
Peer-to-Peer Data Sharing for Scientific Workflows
on Amazon EC2

Rohit Agarwal
Department of Computer Science and Engineering

Indian Institute of Technology, Ropar
ragarwal@iitrpr.ac.in

Gideon Juve, Ewa Deelman
Information Sciences Institute

University of Southern California
{gideon, deelman}@isi.edu

Abstract—In this paper, we consider the problem of data sharing
in scientific workflows running on the cloud. We present the
design and evaluation of a peer-to-peer approach to help solve
this problem. We compare the performance of our peer-to-peer
file manager with that of two network file systems for storing
data for a typical data-intensive workflow application. Our
results show that while our peer-to-peer file manager performs
significantly better than one of the network file systems tested, it
does not perform as well as the other. Finally, we discuss the
various issues that might have affected the performance of our
peer-to-peer file manager.

Keywords—Cloud computing; scientific workflows; data sharing;
peer-to-peer (P2P); performance evaluation.

I. INTRODUCTION
Workflow applications are being used extensively by

scientists to tackle complex simulations and data-intensive
analyses [1,2,3,4]. Traditionally, large-scale workflow
applications have been run on distributed cyberinfrastructure
such as HPC clusters and grids. With the recent advent of cloud
computing, many scientists are investigating the benefits of
moving their workflow applications to the cloud. This is
because clouds give workflow developers several advantages
over traditional HPC systems, such as root access to the
operating system, control over the entire software environment,
reproducibility of results through the use of VM images to store
computational environments, and on-demand provisioning
capabilities.

One important question when evaluating the effectiveness
of cloud platforms for workflows is: How can workflows share
data in the cloud? Workflows are loosely-coupled parallel
applications that consist of a set of computational tasks linked
via data- and control-flow dependencies [5]. Unlike tightly-
coupled parallel applications such as MPI codes in which
processes communicate directly using network sockets,
workflows typically communicate by writing data to files. Each
task in a workflow produces one or more output files that
become input files to other tasks. In order to function in a
distributed environment, these files must be accessible by all
compute nodes. This can be done by transferring the files
between nodes, or it can be done by using a POSIX-compatible
network file system. Most HPC clusters provide a network file
system that is attached to all the compute nodes, but grids and
clouds typically do not, either because of latency concerns due
to wide-area networks between clusters in the case of grids, or
because of the overhead and complexity of virtualization and

the preference for non-POSIX storage services in clouds (such
as Amazon S3 [6]). In order to function in grid and cloud
environments, workflow systems usually operate by copying
input and output files from a central storage location to the
compute node and back to storage for each job. Needless to
say, this adds substantial overhead because each file needs to
be transferred multiple times (once when it is created, and once
for each time it is used).

An alternative is to cache the files on the compute nodes,
and transfer them directly between nodes rather than passing
them through a centralized storage service. This avoids the
extra transfer, increases the scalability of the system, and
enables workflow management systems to consider locality
when scheduling data-intensive workflows. In this paper we
present the design and evaluation of a peer-to-peer file manager
based on this idea. We compare its performance with that of
two network file systems when storing data for a typical data-
intensive workflow application. We test the scalability of
different storage systems by running the experiments
repeatedly on different number of nodes provisioned from the
cloud.

Our results show that while our P2P file manager performs
significantly better than NFS [7] (a centralized file system) on
the benchmark application, it does not perform as well as
GlusterFS [8] (a distributed file system).

The rest of this paper is organized as follows: Section II
discusses related work. Section III describes the motivation for
peer-to-peer data sharing and provides an overview of the
architecture of our peer-to-peer file manager. Section IV gives
an overview of the execution environment that was set up for
the experiments on Amazon EC2 [9]. Section V provides the
results of various benchmarks we ran to test our peer-to-peer
system and the results of performance comparison between our
system and various shared file systems. Section VI discusses
the various issues that might have affected the performance of
the P2P file manager. Section VII concludes the paper and
outlines our future work.

