
Combating Workflow Failures with Integrity-based
Checkpoints and Blockchain

1st Omkar Bhide
Indiana University

Bloomington, IN, USA
okbhide@iu.edu

2nd Raquel Hill
Indiana University

Bloomington, IN, USA
ralhill@indiana.edu

3rd Karan Vahi
USC ISI

CA, USA
vahi@isi.edu

3rd Mats Rynge
USC ISI

CA, USA
rynge@isi.edu

5th Von Welch
Indiana University

Bloomington, IN, USA
vwelch@iu.edu

Abstract—Workflow management systems are subject to fail-
ures, including: processor, network congestion, and machine
reboot. Various fault tolerance techniques have been proposed to
address these failures. Data integrity errors also cause workflows
to fail, but little or no attention has been given to integrity faults.
The Scientific Workflow Integrity with Pegasas (SWIP) project
has shown data integrity errors do occur in the wild. These
errors occur when transferring and storing experiment data. The
inability of today's validation mechanisms such as TCP check-
sums and Layer 2 checksums, motivated the SWIP project to
add an extra layer of application layer data integrity verification
using cryptographic hashes. Currently, the SWIP project takes a
checkpoint all approach for integrity data; moving all integrity
data for a task to stable storage. In this paper, we characterize
nodes in workflow graphs based on the graph structure and
propose several integrity-based checkpointing strategies. These
strategies use a node’s properties to determine which nodes to
checkpoint. When failures occur the proposed integrity-based
checkpointing strategies allow us to validate the integrity of data
of preceding workflow tasks and re-use data during workflow
retries. This paper focuses on characterizing workflow graphs to
identify key nodes, thereby reducing the overheads of workflow
retries. We also explore and evaluate the blockchain technology
to securely preserve the integrity meta-data.

Index Terms—eScience, workflows, data integrity, checkpoint-
ing, error recovery, blockchain

I. INTRODUCTION

eScience involves the application of computer technology
to undertake modern scientific investigation, including the
preparation, experimentation, data collection, results dissem-
ination, and long-term storage and accessibility of all ma-
terials generated through the scientific process. Workflow
Management Systems (WMS) help researchers to seamlessly
use distributed resources, like XSEDE [1] and Open Science
Grid [2], without worrying about their integration. WMS also
enable researchers to automate workflow execution, monitor
workflows, and maintain provenance information. As with
any computing infrastructure, the distributed environments that
support WMS are subject to failures, including: processor
failure, numerical exceptions, machine reboot, network con-
gestion, etc [3]. In addition, while executing workflows across
distributed resources, it is difficult to ensure data integrity, i.e.
data was not corrupted in transit or at rest. TCP checksums
have been shown to be too small for modern data sizes [4].
Studies [5] [6] show that between 1 in 16 million and 1 in 10
billion TCP segments will have corrupt data and a correct TCP

checksum. The checksum cannot detect certain errors, like
reordering of 2 bytes, inserting or deleting zero valued bytes,
and multiple errors which sum to zero. Though the chances of
such corruptions that are not detected by TCP checksums are
approximately 0.001 percent, on a Gigabit Ethernet network
that could be as many as 15 packets per second. Moreover
there exist gaps between integrity protections in individual
implementations/technologies within an application (e.g. be-
tween a data transfer and data at rest). Data integrity is crucial
for scientific experiments, since use of corrupt data can lead
to erroneous results. Large scientific experiments are usually
difficult to reproduce and verify. Data integrity assurance for
scientific experiments thus plays a crucial role in the workflow
execution.

Various approaches have been proposed to address fault
tolerance issues in distributed systems [7], [8]. Hwang et
al. [3] categorize these approaches as either workflow-level
or task-level approaches. Workflow-level approaches specify
failure recovery procedures as part of an application’s struc-
ture, and include the use of alternative tasks to handle failures.
Task-level use several techniques, including: retrying, check-
pointing, and replication to address task failures. Current
checkpoint strategies do not consider validating the integrity of
the data that is checkpointed. Their notion of check-pointing
moves output data of all or some completed tasks to stable
storage [9], thus allowing failure recovery or retries to begin
by reading the output of prior tasks that the failed task depends
on. These checkpoint strategies do not consider integrity errors
that may occur in stable storage or during the transmission of
data between storage devices and compute nodes.

In this paper, we studied workflow failures in the Pega-
sus WMS [10]. The Pegasus project encompasses a set of
technologies that help workflow-based applications execute
in a number of different environments including desktops,
campus clusters, grids, and cloud. Pegasus bridges the scien-
tific domain and the execution environment by automatically
mapping high-level workflow descriptions onto distributed
resources. Pegasus has a number of features that contribute
to its usability and effectiveness, like portability, performance,
scalability, provenance, data management, reliability and error
recovery. Error handling in Pegasus tries to recover by retrying
tasks, retrying the entire workflow, providing workflow-level
check-pointing, re-mapping portions of the workflow, trying



alternative data sources for staging data, and, when all else
fails, providing a rescue workflow containing a description of
only the work that remains to be done. In this paper, we take
a check-pointing and retry approach to address failures. We
assume that all workflow task output is check-pointed; stored
in stable storage. We focus specifically on check-pointing task-
level integrity data to facilitate task retries. Such integrity
data includes hashes or checksums of a tasks input and
output files. We analyze the characteristics of the Workflow
task graph to determine how best to reduce the overhead
of our integrity-based check-pointing scheme. Integrity meta-
data like, checksums and hashes, are subject to similar data
corruption risk while in transfer or stored. To avoid this
chicken and egg problem, we propose the use of blockchain
technology to securely preserve the integrity meta-data.

