud setup to be 
statically defined in an XML file and does not allow the 
experiment to easily modify the configuration, for example 
adding or removing instances. It also requires some services to 
be installed on the VM image, which can be a burden for 
users. Another potential drawback with Wrangler is that it is 
not fault tolerant and assumes once a node is started it will not 
fail, but a single failure on any VM instances will lead to 
unusable clusters and at the same time being charged by 
commercial cloud service providers. 

Experiment management tools add more overheads to the 
systems but at the same time allow users to automatically run 

 
Figure 7: Example execution times of all phases of MongoDB experiment on 

Amazon EC2. 

 
Figure 8: Example measurements of insert ratio of MongoDB, in 

configuration with 2 shards and 5 workers. 



different kinds of scientific experiments. One example of 
these tools is Zoo [17], a desktop experiment management 
environment. Zoo mainly focuses on data-intensive 
experiments and is interested mostly in data collection, 
exploration and database management.  

There are a few other projects, which provide some of the 
features that PRECIP does. Moses [18], the Experiment 
Management System, is used for preparing training data and 
building, tuning, testing, scoring, and analyzing language and 
translation models. B-Fabric [19] is an all-in-one tool for the 
integrated management of experimental and annotation data in 
the life sciences. B-Fabric is a data management system, 
which is mainly used for data intensive experiments while our 
system covers both data intensive and computationally 
intensive experiments. Each project concentrates on different 
user communities, so comparisons with our approach are not 
always relevant. In general, the most important aspects of our 
idea are its generic nature to run experiments across multiple 
cloud infrastructures, having control over instances using 
tagging, automatic handling of provisioning, being fault 
tolerant via retrying to boot new instances in case of failures, 
setup of SSH keys and security groups, and ability to 
repeatedly run the same experiment and gather results. Many 
of the other projects are not as focused on generic experiment 
management as PRECIP is. For example, B-Fabric is a 
complete project management tool, of which experiment 
management is just one part, and some of its concepts are life 
science specific. 

VII. CONCLUSIONS 
In this paper we have introduced PRECIP features and 

concepts, and how it provides a generic cloud experiment 
management tool for computer science based experiments, 
cloud systems evaluations, and scalability experiments. The 
goal of designing this API is to prepare the foundation for 
repeatable, shareable and peer reviewable experiments. We 
presented experiment domains PRECIP can be used for, the 
details of experiment execution, and provided and overview of 
the important methods of the API. We then demonstrated 
PRECIP features by performing a simple instance 
provisioning and database scalability experiment.  

Looking forward, we are exploring adding several new 
features to PRECIP, such as automatic gathering and 
comparing performance information of experiments, and 
providing a set of modules for common tasks such as 
HTCondor, Hadoop, and shared file system setups. We would 
also like to be able to handle stale instances, which are not 
terminated correctly in previous experiments. We are planning 
to help running and testing experiments in FutureGrid projects 
as well as improve logging feature of the system by using 
other logging frameworks such as NetLogger. 
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