II. RELATED WORK
Data-intensive workflows encounter various types of data

management challenges. These challenges are examined in [10]
and include data discovery, data provenance, data selection,
data transfer, data storage etc. Our paper provides a peer-to-
peer solution for the problems of data transfer and storage in
data-intensive workflows.

This work is an extension of our previous work where we
compared the cost and performance of several different storage
systems that can be used to communicate data within a
scientific workflow running in the cloud [11]. In this paper we
have extended that work to include a peer-to-peer data sharing
system and used a larger workflow to compare performance.

Yan, et al. have conducted research on peer-to-peer
workflow systems [12]. They developed SwinDeW, a
decentralized, peer-to-peer workflow management system. In
comparison, our work is more focused on optimizing data
movement. Our system is only concerned with the problem of
data sharing in workflow applications and not on the general
workflow orchestration problem.

The problem with centralized servers and data-intensive
workflows was previously investigated by Barker et al. [13].
They proposed an architecture for web services based
workflow orchestration that uses a centralized orchestration
engine with distributed data flow. This solution is similar to our
approach, however, our approach is designed to work with
task-oriented workflows and uses distributed caches to improve
performance instead of planning all data movement and
execution operations ahead of time.

There are many data management techniques for improving
the performance and cost of data-intensive workflows.
Çatalyürek et al. [14] describe a heuristic that models the
workflow as a hypergraph and considers both data placement
and task assignment. Using ratios of the storage capacity and
computing power of execution sites, it generates plans that
distribute the storage and computational loads among the sites
in a manner that reduces the cost associated with file transfers.
Chervenak et al. [15] describe a policy service for data
management that can improve the performance of data-
intensive workflows by giving advice to the workflow system
about how and when to transfer data based on its knowledge of
ongoing transfers, recent transfer performance, and the current
allocation of resources.

III. PEER-TO-PEER DATA SHARING

A. Motivation
Storage system performance is a critical component in the

development of data-intensive applications such as scientific
workflows. When files reside on a central server, it is efficient
to find the location of the file, but the server can be
overwhelmed by a large number of requests for data. Thus,
distributing the files across multiple servers may relieve that
bottleneck, but it may also impose additional overheads in file
discovery and retrieval.

Some of the overheads associated with parallel or
distributed file systems occur because of the consistency
constraints imposed on concurrent file access. These
constraints are not required for workflow files. This is because
workflow data files are write-once—once they are generated,
they are not written to again.

In this paper, we examine a hybrid (P2P) approach, which
does not have such a central bottleneck—all data transfers are
done directly between nodes, the only centralized part of the

system is the index server which can handle loads much greater
than those encountered in workflow applications. (See Section
V). Relying on the write-once property of the target workflow
applications, our P2P approach does not employ these
constraints and is thus much simpler and potentially faster.

B. Architecture
Our peer-to-peer file manager [16] consists of 3

components: a replica index service, a cache daemon, and a
client. The architecture is shown in Figure 1.

Each compute node stores in its local cache copies of all the
files generated by jobs that run on that node, or are accessed by
jobs that run on the node. In order to find input files for a job,
the system uses a centralized replica index server that stores a
list of mappings from each logical file name to a set of physical
locations (URLs) from where a replica of the file can be
retrieved. When a node needs a file that is not in its local cache,
it looks it up in the replica index and retrieves it from one of
the nodes where it is cached. If multiple nodes have copies of
the requested file, then the node to retrieve the file from is
chosen randomly. When a node generates a file, it saves it in
the cache and registers a mapping for it in the replica index.

1) Replica Index Service

There is one replica index server (RIS) per cluster. The RIS
stores mappings from globally unique logical file names
(LFNs) to physical file names (PFNs) where the data can be
retrieved.