Rest of the paper is organized as follows. Section II un-
derlines the related work. Section III provides the taxonomy
of workflow nodes with respect to workflow retries, along
with structural analysis of five different real world workflows.
Section IV, describes the methodology used to conduct the
experiment. Section V, describes the basics of Blockchain
technology and our implementation of a blockchain smart
contract. Section VI, provides the results and analysis of
our experiment, followed by conclusions and future work in
Section VII.

II. RELATED WORK

Checkpointing has been studied a great deal in distributed,
parallel systems as an efficient fault tolerance technique, espe-
cially for long-running applications, like scientific workflows.
Checkpointing approach reduce the workflow retry overheads.
Hwang et al. [3] provide a failure handling framework for
workflows executing within a grid environment. They use
checkpointing as well as other failure recovery techniques, and
measure the expected execution time of workflow tasks under
failure conditions. Li Han et al. [11] propose a checkpoint-
some strategy for Minimal Series-Parallel Graphs (M-SPGs),
which are relevant to many real-world workflow applications,
including the Pegasus WMS. They propose a task schedul-
ing algorithm that leverages the M-SPG structure to assign
sub-graphs to individual processors, and they use dynamic
programming to determine how to checkpoint the subgraphs.
Their approach prevents cross over dependencies, which occur
where Task T1 fails, but it is not checkpointed, and T2
depends on T1. Our work complements these failure recovery
schemes by proposing strategies for creating, checkpointing,
and maintaining integrity data for workflow tasks.

Albert et al. [12], discuss error tolerance of complex net-
works within the context of two network graph structures:
exponential and scale-free. The exponential network is ho-
mogeneous, where most nodes have approximately the same
number of links. The scale-free network is inhomogeneous,
which means that the majority of the nodes have one or two
links, and only a few nodes have a large number of links.
They show that these scale-free graphs are robust against
node failures. We present workflow graphs that have this same

inhomogeneous property, but inhomogeneity does not translate
to robustness for these workflow graphs. More specifically,
workflow nodes that have a high in-degree depend on the
successful completion of the tasks that precede them. If any
preceding tasks fail, these nodes with high in-degree may be
delayed indefinitely.

Though prior checkpointing techniques [3], [9] reduce
workflow retry overheads, they don’t necessarily consider
integrity validation of preserved checkpoint data. The check-
point data is subject to data corruption in storage and during
transfer, and therefore need integrity protections. Moreover,
the integrity meta-data itself should be preserved securely.
Edoardo Gaetani et al. [13] present a blockchain based
database for cloud environments which assures data integrity.
They discuss the research challenges and benefits of using the
latest blockchain technology. The authors mention that using
the blockchain to face data integrity threats seems to be a
natural choice, but its current limitations of low throughput,
high latency, and weak stability hinder the practical feasibility
of any blockchain-based solutions. Azaria et al. [14] propose
a framework for using blockchain to store medical records,
and discuss the guarantees for data integrity privacy. Liang
et al. [15] harness blockchain 's data integrity and immutable
properties, and propose to use of blockchain for preserving
provenance information. Similar to prior work, we propose
to use blockchain technology to store our integrity meta-data
because it provides essential security properties that support
the validation of such data.

III. TAXONOMY OF WORKFLOW NODES

A scientific workflow, is a high-level specification of a set of
tasks and the dependencies between them that must be satisfied
in order to accomplish a specific goal. Users can specify the
steps and dependencies within a workflow, either abstractly
or concretely. This can be done in various ways like, DAG-
Man [16], DAX. The abstract workflow can be represented
using Directed Acyclic Graph in Extensible Markup Language
(XML) format i.e. DAX, which researchers can generate using
any type of scripting language. This abstract workflow is then
transformed into a concrete workflow representation for un-
derlying execution by the workflow management systems. The
resulting graph is most commonly represented as a Directed
Acyclic Graph (DAG).

A graph is a collection of vertices and edges, where the
vertices are connected in pairs by edges. In the case of a
directed graph, each edge has an orientation, from one vertex
to another vertex. A path in a directed graph can be described
by a sequence of edges having the property that the ending
vertex of each edge in the sequence is the same as the starting
vertex of the next edge in the sequence. A path in a directed
graph essentially forms a cycle if the starting vertex of its
first edge equals the ending vertex of its last edge. A directed
acyclic graph is a directed graph that has no cycles, and has
orientation for each edge. Fig. 1 depicts an example DAG
graph.



Our workflow graphs may be characterized as inhomoge-
neous, which means that the majority of the nodes have one
or two edges, and only a few nodes have a large number
of edges [12]. More specifically, only a few nodes within
the workflow graph have a large in-degree. While Albert
et al. [12] show that this inhomogeneous property creates
network communications graphs that have redundant paths
and are resilient to failure, this same property creates failure
vulnerabilities in our directed workflow graphs. Therefore, in
this section, we define a taxonomy of nodes that characterizes
the failure vulnerabilities in our workflow graph.

Not all workflow graphs are identical, similarly some nodes
in a graph are structurally more crucial than others. We analyze
the characteristics of some real world workflow task graphs,
and create a taxonomy of nodes. We use this taxonomy to set
priorities and to develop strategies for checkpointing integrity
data. A detailed description of these strategies is provided
in Section IV. The objective of the proposed strategies is to
reduce the overall overhead of workflow failure recovery by
maintaining integrity data for key nodes within the workflow
graph.

Fig. 1 depicts a sample workflow DAG or dependency
graph. Using this example DAG, we explain the taxonomy
of nodes with respect to integrity based workflow retries. This
taxonomy will be later used to evaluate actual DAGs using
different strategies, discussed in next section.

