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Abstract

Large-scale applications expressed as scientific workflows are often grouped into ensembles of inter-related workflows.
In this paper, we address a new and important problem concerning the efficient management of such ensembles under
budget and deadline constraints on Infrastructure as a Service (IaaS) clouds. IaaS clouds are characterized by on-
demand resource provisioning capabilities and a pay-per-use model. We discuss, develop, and assess novel algorithms
based on static and dynamic strategies for both task scheduling and resource provisioning. We perform the evaluation
via simulation using a set of scientific workflow ensembles with a broad range of budget and deadline parameters, taking
into account task granularity, uncertainties in task runtime estimations, provisioning delays, and failures. We find that
the key factor determining the performance of an algorithm is its ability to decide which workflows in an ensemble to
admit or reject for execution. Our results show that an admission procedure based on workflow structure and estimates
of task runtimes can significantly improve the quality of solutions.
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1. Introduction

Large-scale scientific workflows, usually represented as
Directed Acyclic Graphs (DAGs), are an important class
of applications that lead to challenging problems in re-
source management on grid and cloud infrastructures. In
addition, workflows for large computational problems are
often composed of several inter-related workflows grouped
into ensembles. Workflows in an ensemble typically have
a similar structure, but they differ in their input data,
number of tasks, and individual task sizes.

There are many applications that require scientific work-
flow ensembles. CyberShake [1], for example, uses ensem-
bles to generate seismic hazard maps. Each workflow in a
CyberShake ensemble generates a hazard curve for a par-
ticular geographic location, and several hazard curves are
combined to create a hazard map. In a 2013 study, Cy-
berShake was used to generate a set of hazard maps over
286 sites that required an ensemble of 2288 workflows [2].
Similarly, users of Montage [3] often need several work-
flows with different parameters to generate a set of image
mosaics that can be combined into a single, large mosaic.
The Galactic Plane ensemble [4], which generates several
mosaics in different wavelengths, consists of 17 workflows,
each of which contains 900 sub-workflows. Another en-
semble example is the Periodograms application [5], which
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searches for extrasolar planets by detecting periodic dips in
the light intensity of their host star. Due to the large scale
of the input data, this application is often split up into
multiple batches processed by different workflows. Ad-
ditional workflows are created to run the analysis using
different parameters. An example analysis of Kepler satel-
lite data required three ensembles of 15 workflows, each
workflow with about 14,000 tasks.

Workflows in an ensemble may differ not only in their
parameters, but also in their priority. For example, in
CyberShake some geographic locations may be in heavily
populated areas or have sensitive facilities such as power
plants, while others may be less important. Scientists typ-
ically prioritize the workflows in such an ensemble so that
important workflows are finished first. This enables them
to see critical results early, and helps them to choose the
most important workflows when the time and financial re-
sources available for computing are limited.

Infrastructure-as-a-Service (IaaS) clouds offer the abil-
ity to provision resources on-demand according to a pay-
per-use model. These systems are regarded by the scien-
tific community as a potentially attractive source of low-
cost computing resources [6, 7]. In contrast to clusters
and grids, which typically offer best-effort quality of ser-
vice, clouds give more flexibility in creating a controlled
and managed computing environment. Clouds provide
the ability to adjust resource capacity according to the
changing demands of the application, often called auto-
scaling. However, giving users more control also requires
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the development of new methods for task scheduling and
resource provisioning. Resource management decisions re-
quired in cloud scenarios not only have to take into account
performance-related metrics such as workflow makespan or
resource utilization, but must also consider budget con-
straints, since commercial cloud resources usually have
monetary costs associated with them [8].

In this paper, we aim to gain insight into resource
management challenges when executing scientific workflow
ensembles on clouds. We address a new and important
problem of maximizing the number of completed work-
flows from an ensemble under both budget and deadline
constraints. The motivation for this work is to answer
the fundamental question of concern to a researcher: How
much computation can be completed given the limited bud-
get and timeframe of a research project?