The index server is an XML-RPC service written in Python
and supports a few simple operations:

• add(lfn, pfn): Adds an LFN to PFN mapping to
the index.

• lookup(lfn) => pfn[]: Returns a list of PFNs
for the given LFN.

Figure 1. Architecture of Peer-to-peer file manager.

• delete(lfn, pfn): Removes an LFN to PFN
mapping.

2) Cache daemon

The cache daemon runs on each compute node to manage a
local cache of file replicas. It contacts the replica index server
to locate files that are not in its cache, and to update the index
server with mappings for files that are added to its cache.
Cache daemons running on different nodes contact each other
to directly retrieve files that are not in the local cache.

The cache daemon is an XML-RPC service written in
Python that supports these operations:

• get(lfn, path): Retrieve a file identified by the
given LFN (from the local or a remote cache) and store
the contents at a given path in the local file system.

• put(path, lfn): Store the contents of the file at a
given path in the cache and register a mapping with the
index service from the given LFN to a PFN that
identifies the location of the cached replica.

• delete(lfn): Remove any cached replica of the file
identified by the given LFN and remove any mappings
held by the index server that map the given LFN to
PFNs that point to the local cache.

3) Client

The client is a command-line interface to the index server
and the cache daemon. The client performs get, put and
delete commands on the local cache daemon to service
requests made by the application.

IV. EXECUTION ENVIRONMENT
In this section we describe the setup that was used in our

experiments. All the experiments were performed on Amazon’s
EC2 [9] infrastructure as a service (IaaS) cloud.

There are many ways to configure an execution
environment for workflow applications in the cloud. The
environment can be deployed entirely in the cloud, or parts of it
can reside outside the cloud. For this paper we have chosen the
former approach. In this configuration there is a submit node
that orchestrates the workflows and manages the replica index
server, and several worker nodes (compute nodes) that execute
tasks, store data, and run the cache daemon. Both the submit
node and the worker nodes run inside the cloud. The setup is
shown in Figure 2.

A. Software
The configuration of the execution environment is based on

the idea of a virtual cluster [17, 18]. A virtual cluster is a
collection of virtual machines that have been configured to act
like a traditional HPC system. Typically, this involves
installing and configuring job management software, such as a
batch scheduler, and a data sharing system, such as a network
file system. The challenge in provisioning a virtual cluster in
the cloud is collecting the information required to configure the

cluster software, and then generating configuration files and
starting services. Instead of performing these tasks manually,
which can be tedious and error-prone, we created VM images
which have the required software already installed and wrote
shell scripts that used the instance-metadata service provided
by Amazon EC2 to provision and configure the virtual clusters
for this paper.

All workflows were planned and executed using the
Pegasus Workflow Management System [1], which includes
the Pegasus mapper, DAGMan worfklow engine [19] and the
Condor schedd task scheduler [20]. Pegasus is used to
transform a resource-independent, abstract workflow
description into a concrete plan, which is then executed using
DAGMan. The latter manages dependencies between
executable tasks, and Condor schedd manages individual task
execution. Pegasus was modified to support the peer-to-peer
file manager by adding hooks into the Pegasus file transfer
module to support a custom p2p:// URL scheme. These p2p://
URLs are used as LFNs in the workflow to tell Pegasus when
to use the cache daemon client to store and retrieve files.

A single CentOS 5 virtual machine image was used for both
the submit host and the worker nodes, and Pegasus and Condor
were pre-installed on the image. In addition, shell scripts were
added to the image to generate configuration files and start the
required services during the boot process.

B. Resources
Amazon EC2 offers several different resource

configurations for virtual machine instances. Each instance
type is configured with a specific amount of memory, CPUs,
and local storage. Rather than experimenting with all the
various instance types, for this paper only the m1.xlarge
instance type is used. This type is equipped with 8 EC2
Compute Units (4 virtual cores with 2 EC2 Compute Units
each), 15 GB RAM, and 1690 GB local disk storage. A
different choice for worker nodes would result in different
performance metrics. However, an exhaustive survey of all the
possible combinations is beyond the scope of this paper.

