Hindawi Publishing Corporation
Scientific Programming

Volume 2015, Article ID 680271, 13 pages
http://dx.doi.org/10.1155/2015/680271

Research Article

Hindawi

Scheduling Multilevel Deadline-Constrained Scientific
Workflows on Clouds Based on Cost Optimization

Maciej Malawski,' Kamil Figiela,' Marian Bubak,"> Ewa Deelman,’ and Jarek Nabrzyski*

! Department of Computer Science, AGH University of Science and Technology, Aleja Mickiewicza 30, 30-059 Krakéw, Poland
2ACC CYFRONET AGH, Ulica Nawojki 11, 30-950 Krakéw, Poland

3USC Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, CA 90292, USA

*Center for Research Computing, University of Notre Dame, Notre Dame, IN 46556, USA

Correspondence should be addressed to Kamil Figiela; kfigiela@agh.edu.pl

Received 15 May 2014; Accepted 22 November 2014

Academic Editor: Roman Wyrzykowski

Copyright © 2015 Maciej Malawski et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper presents a cost optimization model for scheduling scientific workflows on Iaa$ clouds such as Amazon EC2 or RackSpace.
We assume multiple Taa$S clouds with heterogeneous virtual machine instances, with limited number of instances per cloud and
hourly billing. Input and output data are stored on a cloud object store such as Amazon S3. Applications are scientific workflows
modeled as DAGs as in the Pegasus Workflow Management System. We assume that tasks in the workflows are grouped into
levels of identical tasks. Our model is specified using mathematical programming languages (AMPL and CMPL) and allows us
to minimize the cost of workflow execution under deadline constraints. We present results obtained using our model and the
benchmark workflows representing real scientific applications in a variety of domains. The data used for evaluation come from the
synthetic workflows and from general purpose cloud benchmarks, as well as from the data measured in our own experiments with
Montage, an astronomical application, executed on Amazon EC2 cloud. We indicate how this model can be used for scenarios that

require resource planning for scientific workflows and their ensembles.

1. Introduction

Today, science requires processing of large amounts of data
and use of hosted services for compute-intensive tasks [1].
Cloud services are used not only to provide resources, but also
for hosting scientific datasets, as in the case of AWS public
datasets [2]. Scientific applications that run on these clouds
often have the structure of workflows or workflow ensembles
that are groups of interrelated workflows [3]. Infrastructure
as a service ([aaS) cloud providers offer services where
virtual machine instances differ in performance and price [4].
Planning computational experiments requires optimization
decisions that take into account both execution time and
resource cost.

Research presented in this paper can be seen as a step
towards developing a “cloud resource calculator” for scientific
applications in the hosted science model [1]. Specifically, we
address the cost optimization problem of large-scale scientific

workflows running on multiple heterogeneous clouds, using
mathematical modeling with AMPL [5] and CMPL [6], and
mixed integer programming. This approach allows us to
describe the model mathematically and use a set of available
optimization solvers. On the other hand, an attempt to apply
this method to the general problem of scheduling large-
scale workflows on heterogeneous cloud resources would be
impractical due to the problem complexity and therefore
simplified models need to be analyzed. In our previous work
[7], we used a similar technique to solve the problem where
the application consists of tasks that either are identical or
vary in size within a small range. As observed in [8, 9], large-
scale scientific workflows often consist of multiple parallel
stages or levels, each of which has a structure of set of tasks;
that is, the tasks in each level are similar and independent of
each other. In the case of large workflows, when the number
of tasks in the level is high, it becomes more practical to
optimize the execution of the whole level instead of looking

http://dx.doi.org/10.1155/2015/680271

at each task individually, as many scheduling algorithms do
[10]. Therefore, in this paper, we extend our model to deal
with applications that are workflows represented as DAGs
consisting of levels of uniform tasks.

The main contributions of this paper are summarized as
follows.

(i) We define the problem of workflow scheduling on
clouds as a cost optimization problem of assigning
levels of tasks to virtual machine instances, under a
deadline constraint.

(ii) We specity the application model, infrastructure
model, and the scheduling model as mixed inte-
ger programming (MIP) problems using AMPL and
CMPL modeling languages.

(iii) We discuss the alternative scheduling models for
coarse-grained and fine-grained tasks.

(iv) We evaluate the models using infrastructure per-
formance data: one obtained from CloudHarmony
benchmarks, and the one based on our own exper-
iments with Montage workflows on Amazon EC2
cloud.

This paper is an extension of our earlier conference publica-
tion [11]. The most important extension is a new scheduling
model dedicated to fine-grained workflows with short dead-
lines. Moreover, for evaluation, we use more detailed cloud
benchmark dataset, based on our recent experiments with
Montage workflow on Amazon EC2.

After outlining the related work in Section 2, we intro-
duce our methodology in Section 3. We describe the appli-
cation and infrastructure model in Section 4. In Section 5,
we provide the mathematical formulation of the problem,
including the application model, the infrastructure model,
and the scheduling models for coarse-grained and fine-
grained workflows. Section 6 describes the datasets used for
evaluation of our models. Finally, Section7 describes the
evaluation of our models on a set of benchmark workflows,
while Section 8 gives conclusions and future work.

2. Related Work in
Cloud Workflow Scheduling

Our work is related to heuristic algorithms for workflow
scheduling on IaaS clouds. In [12], the model assumes that
infrastructure is provided by only one provider. The cloud-
targeted autoscaling solution [10] considers dynamic and
unpredictable workloads containing workflows. In [13], a
multiobjective list-based method for workflow scheduling
(MOHEEFT) is proposed and evaluated. The solution pre-
sented in [14] focuses on cloud bursting scenario, where a
private cloud is combined with a public one, and the goal
is to minimize the cost while maintaining the workflow
deadline. Our work is different from these approaches in two
aspects. First, in our infrastructure model we assume multiple
heterogeneous clouds with object storage attached to them,
instead of individual machines with peer-to-peer data trans-
fers between them. Moreover, rather than scheduling each

Scientific Programming

task individually, our method proposes a global optimization
of placement of workflow tasks and data.

The deadline-constrained cost optimization of scientific
workloads on heterogeneous Iaa$ described in [15] addresses
multiple providers and data transfers between them, where
the application is a set of tasks. The global cost minimization
problem on clouds addressed in [16] focuses on data transfer
costs and does not address workflows. Other approaches pre-
sented in [17, 18] consider unpredictable dynamic workloads
on IaaS clouds and optimize the objectives, such as cost,
runtime, or utility function, by autoscaling the resource pool
at runtime.