The main contributions of this paper are:

• we define the problem of scheduling prioritized work-
flow ensembles under budget and deadline constraints,

• we analyze and develop several dynamic (online) and
static (offline) algorithms for task scheduling and re-
source provisioning that rely on workflow structure
information (critical paths and workflow levels) and
estimates of task runtimes,

• we evaluate these algorithms using a simulator based
on CloudSim [9], which models the infrastructure
and the application, taking into account uncertain-
ties in task runtime estimates, provisioning delays,
and failures,

• we discuss the performance of the algorithms on a set
of synthetic workflow ensembles based on important,
real scientific applications, using a broad range of
different application scenarios and varying constraint
values.

This paper is an extension of our earlier conference
publication [10]. Here we present a more detailed perfor-
mance evaluation, including the discussion of results based
on varying deadline and budget constraints. We also re-
port on new results and discussion of task granularity in
the context of the resource billing cycle, which is an im-
portant aspect of scheduling and resource provisioning on
cloud infrastructures. The related work section and the
algorithm examples have been also extended to provide a
better positioning and increase the readability of the pa-
per.

The paper is organized as follows: after an analysis of
related work in Section 2, Section 3 describes the infras-
tructure and application model we are targeting in this
paper. In Section 4 we describe the dynamic and static
algorithms we developed. Section 5 presents test scenar-
ios and performance metrics, while Section 6 discusses the
results of simulation studies of these algorithms. Finally,
general conclusions, lessons learned, and future work are
outlined in Section 7.

2. Related Work

General policy-based and rule-based approaches to dy-
namic provisioning (such as Amazon Auto Scaling [11] and
RightScale [12]) allow the size of a resource pool to be ad-
justed based on infrastructure and application metrics. A
typical infrastructure-specific metric is system load, whereas
application-specific metrics include response time and length
of a task or of a request queue. It is possible to set thresh-
olds and limits to tune the behavior of these autoscaling
systems, but no support for complex applications is pro-
vided.

Policy-based approaches for scientific workloads (e.g.
[13, 14, 15]) also enable scaling the cloud resource pool
or the extension of the capabilities of clusters using cloud-
burst techniques. Our approach is different in that we con-
sider workflows, while policy-based approaches typically
consider bags of independent tasks or unpredictable batch
workloads. This enables us to take advantage of workflow-
aware heuristics that cannot be applied to independent
tasks.

Our work is related to the strategies for deadline-con-
strained cost-minimization workflow scheduling, developed
for utility grid and cloud systems. However, our prob-
lem is different from [16],[17] and [18] in that we con-
sider ensembles of workflows instead of individual work-
flows. Our work is also different from cloud-targeted au-
toscaling solution [19] in that we consider ensembles of
workflows rather than unpredictable workloads contain-
ing workflows. We also consider budget constraints rather
than cost minimization as a goal. In other words, we as-
sume that there is more work to be done than the avail-
able budget, so some work must be rejected. Therefore,
cost is not something we optimize (i.e. an objective), but
rather a constraint. In [20] authors introduced a novel
single DAG static scheduling PEFT algorithm, which out-
performs well-known list-based heuristics for makespan op-
timization, but the budget is not taken into account.

This work is related to bi-criteria scheduling and multi-
criteria scheduling of workflows [21, 22, 23, 24, 25]. These
approaches are similar to ours in that we have two schedul-
ing criteria: cost and makespan. The challenge in multi-
criteria scheduling is to derive an objective function that
takes into account all of the criteria. In our case one
objective (amount of work completed) is subject to opti-
mization, whereas time and cost are treated as constraints,
which is not addressed by other works.

Our work can also be regarded as an extension of budget-
constrained workflow scheduling [26], cost optimization for
workflows under deadline constraints [16], or methods of
stretching and compacting the workflow to optimize time
and cost [18], in the sense that we are dealing with work-
flow ensembles and the deadline constraint is added. An
interesting discussion of uncertainties and the way to ad-
dress them using a Monte Carlo approach is also presented
in [27], where the objective is makespan optimization.

Scheduling optimization for multiple workflows has been
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also considered in previous research, either in the context
of heterogeneous systems [28], where makespan and fair-
ness optimization is applied, or in the context of grids [29],
where multiple heuristics are evaluated with respect to the
makespan of schedules they produce. Scheduling multiple
workflows in [30, 31] applies multiobjective optimization of
time and cost under storage bandwidth and capacity con-
straints with the use of heuristics based on game theory.
The approach proposed in [32] focuses on enforcement of
QoS measured as throughput of processing by individual
workflows. The problem of workflow admission addressed
in [33] is similar to the one solved by our algorithms, but
the difference is that we address the problem from the end-
user perspective, while in their work they assume that the
resource provider decides whether to admit or reject the
workflow based on the resource estimates and the deadline
constraints.