Figure 2. Execution Environment.

V. EVALUATION

A. Replica Index Server Throughput
The performance of the replica index server is important

because it has the potential to be a significant bottleneck in the
system. In order to determine if the index server is fast enough,
we ran a benchmark to see how many lookup operations it can
handle per second and compared it to the rate required by a
typical workflow application.

To measure the throughput of the index server we deployed
the server on a dedicated EC2 instance and started several
clients in parallel on a separate EC2 instance. We measured the
total time required to service 1000 requests from each client as
we varied the number of parallel clients from 1 to 16. The
results, shown in Figure 3, indicate that the index server was
able to handle approximately 650 requests per second without
any optimizations.

To determine the query rate required to support workflow
applications we divided the number of entries in the replica
index server (RIS) after completion of a Montage 10 degree
square workflow (described in Section V.C) by the runtime of
the workflow to determine the average number of requests per
second that the RIS would be required to support to complete
this workflow. The results are shown in Table I.

The results indicate that the average number of requests per
second generated by the workflow application used in our
experiments (~10-25 requests/second) is much less than what
the un-optimized index server is capable of supporting (~650
requests/second). We expect that this will be the case for most
workflow applications, however, if the index server becomes a
bottleneck for larger workflows or larger clusters we can try
storing the index entries in a Distributed Hash Table or a
scalable cloud database service such as Amazon SimpleDB
[21].

TABLE I. MEAN REQUESTS PER SECOND FOR THE REPLICA INDEX
SERVER

Number
of

workers

Number of
entries in RIS

Workflow
runtime

Average number of
requests per second

2 63558 6699 9.5

4 76688 4705 16.3

16 87073 3704 23.5

B. Cache Daemon Performance
To test the cache daemon performance we deployed three

VMs on Amazon EC2: one for the replica index server, and
two to run the cache daemon. The cache daemons were
configured to store data on the local ephemeral disks. Using
this configuration we performed several experiments to test the
performance of the put and get operations of the cache daemon.
Also, since the performance of the cache daemon depends on
the I/O performance of the disks where the data is stored, and
the network used to transfer data between the cache daemons,
we also measured their performance to help explain our results.

1) Disk and Network Performance

The performance of the ephemeral disks was measured by
writing and reading 100MB files using the UNIX dd command.
To ensure that the file system cache did not affect the
measurements, the experiment called sync after writing the files
and the disk cache was flushed between the write and read
experiments. Each experiment was performed 100 times and
the mean write performance was determined to be ~38 MB/s
and the mean read performance to be ~109 MB/s. This
asymmetry in write and read performance is likely due to the
well-known “first-write penalty” on Amazon’s ephemeral disks
[11].

The network bandwidth between the two EC2 VMs was
measured using the UNIX netcat (nc) utility. Netcat was used
to send 100MB of data from one EC2 VM to another. The
experiment was repeated 100 times and the average time was
used to compute the bandwidth between the VMs, which was
found to be ~89 MB/s. This value is slightly less than what we
would expect on a gigabit network.

2) Put Operation Performance

Clients call the put operation to add files to the local cache
and register them in the index server. The following actions
take place when the put operation is invoked:

• The client sends a put request to the local cache daemon
specifying the source path to a file to be cached and the
LFN to use when indexing the file.

• The file is added to the local cache.

• The cache daemon sends a request to the index server to
register the LFN.

There are two implementations of the code to add files to
the cache. One implementation copies the file from the source
path to the cache, leaving the source path untouched. The other
implementation moves the file from the source path to the
cache and replaces the source path with a symlink to the file in
the cache.

Figure 3. Throughput of Replica Index Server.

To measure the performance of the put operation we called
put for files varying in size from 0 MB to 100 MB. The
experiment was repeated 100 times for each file size. The mean
response time for the put operation using both the symlink
implementation and the copy implementation is shown in Table
II.