• Impactful Nodes:
A node is impactful in terms of workflow retries if its out-
degree is greater than one, which suggests that its output
files are being used by two or more children. Securely
preserving integrity meta-data is crucial for an impactful
node. For example, in Fig 1. A is an impactful node, if
any of its children (B,C,D) fail they can securely re-use
the stored output data by validating it using the preserved
integrity meta-data. This demands that A’s fine-grained
integrity data be preserved, enabling its children to
validate their subset of A’s output, for e.g. B uses subset
of files (f3, f4) from A’s output files (f1, f2, f3, f4, f5, f6).

• Vulnerable Nodes:
A node is vulnerable to workflow failures if its in-degree
is greater than one, which suggests that its depends on
multiple parents for their output. Since a vulnerable
node takes data from multiple parents, it can be argued
that it processes large amounts of data, thus requiring
considerable computing resources, including large data
transfers. Given the integrity failures that are associated
with transferring large data files, at a minimum, coarse-
grained integrity meta-data should be preserved for
vulnerable nodes. For example, node E is a vulnerable
node, and requires preserving integrity meta-data for all
of its output files.

• Intermediate Nodes:
Intermediate nodes are the predecessors of a vulnerable
node. Failure of any of these intermediate nodes delays

or prevents the execution of its vulnerable child. For
example, nodes B,C,D are intermediate nodes and node
E is a vulnerable node. Failure of any of the intermediate
nodes affect the vulnerable child node. To enable
workflow retries, we recommend securely preserving
integrity meta-data of each intermediate node.

• Normal Nodes: A normal node is any node which is not
impactful, vulnerable or intermediate. These nodes are
mostly serialized with in-degree and out-degree of one.

Having defined the taxonomy of nodes, its important to
note that workflow nodes can have overlapping classifications.
In other words, a node can be impactful, vulnerable and/or
intermediate at the same time. In such cases we define a
precedence, where impactful nodes have precedence over all
other nodes and intermediate nodes have precedence over
vulnerable nodes and normal nodes. This precedence is used
in the strategies described in Section IV.

Fig. 1: Example workflow dependency Graph with output files
for each node

Pseudo-code 0: Pre-processing

DG← Dependency graph of the input DAG
for i in range (0, n) do

if DG[i].out-degree > 1 then
DG[i].label(’impactful’)

else if DG[i].in-degree > 1 then
DG[i].label(’vulnerable’)
pred← DG[i].predecessors()
for j in pred do

DG[j].label(’intermediate’)
else

DG[i].label(’normal’)

We apply this taxonomy to some real world synthesized
workflows running on Pegasus, namely Montage [17], LIGO
[18], CyberShake [19], Sipht [20], Epigenomics [21]. We
analyze the DAGs of these scientific experiments, and evaluate
the structure of the graph with respect to node failures and
workflow retries. We use the Pseudo-code 0 depicted below,
to pre-process the DAG file and label the nodes based on the
taxonomy described earlier. The pre-processing step takes a
workflow dependency graph as input, which is parsed from the



actual workflow DAG file. It then traverses all the nodes, and
for each node, it checks if the node is impactful, vulnerable
and/or intermediate. If a node has out-degree > 1 then it’s
marked impactful, if it has in-degree > 1 then it’s marked
as vulnerable, and all the predecessors of a vulnerable node
are marked intermediate. Fig. 2 provides a color legend for
the workflow nodes. Subsequent text discusses the structure
of each workflow DAG, along with the description of each
application.

Fig. 2: Legend for workflow node colors

A. Montage Workflow

Fig. 3: Montage Workflow (25 Nodes)

The Montage application is created by NASA/IPAC which
stitches together multiple input images to create custom mo-
saics of the sky. Fig. 3 shows the synthesized workflow
dependency graph, which resembles the actual workflow graph
used for the Montage scientific experiment. Referring to the
legend in Fig. 3, we see that the nodes in the workflow have
been identified as being impactful, intermediate, vulnerable or
normal nodes. The workflow starts with nodes (0-4), which
feed in to nodes 6-13, as well as nodes 16-20. Node 14
collects all the output data from previous nodes and passes
it node 15. Nodes 0-4 and 15 are marked impactful since they
have out-degree greater than one. Nodes (6-13) are marked
intermediate since they are predecessors of a vulnerable node
14. Similarly, nodes (16-20) are marked intermediate since
they are predecessors of a vulnerable node 21. Nodes 22, 23
and 24 are linearly executed and marked as normal nodes.

Fig. 4: Inspiral Workflow (30 Nodes)

B. LIGO Inspiral Workflow

LIGO’s Inspiral Analysis workflow is used to generate and
analyze gravitational wave-forms from data collected during
the coalescing of compact binary systems. Depicted in Fig.
4, the workflow starts with six different nodes (0-6) which
feed data to nodes (7-13) respectively. Node 14 then collects
outputs of nodes (7-13). Since node 14 has in-degree of greater
than 1, it is vulnerable, which makes it’s predecessors (nodes
7-13) intermediate. However, node 14 is also impactful, since
it’s out-degree is greater than 1. Node 14 feeds data to nodes
(15-21), which further flow to nodes (22-28) respectively.
Node 29 collects all the data from nodes (22-28), thus making
it vulnerable and nodes (22-28) intermediate. You might notice
that node 14 is impactful as well as vulnerable, but since
impactful nodes take precedence over vulnerable nodes, it
is marked red. Nodes (0-6) and (15-21) are marked normal
nodes.