Other approaches for scheduling workflows on grids
and clouds such as [34, 35, 36] use metaheuristics that
usually run for a long time before producing good results,
which makes them less useful in the scenarios we consider
in this paper.

Also noteworthy are methods based on mathematical
programming, using linear programming or mixed-integer
programming. Such a method is applied to scheduling
workflows on hybrid clouds using time discretization in [37],
but the model presented there is limited to small scale
workflows. Large-scale applications on hybrid clouds are
addressed in [38, 39], but their model considers bag-of-
task applications instead of workflows. The cloud burst-
ing scenario described in [40], where a private cloud is
combined with a public one, addresses workflows, and the
goal is to minimize the cost while satisfying the deadline.
In our related paper [41], we also use the mixed-integer
programming approach to schedule multi-level deadline-
constrained workflows, but workflow ensembles are not
considered.

The analysis of related work is summarized in Table 1,
where we classify the methods based on 7 categories. The
infrastructure type can be a grid or a cloud, where a grid
includes utility grids and heterogeneous computing sys-
tems, where cost can be relevant (such as in [26]). Appli-
cation types of interest are bags of tasks, single workflows,
or multiple workflows. The workload can be static, where
the scheduling process can plan the tasks in advance, or dy-
namic, where the algorithm has to deal with unpredictable
stream of jobs arriving. The provisioning methods are di-
vided into dynamic and static approaches, where static
means that the provisioning plan is prepared prior to exe-
cution. To simplify, we classify all the algorithms for grid
and heterogeneous systems into the static category, since
these systems do not allow for creation of new resources
on demand, even if some mechanisms for dynamic provi-
sioning such as pilot jobs [42] are available. The related
work addresses multiple optimization objectives, including
time, monetary cost, reliability, energy or fairness, and
there are examples of multi-criteria optimization among

them. Most of the scheduling approaches also consider
constraints for optimization, and the most commonly ad-
dressed ones are budget and deadline. Other constraints,
such as bandwidth, storage capacity or job throughput, are
also present. Finally, we divide the algorithmic methods
into heuristics, including various list scheduling techniques
based on graph analysis, metaheuristics that use genetic or
evolutionary algorithms, and the approaches using mathe-
matical programming such as linear or mixed-integer pro-
gramming for which ready to use solvers exist.

An analysis of the table suggests that there are many
approaches to workflow scheduling and resource provision-
ing on clouds, but there is still room for improvement. New
infrastructure types, including hybrid and federated clouds
should be investigated, more emphasis should be put on
problems with multiple interrelated workflows, and new
methods for combining static and dynamic workloads and
algorithms offer potentially interesting areas of research.
Finally, other objectives and constraints in addition to
budget and execution time can be explored.

In this context, we consider our attempt to address
workflow ensembles using both static and dynamic algo-
rithms presented in this paper an interesting and original
contribution that has not been explored before.

3. Problem Description

3.1. Resource Model

We assume a resource model similar to Amazon’s Elas-
tic Compute Cloud (EC2), where virtual machine (VM)
instances may be provisioned on-demand and are billed
by the hour, with partial hours being rounded up. Al-
though there may be heterogeneous VM types with differ-
ent amounts of CPU, memory, disk space, and I/O, for this
paper we focus on a single VM type because we assume
that for most applications there will typically be only one
or two VM types with the best price/performance ratio
for the application [43]. We assume that a submitted task
has exclusive access to a VM instance and that there is no
preemption. We also assume that there is a delay between
the time that a new VM instance is requested and when
it becomes available to execute tasks.

3.2. Application Model

The target applications are ensembles of scientific work-
flows that can be modeled as DAGs, where the nodes in
the graph represent computational tasks, and the edges
represent data- or control-flow dependencies between the
tasks. We assume that runtime estimates for the workflow
tasks are known, but that they are not perfect and may
vary based on a uniform distribution of ±p%.