Pipelined workflows consisting of stages are addressed
in [19]. The processing model is a data flow and multiple
instances of the same workflow are executed on the same set
of cloud resources, whereas in our approach we focus on cost
optimization instead of meeting the QoS constraints.

Integer linear programming (ILP) method is applied to
scheduling workflows on hybrid clouds in [20]. The objective
is to minimize monetary cost under a deadline constraint.
The scheduler uses varying discretization of the schedule
timeline to reduce the complexity of the problem so that the
employed CPLEX solver can find acceptable solutions within
a 10-minute limit. The evaluation, however, is performed on
the Montage and random fork-join workflows of 30 tasks with
randomly chosen runtimes, while we focus on larger scale
workflows and we address the complexity by grouping tasks
into levels.

3. Methodology Based on
Mathematical Optimization

The core of our methodology (see Figure 1) is to use math-
ematical modeling languages that can be coupled with a set
of solvers dedicated to linear, nonlinear, or mixed integer
programming problems. As modeling languages we use
AMPL [5], as it is one of the most advanced modeling lan-
guages, and CMPL [6], as its open source alternative. These
languages provide interfaces to a wide set of solvers, both
commercial, such as CPLEX [21], and open source, such as
CBC [22].

The mathematical programming approach enables us
to formally define optimization problem. AMPL (a mathe-
matical programming language) and CMPL (COIN mathe-
matical programming language) are algebraic mathematical
modeling languages that resemble traditional mathematical
notation to describe variables, objectives, and constraints.
Algebraic modeling languages allow expressing a wide range
of optimization problems: linear, nonlinear, and integer. The
advantage of AMPL is that it is one of the most advanced
mathematical programming languages, while CMPL is easier
to use in open source projects. AMPL or CMPL enables us to
separate model definition and instance specific data, usually
into three files: model, data, and calling script. The model
file defines abstract optimization model: sets and parameters,
objective and constraints. The data file populates the sets
and parameters with the numbers for the particular instance
of the problem. Both model and data files are loaded from

Scientific Programming

Synthetic CloudHarmony| [Application-specific
workflows Real workflows| | e chmarks benchmarks

Application Infrastructure

data data
Workflow
optimization
solver
Scheduling Application Infrastructure
model model model

Fine-grained
workflows

ICoarse-grained
workflows

FIGURE 1: An overview of our approach to workflow scheduling.
Mathematical models are input to the solver: application, infrastruc-
ture, and scheduling models, together with corresponding datasets.

calling script that may do some pre- or postprocessing. In
addition, it is possible to import and export data and results
into some external format such as YAML for analysis or
integration with external programs.

The input to the solver has to be prepared in the form
of a problem description. We separate the problem into an
application model (in this case the leveled workflows) and
infrastructure model (cloud consisting of compute sites run-
ning virtual machines and object storage such as Amazon S3).
In addition, a scheduling model has to be defined, specifying
how to calculate the objective and constraints using the
application and infrastructure models. The challenge in the
scheduling model is that it has to be developed to allow the
solver to find a solution in a reasonable amount of time, so it
must incorporate appropriate assumptions, constraints, and
approximations. We discuss these assumptions in detail in
Section 5.

The scheduling problems that we deal with in this paper
are formulated as mixed integer programming (MIP) prob-
lems. This class of optimization problems has linear objective
and constraints, while some or all of variables are integer-
valued. Such problems are solved by using branch-and-bound
approach that uses a linear solver to solve subproblems.
Moreover, the solvers can relax the integrality of the variables
in order to estimate the solution, since no integer solution can
be better than the solution of the same problem in continuous
domain. The difference between the best integer solution
found and the noninteger bound can be used to estimate
the accuracy of solution and to reduce the search time (see
Section 7.1).

In this paper, we describe two alternative scheduling
models: for workflows with fine-grained and coarse-grained
tasks. This is motivated by the observation [11] that the
granularity of the tasks in the workflows has significant
influence on the results of the optimization. The best results
can be obtained when the average runtime of the tasks is
similar to the billing cycle of the cloud provider, such as 1
hour on Amazon EC2. To address this issue, we developed

another scheduling model for fine-grained tasks and dead-
lines shorter than one hour, which corresponds to the real
characteristics of the Montage workflow.

The scheduling models have to be provided with the
actual values of parameters, consisting of the application data
and infrastructure data. To evaluate our models, we use two
sources of application data: synthetic workflows obtained
from the workflow generator gallery [23] and real data
obtained from our recent benchmarks performed on Amazon
EC2. As infrastructure parameters, we use two sources:
CloudHarmony benchmarks [24] that publish CPU perfor-
mance of selected cloud providers and our own application-
specific benchmark results. For research presented in this
paper, we selected the Montage workflow and EC2 cloud as
an example of a real workflow and infrastructure.

In the following sections, we describe the models and
datasets used in more detail.

4. Application and Infrastructure Models

In this paper we focus on large-scale scientific workflows
[23]. Examples of such workflows come from a wide variety
of domains including bioinformatics (Epigenomics [25],
SIPHT [26]), astronomy (Montage [27]), earthquake science
(CyberShake [28]), and physics (LIGO [29]). Such workflows
typically consist of a large number of computationally inten-
sive tasks, processing large amounts of data.

We assume that each workflow may be represented with
a directed acyclic graph (DAG) where nodes in the graph
represent computational tasks, and the edges represent data-
or control-flow dependencies between the tasks. Each task
has a set of input and output files. We assume that the task
and file sizes are known in advance.

Based on the characteristics of large-scale workflows, we
assume that a workflow is divided into several levels that can
be executed sequentially and tasks within one level not do
depend on each other (see Figure 2). Each level represents
a set of tasks that can be partitioned in several groups
(A, B, etc.) that share computational cost and input/output
size. We assume that only one task group is executed on a
specific cloud instance. This forbids instance sharing between
multiple levels, which means that each application may need
its own specific VM template.

Similar to what is in [7], we assume multiple hetero-
geneous cloud Iaa$S infrastructures such as Amazon EC2,
RackSpace, or ElasticHosts. Clouds have heterogeneous vir-
tual machine instance types, with limits on the number of
instances per cloud, for example, 20 for EC2 and 15 for
RackSpace. Input and output data are stored on a cloud object
store such as Amazon S3 or RackSpace CloudFiles. In our
model, all virtual machine instances are billed per hour of
usage, and there are fees associated with data transfer in/out
of the cloud. In the application model, we also assume that
there is a small constant cost of execution of a single task,
which can correspond, for example, to the cost of a request to
the queuing system such as Amazon SQS. The model allows
us to include a private cloud where costs are set to 0.