C. CyberShake Workflow

Fig. 5: CyberShake Workflow (30 Nodes)



The CyberShake workflow is used by the Southern Califor-
nia Earthquake Center to characterize earthquake hazards in a
region. Depicted in Fig. 5, this workflow graph begins with two
nodes 2 and 13, which are impactful with out-degree greater
than 1. Node 2 feeds into nodes (3,5,7,9,11), lets call this set
A. Node 13 feeds into nodes (14,16,18,20,22,24,26,28), lets
call this set B. Node 1, collects subset of data from each of
nodes in set A and B. With in-degree greater than 1, node 1 is
treated as vulnerable node. Each node from set A and B also
feed data to a node in (4,6,8,10,12,15,17,19,21,23,25,27,29),
lets call it set C. Since each node in set A and B has an out-
degree greater than 1, they are all treated as impactful. Node
0, collects data from all nodes in set C, making it a vulnerable
node. Note that there are no normal nodes in this workflow.

D. Epigenomics Workflow

Fig. 6: Epigenomics (24 Nodes)

The epigenomics workflow created by the USC Epigenome
Center and the Pegasus Team is used to automate various
operations in genome sequence processing. This is yet another
unique graph, depicted in Fig. 6, which begins with node 0,
which feeds data to node (1-5), making it a impactful node.
Each of the nodes in (1-5) continue serial execution marked as
normal nodes e.g. 1-6-11-16. Node 21 collects data from nodes
(16-20), making it a vulnerable node, treating nodes (16-20)
as intermediate. Nodes 22 and 23 further execute serially.

E. Sipht Workflow

The Sipht workflow, from the bio-informatics project at
Harvard, is used to automate the search for untranslated RNAs
(sRNAs) for bacterial replicons in the NCBI database. The
workflow graph for this experiment, depicted in Fig. 7, starts
with nodes (18-21), which feed data to node 22. Since node
22 has in-degree greater than 1, it is a vulnerable node. This
implies node (18-21) are intermediate. However, node 22 feeds
data to multiple nodes, thus making it impactful as well.
Node 26, depends upon nodes 22 and 23, thus making it
vulnerable and node 23 an intermediate node. Similarly, node

Fig. 7: Sipht Workflow (29 Nodes)

28 depends upon nodes (24-27) and nodes (0-17) making
it a vulnerable node, and nodes (24-27) intermediate nodes.
Notice that node 26 is vulnerable as well as intermediate, but
is marked yellow, since intermediate nodes take precedence
over vulnerable nodes. Similarly, node 0 is vulnerable as well
as intermediate node.

F. Structural Analysis Overview

Fig. 8: Graph Characterizations

Along with above mentioned graphs, we performed struc-
tural analysis of larger versions of these workflow graphs,
which includes an increase in the number of nodes. Fig. 8
depicts a table, which provides the percentage of different
nodes in each of the analyzed graphs. We can see that, with the
increase in number of nodes, the node taxonomy percentages
more or less remain the same. For example, in all four versions
of Montage workflow, we observe that a large percentage of
the graph nodes are vulnerable, followed by impactful nodes,
followed by normal nodes, with least number of intermediate
nodes. This suggests that, the workflow graph structure of the



scientific experiments more or less, remains the same even
with increase in number of nodes and data processed.

IV. METHODOLOGY FOR PRESERVING INTEGRITY
META-DATA

A. Need to securely preserve integrity meta-data

We know that data gets corrupted at rest and during
transfers [22] [23] [24]. These integrity failures motivated
the community to introduce integrity validation checks using
cryptographic hashes. However, this integrity meta-data is
subject to same data corruption issues at rest and during
transmission. Keeping in mind the use-case for error recovery
during workflow retries, it’s of paramount importance to assure
integrity of the integrity meta-data itself. Traditionally, such
meta-data is stored on the users/researcher’s local storage or
on cloud storage. There has been data corruption cases for data
stored in cloud [25], which raises the question: what is the best
way to securely preserve the integrity meta-data? We evaluate
the use of blockchain technology as a possible solution for
this problem, later in Section V.

B. What and how much to preserve?

We use the workflow graph structure characteristics to
determine which node’s integrity meta-data is to be preserved,
and its granularity. We intend to reduce three different costs
associated with workflow retries - blockchain storage costs,
blockchain processing costs and validation costs. Storage
cost is the cost in United States Dollar (USD) for securely
preserving the integrity meta-data. Processing cost, is the
time (in seconds) required to preserve the integrity meta-data.
Validation cost, refers to the overhead of network data transfers
required for validating a node’s input data. In this section, we
present four strategies for check-pointing integrity meta-data.
The first two strategies are naive because they treat all nodes
the same and do not leverage the node taxonomy to distinguish
the treatment of nodes. Strategy one, stores granular integrity
information for all the nodes, as depicted in pseudo-code 1.
This strategy enables validating each and every output file in
the workflow individually. However, this increases the storage
and processing costs of preserving the integrity meta-data.

Pseudo-code 1: Strategy 1 - Workflow Execution

Workflow execution starts
for node n in DAG do

input← input data file(s)
if Validate(input) then

Execute the node tasks
Preserve(PerHash(output))

else
Retry node n for times
if (If all retries fail) then

Generate a rescue DAG
Re-start workflow

Another basic strategy would be to preserve coarse grained
integrity meta-data for all the nodes, as depicted in pseudo-

code 2. This method reduces the storage and processing costs
of preserving integrity meta-data since, only one hash per node
would be preserved. However, it increases the validation costs
drastically, since unnecessary files transfer would be required
to validate the composite hashes.