TABLE II. MEAN RESPONSE TIME OF PUT OPERATION IN SECONDS

Implementation 0 MB 1 MB 10 MB 100 MB
copy 0.007 0.009 0.350 4.360

symlink 0.008 0.007 0.008 0.008

As expected, the results show that the symlink
implementation is significantly faster than the copy
implementation and does not depend on the file size. In
addition, this experiment indicates that each cache daemon can
service approximately 125 put operations per second.

3) Get Operation Performance

Clients call the get operation to retrieve files from the local
or remote cache and save them to a local destination path. The
following actions take place when the get operation is invoked:

• The client queries the local cache daemon for the LFN.

• If the file is found in the cache, it is retrieved from the
local cache and made available at the destination path.

• If file is not found in the local cache:

o The local cache daemon queries the replica index
server to find a remote cache daemon that has the
file.

o The local cache daemon requests the file from the
remote cache daemon.

o The remote cache daemon reads the file out of its
cache and transfers it over the network to the local
cache daemon.

o The local cache daemon writes the file to the local
cache and makes it available at the destination
path.

• The local cache daemon registers the cached copy of
the file with the index service

Like the put operation, there are two implementations of the
get operation: one that copies the file from the cache to the
destination path, and one that symlinks the file from the cache
to the destination path.

In the case of a cache hit, the get operation is simply the
inverse of the put operation and therefore has performance that
is nearly identical to the put operation. In order to measure the
worst-case performance of the get operation, the experiment
was set up so that the file was never found in the local cache to
force the local cache daemon to retrieve the file from the peer
node.

The get operation was executed using files ranging in size
from 0MB to 100 MB. Both the mean response time and the

effective throughput (in MB/s) were computed. The effective
throughput was computed by dividing the amount of data
transferred by the response time. We expect that, without file
system caching, the effective throughput will be limited by the
bottleneck in the transfer path, which, base on our earlier disk
and network benchmarks, is writes to the ephemeral disk (~21
MB/s). In order to isolate the effects of the file system cache
we made sure that the cache on the remote node was cleared in
all experiments. In addition, we created another
implementation of the cache daemon that calls fsync() on all
files written to the local cache before returning results to the
client.

The results of this experiment for the copy implementation,
the symlink implementation, and the implementation using
symlinks and fsync are shown in Tables III and IV. All
numbers are the mean of 100 experiments.

TABLE III. MEAN RESPONSE TIME IN SECONDS FOR THE GET OPERATION

Implementation 0 MB 1 MB 10 MB 100 MB
copy 0.016 0.031 0.178 3.951

symlink 0.017 0.033 0.146 1.841
symlink+fsync 0.017 0.073 0.373 3.182

TABLE IV. MEAN EFFECTIVE THROUGHPUT IN MB/S FOR THE GET
OPERATION

Implementation 1 MB 10 MB 100 MB
copy 31.784 56.048 25.310

symlink 30.571 68.734 54.329
symlink+fsync 13.776 26.824 31.423

This data illustrates several important points. First, the

response time for 0 MB files shows that the overhead of the get
operation is ~17 ms (min response time was 15 ms for 0-byte
files). This results in a maximum throughput of ~59 requests
per second (max 67 req/s), which could be a limiting factor in
system performance. This overhead is a result of the three
network requests required to get a file: one to the cache
daemon, one to the index server, and one to the remote cache
daemon. Second, when the effects of the file system cache are
accounted for, the performance for 1 MB files is significantly
less than the average disk bandwidth. This is partially a result
of the system overhead, which is a significant fraction of the
total response time for small files. This is important because
many workflows contain lots of small files.

C. Workflow Performance Comparison
We used an astronomy workflow application, Montage

[23], to compare performance of the peer-to-peer data sharing
approach with the shared file system approach. We picked
Montage, because it was the most affected by the choice of
storage systems in our prior experiments [11].