For evaluation, we use synthetic workflows that were
generated using historical data from real applications [23], as

4
Level 1 ﬂ
/
o
‘ <
)
\
Level 4 @
[
o

FIGURE 2: Example application structure.

well as the data from our own measurements. The synthetic
workflows were generated using code developed in [30], with
task runtimes based on distributions gathered from running
real workflows. The experimental data come from execution
of Montage workflow on Amazon EC2 using the HyperFlow
workflow management system [31].

5. Formulation of the Scheduling Problem

In this section we give the mathematical formulation of
the models, beginning with application and infrastructure
models, and then describe the scheduling models for coarse-
grained and fine-grained workflows. We have intentionally
decided to present the problem in a form which is different
from the routine statement of mathematical progrramming
way. The main reason was to make it easily understood for
reasearchers engaged in workflow execution optimization.

To perform optimization of the total cost of the workflow
execution, mixed integer problem (MIP) is formulated and
implemented using a mathematical programming language.
First, we have implemented the optimization model using
AMPL [5] and solved it with CPLEX solver, then we ported
it to open source CMPL [6] and solved it with CBC solver.
Both systems require to specify input datasets and variables to
define the search space, as well as constraints and an objective
function to be optimized.

5.1. Application and Infrastructure Model

Input Data. The formulation requires a number of input sets
to represent the infrastructure model. This is a similar way to
an approach presented in [7]. The infrasructure is described
with the following sets:

(i) S = {s3, cloudfiles}: set of available cloud storage sites,

(ii) P = {amazon, rackspace, .. .}: set of possible comput-
ing cloud providers,

Scientific Programming

(iii) I = {ml.small,..., gg.1gb,...}: set of instance types,

(iv) PI,, C I:set of instances that belong to provider p € P,

(v) LS, c P: set of compute cloud providers that are local
to the storage platform s € §,

(vi) nﬁ M7 upper limit of number of instances allowed by

a cloud provider p € P.

Introducing PI, and LS, enables one to describe the locality
between compute and storage resources. This is an important
aspect, since the cloud providers typically charge for the cost
of data transfer out of a cloud site, while the transfers within
the site are free.

Each instance type i € I is described with the following
parameters:

(i) piI : a fee (in US dollars) for running the instance of
type i for one hour,

(ii) ccu’: performance of instance of type i in CloudHar-
itP YP
mony Compute Units (CCU),

(iii) cpu;: number of virtual CPU cores assigned to an
instance of type i,

(iv) p°™, p/™: price for nonlocal data transfer to and from

an instance of type i in US dollars per MiB (1 MiB =
1024 - 1024 bytes),

I max,
(v) m; ™

i, equal to n
type i.

upper limit of the number of instances of type

im“, where p is the provider of instance

This instance model assumes the hourly billing cycle, which is
the case for most of the cloud providers, notably for Amazon
EC2.

Storage site s € S is characterized by

Sout Sin,

(i) p°" and p™:

data transfers.

price in dollars per MiB for nonlocal

Additionally, we need to provide data transfer rates r;
between a given storage site s and instance i in MiB per
second.

Our application model is different from that in [7]
because it is designed for workflow scheduling where tasks are
grouped into levels. This fact is described with the following
characteristics:

(i) L: a set of levels the workflow is divided into,

(ii) G: a set of task groups (A, B, etc., in Figure 2); tasks
in groups have the same computational cost and
input/output size,

(iil) G; € G: a set of task groups belonging to alevel] € L,
(iv) At;t: number of tasks in a group g € G,

(v) t;: execution time in hours of a single task in a group

g on a machine with the processor performance of 1
CloudHarmony Compute Unit (CCU) [32],

(vi) dig“, d;“t: data size for input and output of a task in
group g in MiB,

Scientific Programming

(vii) p®: price per task for a queuing service, such as
Amazon SQS,

(viii) #: total time allowed for completing workflow (dead-
line).

The application model assumes that the estimated execution
time t; is known in advance; that is, it is obtained using
benchmarks or other estimation methods [33], such as
regression or performance modelling. When using general
purpose cloud benchmarks, such as CloudHarmony [24],
which provide processor performance measured in CCU,
the t; depends only on a task in group g since we assume
that the actual task execution time on a specific instance is
inversely proportional to the processing speed of the instance
expressed in the number of CCU. As it is not always the case,
since different tasks may have different processing speeds on
different instances, it is also possible to provide execution
time predictions at instance level: t;i. The scheduling model
can use such data if it is available. In Section 6.2 we provide
an example of such a dataset for the Montage workflow on
Amazon EC2.

5.2. Scheduling Model for Coarse-Grained Workflows. In this
model, we schedule groups of tasks of the same type divided
into levels. We do not schedule individual tasks as in [34]
to keep MIP problem small, as one of the requirements is
that optimization time is shorter than the workflow execution
time. The coarse-grained workflows are such workflows
where task execution times are in the order of one hour. This
is important, as we assume the hourly billing cycle of the
cloud, so the model has to optimize the task assignment in
such a way that the hourly slots of allocated resources (VM
instances) are as fully utilized as possible.

To keep this model in the MIP class, we had to take
a different approach than in [7] and schedule each virtual
machine instance separately. A drawback of this approach is
that we need to increase the number of decision variables.
We have also divided the search space by storage providers,
solving the problem separately for each storage and selecting
the best result. Additionally, the deadline becomes a variable
with an upper bound, as it may happen that a shorter deadline
may actually give a cheaper solution (see Figure5 and its
discussion).