Pseudo-code 2: Strategy 2 - Workflow Execution

Workflow execution starts
for node n in DAG do

input← all input data file(s)
if Validate(input) then

Execute the node tasks
Preserve(CompositeHash(output))

else
Retry node n for times
if (If all retries fail) then

Generate a rescue DAG
Re-start workflow

Pseudo-code 3: Strategy 3 - Workflow Execution

Workflow execution starts
for node n in DAG do

input← input data file(s)
if Validate(input) then

Execute the node tasks
if DG[n].label == impactful then

Preserve(PerFileHash(output))
else

Preserve(CompositeHash(output))
else

Retry node n for times
if (If all retries fail) then

Generate a rescue DAG
Re-start workflow

We try to devise a non-trivial strategy to tackle the trade
off between efficient error recovery and overhead costs.
Pseudo-code 3, presents our third strategy. Once the workflow
DAG is pre-processed using pseudo-code 0, the workflow
starts execution within the Workflow Management System.
Each node n follows the steps within the loop to preserve
and validate integrity meta-data. The node collects its input
data, either from parent nodes or from the user (if its the root
node). It then checks if the input data has not been corrupted
while being stored or transmitted. In case of the root node,
the user provides the initial inputs along with it’s integrity
meta-data i.e. cryptographic hashes. For all other nodes, when
a parent generates outputs, its integrity meta-data is securely
preserved. The function, V alidate(input) will retrieve the
appropriate integrity meta-data and validate the inputs. If
it is successful, the node proceeds with its task execution,
and generates its output files. The node’s label determines
”what integrity meta-data is preserved?”. If the current node
is labelled as a ’impactful’ node during pre-processing, we



generate separate hashes for each of the output files, using
PerF ileHash(output). These individual hashes are then
securely preserved. If the current node is anything other than a
impactful node, i.e. if it’s a non-impactful node, we generate
a single composite hash of the output. This is achieved
by hashing together the separate file hashes. This single
composite hash of the output is then securely preserved. Let’s
take a simple example of a graph from Fig. 1 and walk-
through the workflow execution process, using pseudo-code 3:

1) Node A from Fig. 1, is a impactful node, and thus
all its five output files (f1, f2, f3, f4, f5) are hashed
(hash(f1), hash(f2), hash(f3), hash(f4), hash(f5)) and
preserved separately.

2) Node B takes its inputs (f1, f2) and performs integrity
validation using the preserved hashes for (f1, f2). Lets
assume the validation is successful, node executes its
tasks, and generates output files (f6, f7). Since node B
is non-impactful, it generates a composite hash of its
output files, hash(hash(f6), hash(f7)).

3) Node C validates its inputs (f3, f4) and upon success,
executes its tasks and generates output file (f8). Since
node C is non-impactful it generates a single composite
hash of its output and preserves it.

4) Node D takes its input file (f5), and runs integrity
validation. Lets say, due to data corruption during file
transfer or some unknown reasons the validation fails.
In this case, the WMS retries the validation for several
times. Upon failure of each retry, the workflow is aborted
and a rescue DAG is generated which depicts the state
of the workflow (Success: A, B, C; Failure: D; Pending:
E).

5) When the workflow is re-started using the rescue DAG,
it begins with node D. This time around, let’s say the
validation of (f5) is success-full and node D executes
its tasks. It generates outputs (f9, f10) and generates
a composite hash of the outputs being a non-impactful
node.

6) Node E takes the inputs from B (f6, f7), C (f8) and
D (f9, f10). It validates the inputs one-by-one, and
upon success, executes its tasks and generates out-
puts (f11, 12, f13). Since its a non-impactful node, it
generates a single composite hash of its output files,
(hash(hash(f11), hash(12), hash(13))) and securely
preserves it.

Strategy 3, takes a conservative approach towards node
failures, and thus preserves coarse-grained integrity meta-data
at a minimum for all the nodes, which saves on the storage
and processing costs of securely preserving integrity meta-
data. Impactful nodes are treated differently by preserving
fine-grained integrity meta-data, which saves on the validation
costs.

Pseudo-code 4, illustrates our fourth strategy, which pre-
serves a hash of each output file for impactful nodes. It
preserves a single composite hash of output file hash(es) for

Pseudo-code 4: Strategy 4 - Workflow Execution

Workflow execution starts
for node n in DAG do

input← input data file(s)
if (Validate(input)) then

Execute the node tasks
if (DG[n].label == ’impactful’) then

Preserve(PerFileHash(output))
else if (DG[n].label == ’vulnerable’) then

Preserve(CompositeHash(output))
else if (DG[n].label == ’intermediate’) then

Preserve(CompositeHash(output))
else

Preserve none
else

Retry node n for times
if (If all retries fail) then

Generate a rescue DAG
Re-start workflow

vulnerable and intermediate nodes. It preserves no integrity
meta-data for normal nodes, which implies that, if a normal
node fails, workflow execution must re-start from the nearest
impactful, vulnerable or intermediate ancestor. Thus, this
strategy saves on the storage and processing costs by not
preserving any integrity meta-data for the normal node output
data. However it also increases the workflow failure recovery
overhead, if any of the normal nodes fail.

C. Where to preserve?

As described earlier, the integrity meta-data itself can be
subject to data corruption during transfer and at rest. This
is important since, if integrity meta-data is corrupted, there
is no way to determine whether the meta-data or actual data
is corrupt. Without the needed integrity assurance, the failed
tasks would require re-running. In the worst case, if both the
data and meta-data are corrupted and validate successfully, the
data corruption would go unnoticed, as discussed in the case
of TCP checksums. Possible solution to this chicken-and-egg
problem is to store the hashes in a decentralized environment
which is immutable and easily accessible. Third party cloud
storage providers like Google Drive and Amazon S3 are
available, which can be used along with access permissions
to store the hash meta-data, however this involves trusting
the third party. Moreover, studies have shown that data on
the cloud is also subject to data corruption [25]. Alternative
solutions include, using the decentralized immutable ledger
called Blockchain, which eliminates the use of trusted third
party. Blockchain is the newest of technologies which pro-
vides a public ledger which is immutable and provides data
integrity by design. Though blockchain smart contract storage
is immutable, it can be openly accessed by the public. This
also provides the general public, a well documented and easy
way to access and verify scientific experiment data for re-use,
verifying provenance and experiment reproducibility.