This study uses synthetic workflows that were gener-
ated using historical data from real applications [44]. The
applications come from a wide variety of domains includ-
ing: bioinformatics (Epigenomics, SIPHT: sRNA identi-
fication protocol using high-throughput technology), as-
tronomy (Montage), earthquake science (CyberShake), and
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Table 1: Summary table of related work on workflow scheduling and provisioning.
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Zhao et al. '06 [28] + - - - + + - + - + - - - + - - - - - + - -
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Kim et al. '11 [14] + - + - - + - - + - - - - - - - - - - + - -
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Durillo et al. '14 [36] - + - + - + - + - + + - - - - - - - - + + -
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physics (LIGO). The synthetic workflows were generated
using code developed in [45], with task runtimes based on
distributions gathered from running real workflows.

Although workflows are often data-intensive, the algo-
rithms described here do not currently consider the size of
input and output data when scheduling tasks. Instead, it is
assumed that all workflow data is stored in a shared cloud
storage system, such as Amazon S3, and that intermedi-
ate data transfer times are included in task runtimes. It is
also assumed that data transfer times between the shared
storage and the VMs are equal for different VMs so that
task placement decisions do not impact the runtime of the
tasks.

We assume that each workflow in an ensemble is given
a numeric priority that indicates how important the work-

flow is to the user. As such, the priorities indicate the
utility function of the user. These priorities are absolute
in the sense that completing a workflow with a given prior-
ity is more valuable than completing all other workflows in
the ensemble with lower priorities combined. The goal of
the workflow ensemble scheduling and cloud provisioning
problem is to complete as many high-priority workflows as
possible given a fixed budget and deadline. Only work-
flows for which all tasks are finished by the deadline are
considered to be complete—partial results are not usable
in this model.

3.3. Performance Metric

In order to precisely define the objective of the algo-
rithms it is necessary to introduce a metric that can be
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used to score the performance of the different algorithms
on a given problem (ensemble, budget, and deadline). The
simplest approach is to count the number of workflows
in the ensemble that each algorithm is able to complete
within the budget before the deadline, but this metric does
not account for the priority-based utility function speci-
fied by the user. Using the counting approach, a less ef-
ficient algorithm may be able to complete a large number
of low-priority workflows by executing the smallest work-
flows first. In order to account for the priority, we use an
exponential scoring defined as:

Score(e) =
∑

w ∈ Completed(e)

2−Priority(w) (1)

where Completed(e) is the set of workflows in ensemble e
that was completed by the algorithm, and Priority(w) is
the priority of workflow w such that the highest-priority
workflow has Priority(w) = 0, the next highest workflow
has Priority(w) = 1, and so on. This exponential scoring
function gives the highest priority workflow a score that is
higher than all the lower- priority workflows combined:

2−p >
∑

i = p+1, ...

2−i

This scoring is consistent with our definition of the prob-
lem, which is to complete as many workflows as possible,
according to their priorities, given a set budget and dead-
line.

4. Algorithms

This section describes three algorithms that were de-
veloped to schedule and provision resources for ensembles
of workflows on the cloud under budget and deadline con-
straints.

4.1. Dynamic Provisioning Dynamic Scheduling (DPDS)

DPDS is an online algorithm that provisions resources
and schedules tasks at runtime. It consists of two main
parts: a provisioning procedure, and a scheduling proce-
dure.

DPDS’ provisioning procedure is based on resource uti-
lization. DPDS starts with a fixed number of resources
calculated based on the available time and budget, and ad-
justs the number of resources according to how well they
are utilized by the application. Given a budget in dollars
b, deadline in hours d, and the hourly price of a VM in
dollars p, it is possible to calculate the number of VMs,
NVM , to provision so that the entire budget is consumed
before the deadline:

NVM = db/(d ∗ p)e (2)

DPDS provisions NVM VMs at the start of the ensem-
ble execution, then it periodically computes resource uti-
lization using the percentage of idle VMs over time and

Algorithm 1 Dynamic provisioning algorithm for DPDS

Require: c: consumed budget; b: total budget; d: deadline; p:
price; t: current time; uh: upper utilization threshold; ul: lower
utilization threshold; vmax: maximum number of VMs