Auxiliary Parameters. Based on the input parameters, in the
scheduling model we derive a set of precomputed parameters
that are used for expressing objectives and constraints. The
transfer time is computed based on the input and output data
size and the transfer rate between an instance and the storage.
The time for processing a task is a sum of computing and
data transfer time. The cost of data transfer is a sum of cost of
input and output data, both including the transfer fees at the
source and destination cloud site. The indexing of instances is
introduced; for example, all m1.small instances are numbered
0,1,2,..., to distinguish between individual instances of a
given type:

(i) s € S: a selected storage site,

(ii) t;i{s = (clign + d;“t) /(r;¢ - 3600): transfer time in hours,

that is, time for data transfer between instances of type
i and storage site s for a task in task group g,

see\ LU X I net | . . .
(iii) ¢ gis = Lg [ecu; +t g, time in hours for processing a
task in group g on instance of type i using storage site
S,
. T _ ¢ qout Tout Sin in Sout Tinyy,
(iv) Cois = (dg “(p;°" + p;)+dg ~(p" + pi™)):acost

of data transfer between an instance of type i and a
storage site s when processing task in group g,

(v) Iiidx: a set of possible indices for instances of type i

(from 0 to n! ™ — 1).

i

Variables. Variables of the optimization problem are

(i) N gikt 1 iff (if and only if) instance of type i with
index k € I'* is launched to process task group g,
otherwise, 0 (binary);

(ii) Hyj: for how many hours the instance of index k is
launched (integer);

(iii) Tg;x: how many tasks of g are processed on that
instance (integer);

(iv) Df: actual computation time for level I (real);

(v) D;: maximal number of hours (deadline) that
instances are allowed to run at level I (integer).

The variables defined in this way allow the solver to search
over the space of possible assignments of instances to task
groups (N, ;) with a varying number H;; of hours each
instance is launched and number T ; ;. of tasks processed on
these instances. The deadline is divided into subdeadlines for
each workflow level /, while the actual computation time D}
can be shorter than the deadline D;.

Objective. The scheduling problem is represented as a cost
minimization problem. The cost of running a single task is
defined as follows:

(e +es) - pi+ 0))

dy - (P + p") + @)
o (pi™ + p") + (3)
P, (4)

and it includes the cost of the computing time of instance (1),
the cost of transfer of input data (2), that of output data (3),
and request price (4).

The objective function C,,, represents the total cost which
is a sum of task costs computed over all the task groups, all the
instance types, and the individual instances. It is defined as

Ctot = Z

I R T
(Pi Hyietp + Cg,i,s) Tyike (5)
geG el kel®

To properly implement the assumptions we impose on
the application, infrastructure, and scheduling models, the
following constraints have to be introduced.

(1) Yy, D; < tP ensures that the sum of subdeadlines
of all levels is not greater than the workflow deadline,
that is, that the workflow finishes in the given dead-
line.

(2) To fix that the actual execution time of a level,
rounded up to a full hour, gives us the level sub-
deadline (D, = [D;]), we require that ¥,.; D} < D, <
D) +1.

() Vyecierxer=Ngix < Hyix < Ny - [t°] ensures that
the number of computing hours of an instance H;
may be nonzero only if instance is active (N is 1),
and it cannot exceed the deadline.

(4) VgegierkeritsNgik < Tgin Nk 'At;’t ensures that the
computing tasks T, ; , may be allocated to an instance
only if the instance is active and that their number
does not exceed the total number of tasks in group
L.

(5) VieL geGyicr ket Hgjx < Dy enforces thelevel deadline
on the actual runtimes of each instance.

(6) Vier geGierkeraTgik - t;’i’s < Dj enforces that all the
tasks allocated to the instance complete their work
within the computing time of their level D;.

(7) To make sure that all the instances run for enough
time to process all tasks allocated to them we adjust
H ;. respectively, to Tyt V e ierke o Tgip t;)i,s <
Hyir Toik tz’i)s + 1.

tot
(8) Yyeq Zid’kd{dx Tyik = A; ensures that all the tasks
are processed.

(9) To reject symmetric solutions and thus to reduce the
search space, we add three constraints:

(@) Yyeqierkent-(im=—1Hgix < Hyix1s
(b) Vgegierket-mms-1)Ngik < Ngjik-1>

() Yyegierkept-mim=—1y Tygik < Tyik-1-
(10) Finally, the constraint ¥;c; pep X ie pL geGykeri Ngik <

P . o
n, ™ enforces instance limits per cloud.

The scheduling model presented above shows its advantages if
the workflow tasks are about one hour long or larger, and the
deadline exceeds one hour. For fine-grained workflows, such
as Montage where most task execution times are in order of
seconds and the whole workflow may be finished within an
hour, a model can be simplified.

5.3. Scheduling Model for Fine-Grained Workflows. When
scheduling workflows with many short tasks and with dead-
lines shorter than the cloud billing cycle (one hour), we do not
need to use the H,; ; variable that counts the number of hours
the instance is running. Thus we can assume that each level

Scientific Programming

completes its work in one hour. This assumption reduces the
number of decision variables making the MIP problem faster
to solve. We also add an assumption that only one instance
type may be used for each task type, which also reduces the
search space.

In addition to these assumptions, we changed the way
how the data transfer time is computed. Since for short tasks
the data access latency is important, in addition to transfer
rate r; . we also provide the latency parameter r}f‘;. The actual
values come from linear regression of experimental data,
where we run Montage workflow on Amazon S3. In the
fine-grained scheduling model, we also use execution time
predictions at instance level: £7 ;. The ¢ is normalized by
the number of CPU cores present on the VM if there are
enough tasks to be processed in parallel. The modifications
mentioned in this paragraph may also be applied to the
coarse-grained model if needed.

Based on these modifications, the auxiliary parameters
transfer time t;i{s and unit time £ are computed as follows:

(i) £, = (dy +d3™)/(ry - 3600) +7,%;

AN 1,5

(ii) £y, = (&5, + et/ min(cpu{,Atgt).

i,s
The remaining part of the model has the following form.

Variables. Variables are similar to the ones in the coarse-
grained model, but the problem has less dimensions, since
there is no need to use H, ;. and to distinguish instances by
index x:

(i) A g tells if instances of type i are used to process task
group ¢ (binary);

(ii) Ny, tells how many instances of type i are launched to
process task group g (integer);

(iii) T, tells how many tasks in group g are processed on
instances of type i (integer);

(iv) Df tells actual computation time for level / (real).

Objective. The cost function C,,,, is computed in a similar way,
by summing the costs of all the task groups over all of the
instances, taking into account the task assignment T ;:

I R, T
Ciot = Z (Pi “Ng;+p + Cg,i,s) Ty (6)
geGiiel

Constraints. The constraints are as following:

(1) Y, Dy < tP ensures that workflow finishes before the
given deadline;

(2) VgegierAgi < Ngi < Ay n ™™ ensures that the
number of active instances N ; is consistent with the
binary variable A ;; and does not exceed the instance
limit;

(3) YgegierNgi < Tgi < Ng; At;t ensures that there are
no empty instances and that the number of assigned
tasks does not exceed the total number of tasks;

Scientific Programming

(4) Yiergegpier Ty * tgis < D - N, enforces that a level
finishes work in Dj;

(5) Vyeg 2ier Tgi = At;t ensures that all tasks are
processed;

(6) Vgeg ier Ag,; = 1 ensures that only one instance type
is used for a given task;

P max :
(7) YgeL pep Z,-eplp)geGl Ng; < n, enforces instance

limits per cloud, for each task group and instance
type.