We compared our P2P system with two different shared file
systems: NFS [7] and GlusterFS [8]. We measured the
makespan of the workflow as we varied the number of worker
nodes from 2 to 16. Makespan is defined as the total amount of
wall clock time from the moment the first workflow task is
submitted until the last task completes. The makespan times
reported in Section V.C.3 do not include the time required to

boot and configure the VM as this is assumed to be
independent of the approach used for data sharing.

1) Benchmark Workflow

Montage [23] is a data-intensive workflow application that
creates science-grade astronomical image mosaics using data
collected from telescopes. The size of a Montage workflow
depends upon the area of the sky (in square degrees) covered
by the output mosaic. A small workflow that illustrates the
structure of Montage is shown in Figure 4. Montage can be
considered to be a data-intensive workflow because it spends
more than 95% of its time waiting on I/O operations and only
5% on computation.

For the workflow performance experiment we created a
Montage workflow that generates a 10-degree square mosaic.
The workflow contains 19,320 tasks, reads 13 GB of input
data, and produces 88 GB of output data (including temporary
data).

2) Network File Systems

NFS [7] is perhaps the most commonly used network file
system. NFS is a centralized system with one node that acts as
the file server for a group of machines. For the workflow
experiments we used the submit node in EC2 to host the NFS
file system. We configured the NFS clients to use the async
option, which allows the NFS server to reply to requests before

any changes made by the request have been committed to disk.

GlusterFS [8] is a distributed file system that supports many
different types of volumes (Distributed, Replicated, Striped and
their combinations.) GlusterFS volumes are logical collections
of one or more bricks where each brick is an export directory
on a node. To create a new volume, one specifies the bricks
that comprise the volumes and the way files would be
distributed on those bricks. We used the distribute
configuration in which files are spread randomly across bricks
in the volume. We exported one directory from each of the
worker nodes and one directory from the submit node to make
up the volume.

3) Results

The performance results for Montage are shown in Figure
5. The results show that both GlusterFS and our P2P system
significantly outperform NFS as the shared file system. This is
a result of the fact that NFS does not scale well as the number
of worker nodes increase because the NFS server becomes a
bottleneck. In comparison, both the P2P system and GlusterFS
improve in performance as the number of nodes increase.
However, neither system has a linear performance increase
because the structure of the Montage workflow contains
several sequential bottlenecks that prevent perfect speedup.
Finally, contrary to our expectations, GlusterFS performs even
better than our peer-to-peer system. The reasons for this will be
discussed in the following section.

VI. DISCUSSION
We had hoped that, by avoiding the shared file system

bottleneck and by making the simplifying assumption of write-
once files, we could improve the performance of data-intensive
workflows. However, using GlusterFS as the shared file system
outperformed our peer-to-peer solution. There are a number of
reasons for this.

Part of the problem is with our implementation. Our
benchmarks show that the data transfer throughput of our peer-
to-peer file manager is not very high (Section V.B), especially
for small files. Because Montage is a very data-intensive
workflow, storage system performance is the limiting factor in
its performance. In addition, the average file in Montage is ~2
MB in size, which is small enough that the overhead of the

mImgTbl

mBackground

mAdd mShrink mJPEG

mProjectPP mDiffFit mConcatFit mBgModel

Figure 4. Task Dependencies in the Montage Workflow.

Figure 5. Performance of Montage using different storage systems.

peer-to-peer system has a large impact on the effective
throughput that can be achieved. In comparison, the GlusterFS
distribute configuration that was used has very low overhead to
locate a file (essentially, it just needs to hash the filename). It
may be possible to reduce overhead in our peer-to-peer system
by optimizing the code or by rewriting it in a more efficient
language.