1: procedure Provision
2: VR ← set of running VMs
3: VC ← set of VMs completing billing cycle
4: VT ← ∅ . set of VMs to terminate
5: nT ← 0 . number of VMs to terminate
6: if b− c < |VC | ∗ p or t > d then
7: nT ← |VR| − b(b− c)/pc
8: VT ← select nT VMs to terminate from VC

9: Terminate(VT )
10: else
11: u← current VM utilization
12: if u > uh and |VR| < vmax ∗NV M then
13: Start(new VM)
14: else if u < ul then
15: VI ← set of idle VMs
16: nT ← d|VI |/2e
17: VT ← select nT VMs to terminate from VI

18: Terminate(VT )
19: end if
20: end if
21: end procedure

Algorithm 2 Priority-based scheduling algorithm for
DPDS
1: procedure Schedule
2: P ← empty priority queue
3: IdleV Ms← set of idle VMs
4: for root task t in all workflows do
5: Insert(t, P )
6: end for
7: while deadline not reached do
8: while IdleV Ms 6= ∅ and P 6= ∅ do
9: v ← SelectRandom(IdleV Ms)

10: t← Pop(P )
11: Submit(t, v)
12: end while
13: Wait for task t to finish on VM v
14: Update P with ready children of t
15: Insert(v, IdleV Ms)
16: end while
17: end procedure

adjusts the number of VMs if the utilization is above or
below given thresholds. Because it is assumed that VMs
are billed by the hour, DPDS only considers VMs that are
approaching their hourly billing cycle when deciding which
VMs to terminate. This dynamic provisioning algorithm
is shown in Algorithm 1.

The set of VMs completing their billing cycle is deter-
mined by both the provisioner interval, and the termina-
tion delay of the provider. This guarantees that VMs can
be terminated before they start the next billing cycle and
prevents the budget from being overrun. The VMs ter-
minated in line 9 of Algorithm 1 are the ones that would
overrun the budget if not terminated in the current provi-
sioning cycle. The VMs terminated in line 18 are chosen to
increase the resource utilization to the desired threshold.
In order to prevent instances that have already been paid
for from being terminated too quickly, no more than half
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of the idle resources are terminated during each provision-
ing cycle. To avoid an uncontrolled increase in the number
of instances, which may happen in the case of highly par-
allel workflows, the provisioner will not start a new VM if
the number of running VMs is greater than the product
of NVM (from Equation 2) and an autoscaling parameter,
vmax. Unless otherwise specified, vmax is assumed to be 1.

In order to schedule individual workflow tasks onto
available VMs, DPDS uses the dynamic, priority-based
scheduling procedure shown in Algorithm 2. Initially, the
ready tasks from all workflows in the ensemble are added
to a priority queue based on the priority of the workflow
to which they belong. If there are idle VMs available, and
the priority queue is not empty, the next task from the
priority queue is submitted to an arbitrarily chosen idle
VM. The process is repeated until there are no idle VMs
or the priority queue is empty. The scheduler then waits
for a task to finish, adds its ready children to the prior-
ity queue, marks the VM as idle, and the entire process
repeats until the deadline is reached.

DPDS guarantees that tasks from lower priority work-
flows are always deferred when higher-priority tasks are
available, but lower-priority tasks can still occupy idle
VMs when higher-priority tasks are not available. Since
there is no preemption, long-running low-priority tasks
may delay the execution of higher-priority tasks. In ad-
dition, tasks from low priority workflows may be executed
even though there is no chance that those workflows will
be completed within the current budget and deadline.

4.2. Workflow-Aware DPDS (WA-DPDS)

DPDS does not use any information about the struc-
ture of the workflows in the ensemble when scheduling
tasks. It does not consider whether a lower priority task
belongs to a workflow that will never be able to complete
given the current budget and deadline. As a result, DPDS
may start lower priority tasks just to keep VMs busy that
will end up delaying higher priority tasks later on, making
it less likely that higher priority workflows will be able to
finish.