This scheduling model yields reasonable results only for the
cases when it is actually possible to complete all the workflow
tasks before the deadline. If not, the solver will not find any
solution.

The optimization models introduced in this section were
implemented using CMPL and AMPL effectively being work-
flow schedulers. The source code of the schedulers is avail-
able as an online supplement (https://github.com/kfigiela/
optimization-models/tree/ppam-extended/workflows). The
public repository on GitHub includes the model files, the
data, and the scripts we used to run the solvers.

6. Application and Infrastructure
Data Used for Evaluation

To perform optimization we need to provide optimization
models defined in the previous section with data describing
an application and an infrastructure. First, we used the
generic infrastructure benchmarks obtained from CloudHar-
mony and the application data from the workflow generator
gallery. Next, we performed our own experiments using
the Montage workflows on Amazon EC2, which provided
the application-specific performance benchmark of cloud
resources together to obtain the real application data. The
data gathered during experiments are inputs for the sched-
uler.

6.1. Data for Coarse-Grained Scheduler. To evaluate the
coarse-grained scheduler on realistic data, we used Cloud-
Harmony [24] benchmarks to parameterize the infrastruc-
ture model, and we used the workflow generator gallery
workflows [23] as test applications. In the infrastructure
model we assumed that we had 4 public cloud providers
(Amazon EC2, RackSpace, GoGrid, and ElasticHosts) and a
private cloud with 0 costs. The infrastructure had two storage
sites: S3 which is local to EC2, and CloudFiles which islocal to
RackSpace, so data transfers between local virtual machines
and storage sites are free.

We used the first generation of CloudHarmony CPU
benchmarks described in [24]. CloudHarmony CPU bench-
marks use CloudHarmony Compute Unit (CCU) as a
unit for measuring CPU performance. It is calculated
based on a set of general-purpose CPU benchmarks [32].
First generation benchmarks were calibrated relative to
Amazon’s ml.small instance and are now deprecated in
favor of new benchmarks that are calibrated to nonvir-
tualized hardware. The new benchmark is compared to

R) e LT
5] d B
E 204 il
BRI UF T | ST
by 5 . - -
a, o :
- bl
g 1
m .
025 {MH
SE E % HE HE S 5% 5H H H H H o
2 E2 5§ 852852 83 &8 8 5 8 8 &8 &
E 2P 2 H T HRTwaHHELHHEHA
S 2 EE=-8~ 2w dTV @ x
- g = =) g 5 v & =i Em’ O o on
E va NE'] E o o o
Instance
Hl mBgModel CloudHarmony
[mProjectPP Amazon

FIGURE 3: Amazon instance benchmarks for different tasks com-
pared to the generic CloudHarmony benchmark and Amazon ECU.
Data was normalized to m1.small instance type having relative
performance of 1.0.

our benchmark data in Figure 3. Actual datasets are pro-
vided as an online supplement (https://github.com/kfigiela/
optimization-models/tree/ppam-extended/workflows).

We tested the coarse-grained scheduler with all of the
applications from the gallery: Montage, CyberShake, Epige-
nomics, LIGO, and SIPHT for all available workflow sizes
(from 50 to 1000 tasks per workflow up to 5000 tasks in the
case of SIPHT workflow). We varied the deadline from 1 to
30 hours with 1-hour increments. We solved the problem for
two cases, depending on whether the data are stored on S3 or
on CloudFiles.

6.2. Data for Fine-Grained Scheduler. Cloud benchmarks,
such as CloudHarmony [24], are based on set of general-
purpose benchmarks that do not necessarily represent sci-
entific applications that are to be scheduled. In order to find
out how it may differ, we run Montage workflow on several
Amazon EC2 instance types. The workflow of 12700 tasks
processing 8.5 GiB of photos rendered a mosaic of an 8 x 8
degree region at Orion Nebula from 2MASS survey.

Usually, benchmarks take into account the fact that
instances provide multiple virtual cores that speed up mul-
tithreaded applications, but it has no impact on single
threaded ones. Montage workflow tasks are single threaded
and therefore in our experiment the number of execution
threads running in parallel was equal to the number of virtual
cores. We used the HyperFlow workflow engine [31] to drive
workflow execution. In the experiment, we used EBS (elastic
block storage) volume for data storage instead of S3 (simple
storage service); however we measured the transfer times to
and from S3 separately. EBS is different from S3 as it provides
block level access (i.e., filesystem) to the data volume, while
S3 is object store available as a service by REST API.

The data we gathered in experiments may be used
to calculate application-specific performance metric of the
instance (ECU-like). In Figure 3 we compare our results
with CloudHarmony benchmarks. It shows that, for the

80 T T T T T T T
70 + 1
60 1
50 ¢ 1
40 + 1

30 + IZ'IZI 4

Cost ($)

10 + b

0 2 4 6 8 10 12 14
Time limit (hours)
B Amazon S3

© RackSpace CloudFiles
—— Optimal

(a) 500 tasks, 4 GiB data size

o]
o
20 | 00 83RO B OO0

Scientific Programming

7 m T T T T T T
61 - _
s D@ o000000a0
e 4 .
2
S 3 7
2 .]
1 _
0 | | | | | | |
0 2 4 6 8 10 12 14

Time limit (hours)

B Amazon S3
® RackSpace CloudFiles
—— Optimal

(b) 400 tasks, 1 GiB data size (legend the same as above)

FIGURE 4: Result of coarse-grained scheduling for the Epigenomics application.

tasks forming the parallel levels of Montage workflow (such
as mProjectPP [27]), the performance of the instances is
proportional to the generic CPU benchmark. On the other
hand, for the levels that are not parallel (e.g., mBgModel),
there is no difference between cheaper m3.large and more
expensive instance types (e.g., c3.8xlarge). Those instance
types are deployed on the same generation of hardware, so
their performance for single threaded applications is very
similar. Additionally, as a reference we show the instance
performance provided by Amazon in ECU (EC2 Compute
Units).