Another problem may be the lack of locality in file
accesses. Although the tasks are evenly distributed across the
compute nodes according to First-Come, First-Served (FCFS)
scheduling, the data may not be. The critical feature of our
peer-to-peer file manager is that it enables aggressive caching
and replication of files on worker nodes. However, if workflow
tasks are not able to take advantage of that caching because of
data imbalance and the lack of locality-awareness in task
scheduling, then performance will not be as good as it could be.
In the future we plan to investigate data-aware scheduling to
reduce this problem.

Another fundamental difficulty with the peer-to-peer
approach is the inability to do partial file transfers. Whenever a
task needs to read a file that is not present in the local cache,
the whole file is transferred from a remote cache even if the
task only needs to read part of the file. In comparison,
traditional file systems such as NFS and GlusterFS allow
processes to seek and read parts of files without reading all of
the data. In the Montage workflow there are several tasks that
only require header information from the files. In the NFS and
GlusterFS configurations these tasks are able to read only the
portion of the file required while in the peer-to-peer
configuration the entire file is retrieved from the remote cache.
Further work is needed to determine what impact this has on
the total amount of data transferred.

Another point to note is that GlusterFS is a fully distributed
file system. It does not have a central data bottleneck as files
are distributed uniformly across the nodes and transferred
directly between nodes. GlusterFS also avoids the metadata
bottleneck that many file systems have by distributing metadata
storage. For all files and directories, instead of storing
associated metadata in a set of static data structures, it
generates the equivalent information on-the-fly algorithmic-
ally. Because of this, there is never any contention for any
single instance of metadata stored at only one location as each
node is independent in its algorithmic handling of its own
metadata. [24]

Finally, we compared the performance of these storage
systems using only one data-intensive workflow as the
benchmark application. It may be the case that our peer-to-peer
system would perform better relative to GlusterFS on other
applications. In the future we plan to run experiments with a
variety of workflow applications.

VII. CONCLUSION
In this paper, we examined a peer-to-peer approach for data

sharing for workflow applications running on the cloud. We
described the design and implementation of a peer-to-peer file
manager that uses caching to try and improve the performance
of write-once workflow applications in distributed
environments. We expected that the distributed nature of our

solution and the aggressive use of caching would make the
peer-to-peer approach more efficient than using a shared file
system for workflow applications. Although our approach
performed better than NFS, contrary to our expectations it did
not perform better than GlusterFS on our benchmark workflow
application. We discussed the various issues that may have
caused this.

Our investigation suggests several possible routes for future
work. We plan to investigate locality-aware workflow
scheduling techniques that may improve our system’s cache hit
rate. We will also look at scheduling techniques that consider
load balancing (in terms of both I/O and CPU). We also plan to
investigate code optimizations that may reduce the overhead of
our approach. Finally, we plan to evaluate our solution on a
variety of workflow applications to get a broader understanding
of the benefits and drawbacks of our solution.

VIII. ACKNOWLEDGEMENTS
This research was supported by the National Science

Foundation under award OCI-0943725 (STCI). Rohit Agarwal
was supported by the Viterbi-India summer research
experience program, which is funded jointly by the Indo-US
Science and Technology Forum (IUSSTF) and the USC Viterbi
School of Engineering. The use of Amazon EC2 resources was
supported by an AWS in Education research grant.

REFERENCES
[1] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G.

Mehta, K. Vahi, G.B. Berriman, J. Good, A. Laity, J.C. Jacob, and D.S.
Katz, “Pegasus: A framework for mapping complex scientific workflows
onto distributed systems,” Scientific Programming, vol. 13, no. 3, pp.
219–237, 2005.

[2] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T.
Carver, K. Glover, M.R. Pocock, A. Wipat, and P. Li, “Taverna: a tool
for the composition and enactment of bioinformatics workflows,”
Bioinformatics, vol. 20, no. 17, pp. 3045–3054, 2004.