The Workflow-Aware DPDS (WA-DPDS) algorithm ex-
tends DPDS by introducing a workflow admission proce-
dure, which is invoked whenever WA-DPDS sees the first
task of a new workflow at the head of the priority queue
(i.e. when no other tasks from the workflow have been
scheduled yet). The admission procedure— shown in Al-
gorithm 3—estimates whether there is enough budget re-
maining to admit the new workflow; if there is not, then
the workflow is rejected and its tasks are removed from the
queue. WA-DPDS compares the current cost (consumed
budget) and remaining budget, taking into account the
cost of currently running VMs, and the cost of workflows
that have already been admitted. In addition, it adds a
small safety margin of $0.10 (10% of the compute hour
cost) to avoid going over budget. We found the admission
procedure useful not only to prevent low-priority workflows
from delaying high-priority ones, but also to reject large

Algorithm 3 Workflow admission algorithm for WA-
DPDS
Require: w: workflow; b: budget; c: current cost
1: procedure Admit(w, b, c)
2: rn ← b− c . Budget remaining for new VMs
3: rc ←cost committed to VMs that are running
4: ra ←cost to complete workflows previously admitted
5: rm ← 0.1 . Safety margin
6: rb ← rn + rc − ra − rm . Budget remaining
7: cw ← EstimateCost(w)
8: if cw < rb then return TRUE
9: else return FALSE

10: end if
11: end procedure

and costly workflows that would overrun the budget and
admit smaller workflows that can efficiently utilize idle re-
sources in ensembles containing workflows of non-uniform
sizes. It would also be possible to extend this admission
procedure to check other constraints, such as whether the
estimated critical path of the new workflow exceeds the
time remaining until the deadline.

4.3. Static Provisioning Static Scheduling (SPSS)

The previous dynamic (online) algorithms make provi-
sioning and scheduling decisions at runtime. By contrast,
the SPSS algorithm creates a provisioning and schedul-
ing plan before running any workflow tasks. This enables
SPSS to start only those workflows that it knows can be
completed given the deadline and budget constraints, and
eliminates any waste that may be allowed by the dynamic
algorithms.

The approach used by SPSS is to plan each workflow
in the ensemble in priority order, rejecting any workflows
that would exceed the deadline or budget. Once the plan is
complete, the VMs are provisioned and tasks are executed
according to the schedules given by the plan.

The disadvantage of the static planning approach used
by SPSS is that it is sensitive to dynamic changes in the
environment and the application that may disrupt its care-
fully constructed plan. For example, if there are provision-
ing delays, or if the runtime estimates for the tasks are
inaccurate, then workflow execution may diverge from the
plan. This issue will be discussed further in Sections 6.4
and 6.5.

Algorithm 4 shows how ensembles are planned in SPSS.
Workflows from the ensemble are considered in priority or-
der. For each workflow, SPSS attempts to build on top of
the current plan by provisioning VMs to schedule the tasks
of the workflow so that it finishes before the deadline with
the least possible cost. If the cost of the new plan is less
than the budget, then the new plan is accepted and the
workflow is admitted. If not, then the new plan is rejected
and the process continues with the next workflow in the
ensemble. The idea is that, if each workflow can be com-
pleted by the deadline with the lowest possible cost, then
the number of workflows that can be completed within the
given budget will be maximized.
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Algorithm 4 Ensemble planning algorithm for SPSS

Require: W : workflow ensemble; b: budget; d: deadline
Ensure: Schedule as much of W as possible given b and d
1: procedure PlanEnsemble(W, b, d)
2: P ← ∅ . Current plan
3: A← ∅ . Set of admitted DAGs
4: for w in W do
5: P ′ ← PlanWorkflow(w,P, d)
6: if Cost(P ′) ≤ b then
7: P ← P ′ . Accept new plan
8: A← A + w . Admit w
9: end if

10: end for
11: return P,A
12: end procedure

To plan a workflow, the SPSS algorithm assigns sub-
deadlines to each individual task in the workflow, and
then schedules each task so as to minimize the cost of
the task while still meeting its assigned sub-deadline. If
each task can be completed by its deadline in the least
expensive way, then the cost of the entire workflow can be
minimized without exceeding the deadline. SPSS assigns
sub-deadlines to each task based on the slack time of the
workflow, which is defined as the amount of extra time
that a workflow can extend its critical path and still be
completed by the ensemble deadline. For a workflow w,
the slack time of w is: ST (w) = d−CP (w) where d is the
deadline and CP (w) is the critical path of w. We assume
that CP (w) ≤ d, otherwise the workflow cannot be com-
pleted by the deadline and must be rejected. For large
ensembles we expect the critical path of any individual
workflow to be much less than the deadline.