The observation from this evaluation is that the bench-
marks from CloudHarmony give better approximation to the
task performance than the generic ECU value. Moreover, it
is important to distinguish between parallel and sequential
workflow levels when selecting the virtual machine instance
type. The dataset obtained in this experiment was used for
evaluation of fine-grained scheduling model in Section 7.2.

7. Evaluation of Optimization Models

In this section, we present the results of optimization,
obtained by applying our schedulers to the application and
infrastructure data. First, we show the results of using the
coarse-grained scheduler applied to the generic CloudHar-
mony datasets. Next, we present the results of the fine-grained
scheduler applied to the dataset obtained from our experi-
ments with the Montage workflow on EC2.

71 Results for Coarse-Grained Scheduling. Figure 4 shows
the cost of execution of the Epigenomics application with
two workflows of sizes 400 and 500 tasks as a function of
deadline. For longer deadlines (over 6 hours), the private
cloud instances and the cheapest RackSpace instances are
used so the cost is low when using CloudFiles. For shorter
deadlines, the cost grows rapidly, since we reach the limit
of instances per cloud and additional instances must be
spawned on a different provider, thus making the transfer

costs higher. This effect is amplified in Figure 4(a), which
differs from Figure 4(b) not only by the number of tasks, but
also by the data size of the most data-intensive level. This
means that the transfer costs are growing more rapidly, so
it becomes more economical to store the data on Amazon
EC2 that provides more powerful instances required for short
deadlines.

One interesting feature of our scheduler is that for longer
deadlines it enables finding the cost-optimal solutions that
have shorter workflow completion time than the requested
deadline. This effect can be observed in Figure 5 and is caused
by the fact that for long deadlines the simple solution is to run
the application on a set of the least expensive machines.

Figures 6(a) to 7(b) show results obtained for Cybershake,
LIGO, Montage, and SIPHT workflows. These workflows
have relatively small execution time, so even for short dead-
lines the scheduler is able to schedule tasks on the cheapest
instances on a single cloud, thus resulting in flat characteris-
tics.

To investigate how the scheduler behaves for workflows
with the same structure, but with much longer runtimes of
tasks, we run the optimization for Montage workflow with
tasks 1000x longer. This corresponds to the scenario where
tasks are in the order of hours instead of seconds. The results
in Figure 8 show how the cost increases very steeply with
shorter deadlines, illustrating the trade-off between time and
cost. The difference between Figures 7(a) and 8 illustrates that
the scheduler is more useful for workflows when tasks are of
granularity that is similar to the granularity of the (hourly)
billing cycle of cloud providers. Additionally, Figure 8 shows
how the optimal cost depends on available clouds.

The runtime of the optimization algorithm for workflows
with up to 1000 tasks ranges from a few seconds up to 4
minutes using the CPLEX [21] solver running on a server
with 4 16-core 2.3 GHz AMD Opteron processors (model
6276), with CPLEX limited artificially to use only 32 cores.
Figure 9(a) shows that the time becomes much higher for
shorter deadlines and increases slowly for very long dead-
lines. This is correlated with the size of search space: the

Scientific Programming

Cost ($)

Cost ($)

1.2 ; . .
S 1fBRBEEE o) .
< o eggroeg °, o
= o] ©3 ©
E 08 ® 8o ©
o o]
0.6 | 05
g B
£ 04af 1
=
2 02t .
0 1 1 1
0 5 10 15 20
Time limit (hours)
[Amazon S3

© RackSpace CloudFiles

FIGURE 5: Ratio of the actual completion time to the deadline for the Epigenomics workflow with 500 tasks.

0.6 T T T T T T T 2 T T T T T T T
o]
1.8
051 © 1
1.6 |
0.4+ i 14 o]
5 12t
03l 1 2 1l DEDEEOE0E0EO0E 0
00 EEEEEGEGEG0 000 3
O 08Ff
0.2 R
x 0.6 -
0.1 3 04
02r
O 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Time limit (hours) Time limit (hours)
B Amazon S3 B Amazon S3
© RackSpace CloudFiles © RackSpace CloudFiles
— Optimal — Optimal
(a) CyberShake, 500 tasks (b) LIGO, 500 tasks
FIGURE 6: Optimal cost found with the coarse-grained scheduling for CyberShake and LIGO applications.
0.6 T T T T T T T 30 IEi—
051 R 25+]
0.4 = E R 20 F i
03l EEEEEEEEBEEEBEQ 2 5 o l
Ic 3 @ g
02} 1 9 10}t PO meomeeoeoaq
0.1 i 5t |
0 L L L L L 1 1 0 L 1 1 1 L 1 1
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Time limit (hours) Time limit (hours)
B Amazon S3 B Amazon S3
© RackSpace CloudFiles © RackSpace CloudFiles
—— Optimal —— Optimal

(a) Montage, 500 tasks (b) SIPHT, 5000 tasks

FIGURE 7: Optimal cost found by the scheduler for Montage and SIPHT applications.

10

FIGURE 8: Optimal cost found by the coarse-grained scheduler for Montage workflow of 500 tasks with runtimes artificially multiplied by

Cost ($)

1000 for different cloud infrastructures.

1000

200
180
160
140
120
100
80
60
40
20

L G 3 3 A A R X XK 3K

30

Time limit (hours)

Amazon + private
Amazon + RackSpace
All clouds

X

40

50

Scientific Programming

Fu — T T T T 1000 r@aw T T T T

o

> o) > o

) o)

g 100 "omg | @

2 g o]

£ £ 100} 5 a s E

g s " g - S| L “a gf% _godg m o m g " at

£ 10f ©® gua®TEe? = - el Spm, 0 p =" _ "

= B a” =] mn ¢ ot

e [] nt oo o [}]

s oo glefoe® e " o
u u
= Dg° Wm at o
1 L | L L L 10 L L L L L ol
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time limit (hours) Time limit (hours)
o Amazon S3 o Amazon S3
m RackSpace CloudFiles m RackSpace CloudFiles

(a) Epigenomics, 600 tasks

(b) SIPHT, 5000 tasks

FIGURE 9: Optimization time of the solver.

longer the deadline, the larger the search space, while for
shorter deadlines the problem has a very small set of accept-
able solutions. The problem becomes more severe for bigger
and more complex workflows like SIPHT as optimization
time becomes very high (Figure 9(b)).