V. BLOCKCHAIN BASICS AND IMPLEMENTATION

Blockchain is a publicly shared database, consisting of a
ledger of transactions. The ledger keeps track of data and
its ownership. This data can be of any type e.g. currency,
inventory, intellectual property, media, records etc. Each ma-
chine running the blockchain protocol is called a node, and
it maintains a copy of the ledger. Blockchains eliminate the
problem of trust that affect other databases, since it provides
full decentralization, extreme fault tolerance and independent
verification. In an Ethereum network, blockchain transactions
refer to the interactions between accounts in a blockchain
network. Accounts identify entities such as human personas,
mining nodes and software agents/smart contracts. Accounts
use public key cryptography to sign and authenticate a trans-
actions origin. There are two types of Ethereum accounts,
externally owned accounts (EOA) and smart contract accounts
which store programs and provides services.

These account entities have state; accounts have a balance,
while contracts have both balance and storage. The state of all
accounts is updated with each block, and provides the state of
the Ethereum network. Smart contracts specify the code in a
contract account. Contract accounts only perform an operation
when instructed to do so by an EOA. Transactions are stored
in blocks on the blockchain, and once a block is placed on the
blockchain, it cannot be changed and is thus immutable. On a
public blockchain, anyone can read or write data. Transaction
history of these reads/writes becomes a part of the blockchain
and thus readily available for verification. Reading data is
free but writing to the public blockchain is not. This cost,
known as gas and priced in ether, helps to discourage spam
and pays to secure the network. Ether is measured in Gwei,
where 1 Ether of gas is 1,000,000,000 Gwei. Smart contracts
can accept and store Ether, data, or a combination of both.
Using the logic programmed into the contract, it can distribute
that ether to other accounts or even other smart contracts.
These Smart contracts are written in a language called Solidity.
Solidity is statically typed, and supports inheritance, libraries,
and complex user-defined types, among much else. Solidity
syntax is like JavaScript. In the next sub-section, we describe
our initial approach of using Ethereum blockchain to securely
preserve integrity meta-data.

A. Pegasus Integrity Smart Contract

We implemented a Ethereum blockchain smart contract,
to evaluate the storage and processing costs of using
blockchain to securely preserve integrity meta-data. The
overall objective of this experiment is to better understand
the storage and processing costs of preserving workflow
integrity meta-data on the blockchain. We opted to use
the Ethereum test network called Ropsten [26] for our
development and experimentation. It closely resembles the
Ethereum main network, without the need to buy real cryp-
tocurrency. We deployed a simple smart contract called
Swipeth on the Ropsten test network with the address:
0x921cc22021e5caec11322348059abf2efa3233b0, which sim-
ply stores a key-value pair, each 32 bytes long. The key con-

tains the Pegasus workflow id and the value represents a single
cryptographic hash. This contract exposes two functions, Get
and Set which are used to set the value and retrieve the
values from the blockchain. We offer three increasing levels
of financial incentives to the blockchain miners: Safe Low
(low price - slow speed), Standard (average price - normal
speed), and Fast (high price - fast speed). The Gas prices are
considered based on the current Ethereum network status [27].
We evaluate 30 transactions to store integrity meta-data on
the blockchain using three different gas prices, and provide
average the timings in Fig. 9. As shown in the figure, using
highest gas price of 9 Gwei, the average time to store a hash on
the blockchain is 29.22 seconds for the ropsten test network.

Fig. 9: Blockchain - Processing Cost (one hash)

Fig. 10 shows the cost analysis of using blockchain to store
integrity meta-data. Transaction fee is the Gas units spend
per transaction multiplied by Gas price specified. The Gas
prices are considered based on the current Ethereum network
status [27]. As mentioned earlier, Gas price affects how fast
the transaction is mined, and thus affects the processing cost
overhead. Gas units estimates are provided by the blockchain
API, based on the smart contract complexity. Pegasus smart
contract requires 39019 gas units. Our experiment shows that
using higher Gas price of 9 Gwei, the average transaction fee
to store a composite hash on the blockchain is 0.187 USD,
which is minuscule.

Fig. 10: Blockchain - storage cost (one hash)

VI. RESULTS AND ANALYSIS

Using the structural analysis of the five scientific workflows
from Section III, and the storage and processing costs of
preserving integrity meta-data on blockchain from Section
IV, we compare the total overhead costs the four different
strategies, with respect to the five example graphs. Fig.
11 provides the comparison of overhead costs. Below we
also discuss the validation costs for each strategy, however
quantifying the actual validation costs is part of our future
work, which involves simulating the workflows, integrity
validations and network transfers.