A task’s level is the length of the longest path between
the task and an entry task of the workflow:

Level(t) =

{
0, if Pred(t) = ∅
maxp∈Pred(t) Level(p) + 1, otherwise.

SPSS distributes the slack time of the workflow by level,
so that each level of the workflow gets a portion of the
workflow’s slack time proportional to the number of tasks
in the level and the total runtime of tasks in the level.
The idea is that levels containing many tasks and large
runtimes should be given a larger portion of the slack time
so that tasks in those levels may be serialized. Otherwise,
many resources need to be allocated to run all of the tasks
in parallel, which may be more costly.

The slack time of a level l in workflow w is given by:

ST (l) = ST (w)

[(
α
N(l)

N(w)

)
+

(
(1− α)

R(l)

R(w)

)]

where N(w) is the number of tasks in the workflow, N(l)
is the number of tasks in level l, R(w) is the total runtime
of all tasks in the workflow, R(l) is the total runtime of
all tasks in level l, and α is a parameter between 0 and
1 that causes more slack time to be given to levels with
more tasks (large α) or more runtime (small α).

Algorithm 5 Workflow planning algorithm for SPSS

Require: w: workflow; P : current plan; d: deadline
Ensure: Create plan for w that minimizes cost and meets deadline

d
1: procedure PlanWorkflow(w,P, d)
2: P ′ ← copy of P
3: DeadlineDistribution(w,d)
4: for t in w sorted by DL(t) do
5: v ← VM that minimizes cost and start time of t
6: if FinishT ime(t, v) < DL(t) then
7: Schedule(t,v)
8: else
9: Provision a new VM v

10: Schedule(t,v)
11: end if
12: end for
13: return P ′

14: end procedure

The deadline of a task t is then:

DL(t) = LST (t) +RT (t) + ST (Level(t)) (3)

where Level(t) is the level of t, RT (t) is the runtime of t,
and LST (t) is the latest start time of t determined by:

LST (t) =

{
0, if Pred(t) = ∅
maxp∈Pred(t)DL(p), otherwise.

Algorithm 5 shows how SPSS creates low-cost plans
for each workflow. The PlanWorkflow procedure first
calls DeadlineDistribution to assign sub-deadlines to
tasks. Then, PlanWorkflow schedules tasks onto VMs,
allocating new VMs when necessary. For each task in the
workflow, the least expensive slot is chosen to schedule the
task so that it can be completed by its deadline. VMs are
allocated in blocks of one billing cycle (one hour) regard-
less of the size of the task. When computing the cost of
scheduling a task on a given VM, the algorithm considers
idle slots in blocks that were allocated for previous tasks
to be free, while slots in new blocks cost the full price of
a billing cycle. For example, if a task has a runtime of
10 minutes, and the price of a block is $1, then the al-
gorithm will either schedule the task on an existing VM
that has an idle slot larger than 10 minutes for a cost of
$0, or it will allocate a new block on an existing VM, or
provision a new VM, for a cost of $1. If the cost of slots
on two different VMs is equal, then the slot with the ear-
liest start time is chosen. To prevent too many VMs from
being provisioned, the algorithm always prefers to extend
the runtime of existing VMs before allocating new VMs.
The result of this is that the algorithm will only allocate
a new block if there are no idle slots on existing blocks
large enough or early enough to complete the task by its
deadline, and it will only allocate a new VM if it cannot
add a block to an existing VM to complete the task by its
deadline.

4.4. Illustrative example

To illustrate how the algorithms perform, we prepared
an artificial ensemble of three workflows, as seen in Fig-
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ure 1. The deadline is set to 6 hours and the budget to $18.
In this example we assume that there are no VM provision-
ing delays, the runtime estimates are accurate, there are
no failures and the cost of 1 VM-hour is $1. For dynamic
algorithms we assume that the low utilization threshold
(ul) for deprovisioning is 50% and that the autoscaling
parameter vmax = 1.