Figure 10 illustrates how the optimization time depends
on MIP gap solver setting. The relative MIP gap is a relative
diference between the best integer solution found by the
solver and the possible optimal noninteger solution. The
MIP gap value indicates to solver to stop when an integer
feasible solution has been proved to be within a given percent
of optimality [21]. Applying a relative MIP gap of 1% or
5% instead of default 0.01% shortens optimization time in
orders of magnitude. Increasing the MIP gap to 5% did not
decrease the quality of the result noticeably: the minimum
cost obtained for the gap of 5% was higher only by 3.63% in
the worst case.

7.2. Results for Fine-Grained Workflows and Short Deadlines.
We performed optimization for deadlines ranging from 13 to
60 minutes, using the Amazon EC2 cloud, with S3 or local
storage. When assuming that the storage is local, we set the
t;i{s fixed to 0, which may represent, for example, a very fast
NES storage when transfer times are negligible.

The results shown in Figure 11 have similar character to
those we got in [7] and to the ones obtained using the coarse-
grained scheduler and task runtimes artificially expanded
(Figure 8). This observation leads to the conclusion that the
granularity of the workflow tasks versus the granularity of
the billing cycle of the cloud provider plays an important
role in scheduling. In our case, we had to define two separate
schedulers to address this issue. The problem, however, may
be more complex when we assume more cloud providers
with different billing cycles, such as hourly, 5-minute, or per-
minute billing. This may be an interesting subject for further
research.

Scientific Programming

1

10000 T T T T
= 1000 F L) o 00
o °
[5) XX
=] x “ee o L4 °
S 100¢ Xy Gpm o -
S] X xxX]
g X&X@D e &;g.;;l:‘u:uq:m
g 10 F Xy O 8 X o] E
=S L] XX XX XXXXX% XXX
o 1% i
)
X
°
0.1
0 10 20 30 40 50
Time limit (hours)
e 0%
o 1%
X 5%

FIGURE 10: Solver runtime with different relative MIP gap (in percent), showing the relation between accuracy and runtime of the solver for the
coarse-grained scheduler for Montage workflow of 500 tasks with runtimes artificially multiplied by 1000 for different cloud infrastructures.

AAAAA

AAA
A,
AAAAAAAAAAAAAAAAAA

40 50 60

Deadline (min)

40 .
—_ L] A
% 30
-~ A
w
o A
o A
£ 20 A A
3 W
LR I
coo........
0 4
T T
20 30
Storage
e Local
a S3

FIGURE 11: Montage workflow execution cost (8 x 8 degrees at M42) with S3 storage and local storage (i.e., very fast NFS).

8. Conclusions and Future Work

In this paper, we presented the schedulers using cost opti-
mization for scientific workflows executing on multiple
heterogeneous clouds. The models, formulated in AMPL and
CMPL, allow us to find the optimal assignment of workflow
tasks, grouped into levels, to cloud instances. We validated
our models with a set of synthetic benchmark workflows
as well as with the data of real astronomy workflow, and
we observed that they gave useful solutions in a reasonable
amount of computing time.

Based on our experiments with execution of Montage
workflow on Amazon EC2 cloud and its characteristics, we
developed separate scheduling models dedicated to coarse-
grained workflows and to fine-grained workflows with short
deadlines. We also compared the general-purpose cloud
benchmarks, such as CloudHarmony, with our own measure-
ments. The results underline the importance of application-
specific cloud benchmarking, since the general purpose
benchmarks can serve only as the rough approximation of

the actual application performance. The observed relations
between the granularity of the tasks and the performance of
optimization models shows the influence of the cloud billing
cycle on the cost optimizing workflow scheduling.

By solving the models for multiple deadlines, we can
produce trade-oft plots, showing how the cost depends on
the deadline. We believe that such plots are a step towards
a scientific cloud workflow calculator, supporting resource
management decisions for both end-users and workflow-as-
a-service providers.

In the future, we plan to apply this model to the problem
of provisioning cloud resources for workflow ensembles
[3], where the optimization of cost can drive the workflow
admission decisions. We also plan to refine the models
to better support smaller workflows by reusing instances
between levels, to fine-tune the model, and to test different
solver configurations to reduce the computing time, as well
as to apply the optimization models to the problem of
dynamic workflow scheduling in order to better handle the
uncertainties in the infrastructure and the application.

12

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This research was partially supported by the EC ICT VPH-
Share Project (Contract 269978) and the KI AGH Grant
11.11.230.124. The work of K. Figiela was supported by the
AGH Dean’s Grant. E. Deelman acknowledges support of the
National Science Foundation (Grant 1148515) and the Depart-
ment of Energy (Grant ER26110). Access to Amazon EC2
was provided via the AWS in Education Grant. The authors
would like to express their thanks to the reviewers for their
constructive recommendations that helped them improve the

paper.

References

(1] E. Deelman, G. Juve, M. Malawski, and J. Nabrzyski, “Hosted
science: managing computational workflows in the cloud,
Parallel Processing Letters, vol. 23, no. 2, Article ID 1340004,
2013.

[2] AWS, “AWS public datasets,” 2013, http://aws.amazon.com/
publicdatasets/.

[3] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost-
and deadline-constrained provisioning for scientific workflow
ensembles in TaaS clouds,” in Proceedings of the 24th Interna-
tional Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’12), IEEE, November 2012.

[4] M. Bubak, M. Kasztelnik, M. Malawski, J. Meizner, P.
Nowakowski, and S. Varma, “Evaluation of cloud providers for
VPH applications,” in Proceedings of the 13th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing
(CC-Grid '13), May 2013,

[5] R.Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling
Language for Mathematical Programming, Duxbury Press, 2002.

[6] M. Steglich, “CMPL (Coin mathematical programming lan-

guage),” 2014, https://projects.coin-or.org/Cmpl.

[7] M. Malawski, K. Figiela, and J. Nabrzyski, “Cost minimization
for computational applications on hybrid cloud infrastructures,”
Future Generation Computer Systems, vol. 29, no. 7, pp. 1786-
1794, 2013.

S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su,
and K. Vahi, “Characterization of scientific workflows,” in Pro-
ceedings of the 3rd Workshop on Workflows in Support of Large-
Scale Science (WORKS ’08), pp. 1-10, IEEE, November 2008.

[9] R. Duan, R. Prodan, and X. Li, “A sequential cooperative game
theoretic approach to storage-aware scheduling of multiple
large-scale workflow applications in grids,” in Proceedings of the
13th ACM/IEEE International Conference on Grid Computing
(Grid ’12), pp. 31-39, IEEE, September 2012.