[3] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E.A. Lee, J. Tao, and Y. Zhao, “Scientific workflow management and
the Kepler system,” Concurrency and Computation: Practice and
Experience, vol. 18, no. 10, pp. 1039–1065, 2006.

[4] D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robinson, M.
Shields, I. Taylor, and I. Wang, “Programming scientific and distributed
workflow with Triana services,” Concurrency and Computation:
Practice and Experience, vol. 18, no. 10, pp. 1021–1037, 2006.

[5] E. Deelman, D. Gannon, M. Shields, I. Taylor, “Workflows and e-
Science: An overview of workflow system features and capabilities”,
Future Generation Computer Systems, vol. 25, no. 5, pp. 528-540, 2009.

[6] “Amazon Simple Storage Service (S3)”, http://aws.amazon.com/s3.
[7] R. Sandberg, D. Golgberg, S. Kleiman, D. Walsh, and B. Lyon, "Design

and Implementation of the Sun Network Filesystem", USENIX
Conference, 1985.

[8] "GlusterFS", http://www.gluster.org.
[9] "Amazon Elastic Compute Cloud (EC2)", http://aws.amazon.com/ec2.
[10] E. Deelman and A. Chervenak , “Data Management Challenges of Data-

Intensive Scientific Workflows”, 3rd International Workshop on
Workflow Systems in e-Science (WSES 08), 2008.

[11] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berman, B. Berriman, P.
Maechling, "Data Sharing Options for Scientific Workflows on Amazon
EC2", 22nd IEEE/ACM Conference on Supercomputing (SC10), 2010.

[12] J. Yan, Y. Yang, and G. K. Raikundalia, “SwinDeW—A p2p-Based
Decentralized Workflow Management System”, IEEE Transactions on

systems, man and cybernetics—Part A: Systems and Humans, vol. 36,
no. 5, pp. 922-935, 2006.

[13] A. Barker, J. Weissman, and J. van Hemert, “Eliminating the
middleman: peer-to-peer dataflow”, 17th IEEE International Symposium
on High Performance Distributed Computing (HPDC), 2008.

[14] Ü. V. Çatalyürek, K. Kaya, and B. Uçar, "Integrated data placement and
task assignment for scientific workflows in clouds", 4th international
workshop on Data-intensive distributed computing (DIDC11), 2011.

[15] A. Chervenak, D. Smith, W. Chen, E. Deelman, “Integrating Policy with
Scientific Workflow Management for Data-Intensive Applications”, 7th
Workshop on Workflows in Support of Large-Scale Science
(WORKS'12), 2012.

[16] “mule p2p storage system”, https://github.com/juve/mule.
[17] J. Chase, D. Irwin, L. Grit, J. Moore, and S. Sprenkle, "Dynamic virtual

clusters in a grid site manager", 12th IEEE International Symposium on
High Performance Distributed Computing (HPDC), 2003.

[18] I. Foster, T. Freeman, K. Keahey, D. Scheftner, B. Sotomayer, and X.
Zhang, "Virtual Clusters for Grid Communities", 6th International
Symposium on Cluster Computing and Grid (CCGRID), 2006.

[19] "DAGMan", http://cs.wisc.edu/condor/dagman.
[20] M. Litzkow, M. Livny, and M. Mutka, "Condor: A Hunter of Idle

Workstations", 8th International Conference on Distributed Computing
Systems, 1988.

[21] “Amazon SimpleDB”, http://aws.amazon.com/simpledb.
[22] “Amazon Elastic Block Store (EBS)”, http://aws.amazon.com/ebs.
[23] D. Katz, J. Jacob, E. Deelman, C. Kesselman, S. Gurmeet, S. Mei-Hui,

G. Berriman, J. Good, A. Laity, and T. Prince, "A comparison of two
methods for building astronomical image mosaics on a grid",
International Conference on Parallel Processing Workshops (ICPPW),
2005.

[24] Gluster, Inc., “Gluster File System Architecture”, white paper, October
2010.