Fig. 11: Blockchain storage and processing overheads

Fig. 11 provides the storage and processing costs for
preserving integrity meta-data on the blockchain, as well as
validation costs for each of the different strategies. We assume
that each node generates 10 output files. This is certainly not a
realistic assumption, and the number of files generated would
vary drastically in real scenarios, however this experiment
provides valuable insights of how different strategies compare.
Referring to Fig. 9, we consider paying 9 Gwei and 29.22
seconds to store a single hash to calculate the overhead. Also,
referring to Fig. 10, we consider the cost of storing to be
0.187 USD based on gas price of 9 Gwei. Thus, we know
that we can store a single hash on the blockchain with 0.187
USD and within 29.22 seconds. We use this data to compute
total overheads for each strategy. Strategy used, determines
the number of hashes we are preserving. Strategy one dictates
that we preserve a hash for each file of all nodes. Strategy
two dictates that we preserve one composite hash for each
node. Strategy three dictates that we preserve a hash per file
for impactful nodes, and a composite hash for each non-
impactful node. Strategy four, dictates that we preserve a
hash per file for impactful nodes, a composite has for each
vulnerable or intermediate node, and preserving nothing for
the normal nodes. The total number of nodes preserved for
different strategies are then multiplied by 0.187 to get the
total cost overhead, and multiplied by 29.22 to get the total
processing overhead. Let us walk through the process for the
montage workflow. The Montage workflow with 25 nodes, has
6 impactful nodes, 14 intermediate nodes, 2 vulnerable nodes
and 3 normal nodes. Reiterating the assumption that each node
generates 10 output files. Using strategy 1, we will preserve a
hash for all files of all nodes i.e. 250 hashes (25 * 10). Using
strategy 2, we preserve a composite hash for each node i.e. 25
hashes (25 * 1). Using strategy 3, we get 79 hashes [(6*10)
+ (19*1)]. Using strategy 4, we get 76 hashes [(6 * 10) + (14
* 1) + (2 * 1) + (3 * 0)].

Validation costs, as described earlier, refers to the overhead
of network transfers required to validate the node’s input data.

Based on the strategy used, the validation cost is largely
affected. For example, referring to Fig. 1, if node A preserves a
composite hash of its output files, node B would need to obtain
files (f3, f4, f5) in addition to (f1, f2) in order to validate the
composite hash. On the contrary, if node A preserves a hash
per output file, node B would just obtain the required (f1, f2)
files and validate them individually. These unnecessary file
transfers increase the overall workflow run-time, especially if
there are large number of non-impactful nodes in the workflow.
While calculating the validation costs, we assumed each file to
be 1 Gb, and network bandwidth of 1 Gbps for file transfers.
We use a random number generator function in Python called
randint(0, 10) [28] to randomly assign number of input files
to each of the nodes in the workflow graph, in the range
1 to 10. Based on the assumptions and randomly assigned
input files, we then calculate the time required for each node
to collect the required input files and validate them. Fig. 11
depicts the total validation costs for different workflows using
different strategies. In case of strategy four, children of normal
nodes don’t validate their input files.

In case of failures, the node has to be retried. We try to
depict the workflow retry overhead for failures using two
variables. We use the variable N to denote longest chain of
normal nodes. For e.g. N is 3 for workflow in Fig. 6. We
use the variable C to denote the average computation costs of
the node’s tasks. Workflow retry overhead column in Fig. 11
depicts the maximum retry overhead per failure for different
strategies. For strategies one to three, the maximum retry
overhead per failure is the cost to retry the failing node’s tasks
i.e. C. In case of strategy four, we assume worst case scenario
where the longest chain of normal nodes fail i.e. N . Thus
maximum workflow retry overhead would be the computation
cost of each of the normal nodes in the chain ie. N ∗ C.

Looking at the table, it is clear that strategy one has the
highest storage and processing costs, and the lowest validation
costs for all the five workflows. Though the figures appear
small, note that these workflows are synthesized smaller ver-
sion of the actual larger workflows with several thousand nodes
and larger data-set. Strategy 1 won’t be a scalable solution, as
the blockchain storage and processing costs increase linearly
with data files. On the contrary, Strategy 2 has the least
storage and performance overhead costs of all the strategies,
which makes it scalable in terms of storage and processing
costs, however it drastically increases the validation costs.
Strategies 3 and 4 try to balance the pros and cons of strategies
1 and 2. Strategy 3, considerably reduces the storage and
processing costs compared to strategy 1 and reduces the
validation costs compared to strategy 2. Moreover, since every
node at the least preserves a composite hash, in case of
failure, the workflow can be re-started from the failing node,
by validating the data using the composite hash. Thus the
workflow retry overhead is minimal i.e. C. Strategy 4, saves
a bit more on the storage and processing costs, by taking a
less conservative approach towards node failures, compared
to strategy 3. It doesn’t preserve any integrity meta-data for
normal nodes. Validation costs are comparable to strategy



3. However, failure of any normal node, would require re-
starting the workflow from the nearest impactful, vulnerable or
intermediate node. This affects the potential workflow retries
overhead costs i.e. N ∗ C. Thus, strategies 3 and 4 balance
the trade-off between storage-processing costs and validation
costs, however, strategy 4 introduces additional workflow retry
costs compared to other strategies. These four experimental
strategies provide a good basis to explore new parameters in
taxonomy and new strategies. We note various research topics
for future work in the next section, and conclude the paper.

VII. CONCLUSION AND FUTURE WORK

This paper shows how the structure of the workflow graph
affects error recovery, enabling reduction in overhead costs of
securely preserving integrity meta-data for workflow retries.
We evaluate five different scientific experiments and studied
their graph structure. We also experiment the use of blockchain
technology as a way to securely preserve integrity meta-data,
by implementing a blockchain smart contract and evaluating
the associated costs. Finally we provide analysis of how the
graph structure can be used to reduce the overhead costs of
preserving integrity meta-data and validation costs.

As part of our future work, we would like to generate
probabilistic models for node failures and then quantify the
overheads by simulating a workflow and its failures. Also, the
existing taxonomy can be expanded to include other factors
like, the type of tasks in the workflow node, computation
time of tasks and periodic check-pointing. Another research
direction is to study if the structure of these workflow DAGs
is unique to the scientific application domain. In addition,
it would be useful to evaluate whether it is possible to
re-structure the workflow graphs to support efficient error
recovery, without affecting the core functionality.

ACKNOWLEDGMENT

This project is supported by the National Science Founda-
tion under Grant 1642070, 1642053, and 1642090. The views
expressed do not necessarily reflect the views of the National
Science Foundation or any other organization.