[10] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and
meet application deadlines in cloud workflows,” in Proceedings
of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC ’11), ACM, New York,
NY, USA, November 2011.

[11] M. Malawski, K. Figiela, M. Bubak, E. Deelman, and J.
Nabrzyski, “Cost optimization of execution of multi-level

[8

Scientific Programming

deadline-constrained scientific workows on clouds,” in Parallel
Processing and Applied Mathematics—10th International Confer-
ence, PPAM 2013, Warsaw, Poland, September 8-11, 2013, Revised
Selected Papers, Part I, vol. 8384 of Lecture Notes in Computer
Science, pp. 251-260, Springer, Berlin, Germany, 2014.

[12] S. Abrishami, M. Naghibzadeh, and D. H. J. Epema, “Deadline-
constrained workow scheduling algorithms for infrastructure as
a service clouds,” Future Generation Computer Systems, vol. 29,
no. 1, pp. 158-169, 2013.

[13] TJ. J. Durillo, H. M. Fard, and R. Prodan, “MOHEFT: a multi-
objective list-based method for workflow scheduling,” in Pro-
ceedings of the 4th IEEE International Conference on Cloud
Computing Technology and Science (CloudCom ’12), pp. 185-192,
Taipei, Taiwan, December 2012.

[14] L. E Bittencourt and E. R. M. Madeira, “HCOC: a cost opti-
mization algorithm for workflow scheduling in hybrid clouds;”
Journal of Internet Services and Applications, vol. 2, no. 3, pp.
207-227, 2011.

[15] R. van den Bossche, K. Vanmechelen, and J. Broeckhove,
“Online cost-efficient scheduling of deadline-constrained
workloads on hybrid clouds,” Future Generation Computer Sys-
tems, vol. 29, no. 4, pp. 973-985, 2013.

[16] S. Pandey, A. Barker, K. K. Gupta, and R. Buyya, “Minimizing
execution costs when using globally distributed Cloud services,”
in Proceedings of the 24th IEEE International Conference on
Advanced Information Networking and Applications, pp. 222-
229, April 2010.

[17] J. Chen, C. Wang, B. B. Zhou, L. Sun, Y. C. Lee, and A. Y.
Zomaya, “Tradeoffs between profit and customer satisfaction
for service provisioning in the cloud,” in Proceedings of the
20th International Symposium on High Performance Distributed
Computing (HPDC 11), pp. 229-238, ACM, San Jose, Calif, USA,
2011.

[18] H. Kim, Y. El-Khamra, I. Rodero, S. Jha, and M. Parashar,
“Autonomic management of application workflows on hybrid
computing infrastructure,” Scientific Programming, vol. 19, no.
2-3, pp. 75-89, 2011.

[19] R. Tolosana-Calasanz, J. A. Baiares, C. Pham, and O. F.
Rana, “Enforcing QoS in scientific workflow systems enacted
over Cloud infrastructures,” Journal of Computer and System
Sciences, vol. 78, no. 5, pp- 1300-1315, 2012.

[20] T. A. L. Genez, L. E. Bittencourt, and E. R. M. Madeira, “Using
time discretization to schedule scientific workflows in multiple
cloud providers,” in Proceedings of the IEEE 6th International
Conference on Cloud Computing (CLOUD ’13), pp. 123-130,
Santa Clara, Calif, USA, July 2013.

[21] IBM, “IBM ILOG CPLEX Optimization Studio CPLEX User’s
Manual,” 2013, http://pic.dhe.ibm.com/infocenter/cosinfoc/
vl2r5/topic/ilog.odms.studio.help/pdf/usrcplex.pdf.

22

J. Forrest, “Cbc (coin-or branch and cut) open-source mixed
integer programming solver,” 2012, https://projects.coin-or.org/
Cbc.

[23] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta,
and K. Vahi, “Characterizing and profiling scientific workflows,”
Future Generation Computer Systems, vol. 29, no. 3, pp. 682-692,
2013.

[24] CloudHarmony, “Benchmarks,” 2014, http://cloudharmony
.com/benchmarks.

[25] USC epigenome center, http://epigenome.usc.edu.

Scientific Programming

[26] J. Livny, H. Teonadi, M. Livny, and M. K. Waldor, “High-
throughput, kingdom-wide prediction and annotation of bac-
terial non-coding RNAs,” PLoS ONE, vol. 3, no. 9, Article ID
€3197, 2008.

[27] G. B. Berriman, E. Deelman, J. C. Good et al., “Montage: a grid
enabled engine for delivering custom science-grade mosaics on
demand,” in Optimizing Scientific Return for Astronomy through
Information Technologies, vol. 5493 of Proceedings of SPIE, pp.
221-232, June 2004.

[28] P. Maechling, E. Deelman, L. Zhao et al., “SCEC cyber-shake
workows—automating probabilistic seismic hazard analysis
calculations,” in Workows for e-Science, 1. Taylor, E. Deelman,
D. Gannon, and M. Shields, Eds., pp. 143-163, Springer, London,
UK, 2007.

[29] A. Abramovici, W. E. Althouse, R. W. P. Drever et al., “LIGO: the
laser interferometer gravitational-wave observatory;” Science,
vol. 256, no. 5055, pp. 325-333,1992.

[30] Workflow Generator, 2014, https://confluence.pegasus.isi.edu/
display/pegasus/WorkflowGenerator.

[31] B. Balis, “Hypermedia workflow: a new approach to Data-
Driven scientific workflows,” in Proceedings of the SC Com-
panion: High Performance Computing, Networking Storage and
Analysis (SCC ’12), pp. 100-107, November 2012.

[32] Cloud Harmony, “What is ECU? CPU benchmarking in Cloud,”
2010, http://blog.cloudharmony.com/2010/05/what-is-ecu-cpu-
benchmarking-in-cloud.html.

[33] R. E da Silva, G. Juve, E. Deelman et al., “Toward fine-grained
online task characteristics estimation in scientific workflows,” in
Proceedings of the 8th Workshop on Workows in Support of Large-
Scale Science (WORKS ’13), pp. 58-67, ACM, Denver, Colo,
USA, November 2013.

[34] R. Van Den Bossche, K. Vanmechelen, and J. Broeckhove,
“Cost-optimal scheduling in hybrid IaaS clouds for deadline
constrained workloads,” in Proceedings of the 3rd IEEE Interna-
tional Conference on Cloud Computing (CLOUD ’I10), pp. 228-
235, Miami, Fla, USA, July 2010.

13

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

Seniim—- .

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