REFERENCES

[1] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw,
V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, et al., “Xsede:
accelerating scientific discovery,” Computing in Science & Engineering,
vol. 16, no. 5, pp. 62–74, 2014.

[2] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy, P. Av-
ery, K. Blackburn, T. Wenaus, F. Würthwein, et al., “The open science
grid,” in Journal of Physics: Conference Series, vol. 78, p. 012057, IOP
Publishing, 2007.

[3] S. Hwang and C. Kesselman, “Gridworkflow: A flexible failure handling
framework for the grid,” in Proceedings of the 12th IEEE International
Symposium on High Performance Distributed Computing, HPDC ’03,
p. 12, IEEE, 2003.

[4] J. Stone, M. Greenwald, C. Partridge, and J. Hughes, “Performance
of checksums and crcs over real data,” IEEE/ACM Transactions on
Networking, vol. 6, pp. 529–543, Oct 1998.

[5] C. Partridge, J. Hughes, and J. Stone, “Performance of checksums and
crcs over real data,” in ACM SIGCOMM Computer Communication
Review, vol. 25, pp. 68–76, ACM, 1995.

[6] J. Stone and C. Partridge, “When the crc and tcp checksum disagree,” in
ACM SIGCOMM computer communication review, vol. 30, pp. 309–319,
ACM, 2000.

[7] F. C. Gärtner, “Fundamentals of fault-tolerant distributed computing in
asynchronous environments,” ACM Comput. Surv., vol. 31, pp. 1–26,
Mar. 1999.

[8] M. Elder, Fault Tolerance in Critical Information Systems. PhD thesis,
University of Virginia, 2001.

[9] L. Han, L.-C. Canon, H. Casanova, Y. Robert, and F. Vivien, “Check-
pointing workflows for fail-stop errors,” IEEE Transactions on Comput-
ers, vol. 67, pp. 1105–1120, 2017.

[10] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. F. da Silva, M. Livny, et al., “Pegasus, a work-
flow management system for science automation,” Future Generation
Computer Systems, vol. 46, pp. 17–35, 2015.

[11] L. Han, L.-C. Canon, H. Casanova, Y. Robert, and F. Vivien, “Check-
pointing workflows for fail-stop errors,” in Cluster Computing (CLUS-
TER), 2017 IEEE International Conference on, pp. 487–497, IEEE,
2017.

[12] R. Albert, H. Jeong, and A.-L. Barabási, “Error and attack tolerance of
complex networks,” nature, vol. 406, no. 6794, p. 378, 2000.

[13] E. Gaetani, L. Aniello, R. Baldoni, F. Lombardi, A. Margheri, and
V. Sassone, “Blockchain-based database to ensure data integrity in cloud
computing environments,” 2017.

[14] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, “Medrec: Using
blockchain for medical data access and permission management,” in
Open and Big Data (OBD), International Conference on, pp. 25–30,
IEEE, 2016.

[15] X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla,
“Provchain: A blockchain-based data provenance architecture in cloud
environment with enhanced privacy and availability,” in Proceedings of
the 17th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, pp. 468–477, IEEE Press, 2017.

[16] “Dagman (directed acyclic graph manager).” http://www.cs.wisc.edu/
condor/dagman/.

[17] G. B. Berriman, E. Deelman, J. C. Good, J. C. Jacob, D. S. Katz,
C. Kesselman, A. C. Laity, T. A. Prince, G. Singh, and M.-H. Su,
“Montage: a grid-enabled engine for delivering custom science-grade
mosaics on demand,” in Optimizing Scientific Return for Astronomy
through Information Technologies, vol. 5493, pp. 221–233, International
Society for Optics and Photonics, 2004.

[18] A. Abramovici, W. E. Althouse, R. W. Drever, Y. Gürsel, S. Kawamura,
F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, et al.,
“Ligo: The laser interferometer gravitational-wave observatory,” Science,
vol. 256, no. 5055, pp. 325–333, 1992.

[19] P. Maechling, E. Deelman, L. Zhao, R. Graves, G. Mehta, N. Gupta,
J. Mehringer, C. Kesselman, S. Callaghan, D. Okaya, et al., “Scec
cybershake workflowsautomating probabilistic seismic hazard analysis
calculations,” in Workflows for e-Science, pp. 143–163, Springer, 2007.

[20] J. Livny, H. Teonadi, M. Livny, and M. K. Waldor, “High-throughput,
kingdom-wide prediction and annotation of bacterial non-coding rnas,”
PloS one, vol. 3, no. 9, p. e3197, 2008.

[21] H. Li, J. Ruan, and R. Durbin, “Mapping short dna sequencing reads
and calling variants using mapping quality scores,” Genome research,
pp. gr–078212, 2008.

[22] B. Panzer-Steindel, “Data integrity,” CERN/IT, 2007.
[23] E. Rozier, W. Belluomini, V. Deenadhayalan, J. Hafner, K. Rao, and

P. Zhou, “Evaluating the impact of undetected disk errors in raid
systems.,” in DSN, pp. 83–92, 2009.

[24] S. Liu, E.-S. Jung, R. Kettimuthu, X.-H. Sun, and M. Papka, “Towards
optimizing large-scale data transfers with end-to-end integrity verifica-
tion,” in Big Data (Big Data), 2016 IEEE International Conference on,
pp. 3002–3007, IEEE, 2016.

[25] C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring data storage
security in cloud computing,” in Quality of Service, 2009. IWQoS. 17th
International Workshop on, pp. 1–9, Ieee, 2009.

[26] “Ropsten: Ethereun test network.” https://ropsten.etherscan.io/.
[27] “ethgas.” https://ethgasstation.info/.
[28] “random.randint.” https://docs.python.org/2/library/random.html.