Priority: 

1 

2 

3 

a.70 

a.95 

a.110 

a.100 

a.160 

b.70 

b.75 

b.90 

b.60 

b.100 

c.45 

c.55 c.50 

c.65 

c.60 

Figure 1: Artificial ensemble consisting of three workflows
{a, b, c}, with priorities {1, 2, 3}. Task labels indicate
estimated execution time in minutes, so e.g. task a.70 has
estimated execution time of 70 minutes.

The resulting schedule produced by DPDS algorithm
is shown in Figure 2. The algorithm at the beginning esti-
mates that it needs 3 VM instances by dividing the budget
by the deadline (18/6 = 3). Next, it schedules all the ready
tasks in the priority order, so a.70 is started first, and im-
mediately b.70 and c.60 are started, since no other tasks
of workflow a are ready. When task a.60 completes, there
are again other no higher priority tasks ready, so the next
task from workflow c can be started (c.45). Since there
is no preemption, this results in workflow a being delayed
by the lower priority workflow c. Finally, the outcome of
this dynamic scheduling policy is that none of the work-
flows completes within the deadline. Actually, tasks b.100,
c.65 and a.160 are not finished since all the VMs are ter-
minated due to running out of budget. The exponential
score achieved by the algorithm computed according to
equation 1 is 0. On the other hand, we can observe that
the utilization of the VMs is kept on the level of 100%
throughout the whole execution time, which may be con-
sidered an advantage in some cases.

The resulting schedule produced by the WA-DPDS al-
gorithm is shown in Figure 3. The schedule is generated
in a similar way as in DPDS algorithm, with one notable
difference. After scheduling tasks a.70 and b.70, the algo-
rithm estimates whether it has enough budget to admit

a.70 a.95 

a.110 

a.100 a.160 

b.70 

b.75 

b.90 

b.60 b.100 

c.60 c.45 

c.50 c.65 

VM.1 

VM.2 

VM.3 

60 120 180 240 300 360 0 
Time in minutes 

Figure 2: Schedule produced by DPDS algorithm for the
example ensemble from Figure 1. White boxes indicate
VM instances provisioned for their hourly time slots, and
solid boxes indicate running tasks. None of the workflows
completes within the deadline.

workflow c. Since based on the sum of task runtimes there
is no room for workflow c, the whole workflow is rejected.
As a consequence, task a.100 can start at time t = 70 min-
utes. Therefore workflow a is not delayed as in the case of
DPDS. One can also observe that VM.2 and VM.3 remain
idle for one hour, which is the consequence of the conserva-
tive provisioning settings we assume in this example. This
means that VM utilization at the level of 2/3 does not
trigger deprovisioning in this case, and the maximum au-
toscaling factor set to 1 prevents from provisioning of new
VMs over the initial number even if utilization is 100%. In
the resulting schedule only workflow a completes, so the
score is 2−1 = 0.5, which is better than DPDS.

a.70 a.95 

a.110 

a.100 a.160 

b.70 

b.75 

b.90 

b.60 b.100 

60 120 180 240 300 360 0 
Time in minutes 

VM.1 

VM.2 

VM.3 

Figure 3: Schedule produced by WA-DPDS algorithm for
the example ensemble from Figure 1. Workflow a com-
pletes within the deadline.

The final schedule produced by the SPSS algorithm
is shown in Figure 4. SPSS generates this schedule by
considering workflows in priority order. It first considers
workflow a, and develops a low-cost schedule that com-
pletes a by its deadline using a minimum number of VM-
hours. This process involves assigning a deadline to each
task according to Equation 3, and then scheduling tasks
in deadline-order on the VM that can complete each task
by its deadline with the the minimum increase in cost.
Once a has been scheduled, SPSS will develop an updated
low-cost schedule that includes workflow b. However, after
adding b, the algorithm will determine that the total cost
of the combined schedule for a and b is greater than the

8



budget, and will reject workflow b and remove it from the
schedule. It will then consider workflow c, and develop a
low-cost schedule that adds c to the existing schedule for
a. In order to complete each job in c by its deadline, SPSS
provisions 6 additional VM-hours, which includes adding
an hour to the start time of VM.2 for task c.60, adding
an hour to the end of VM.2 for task c.45, adding an hour
to the end of VM.3 for c.50, adding a new VM, VM.4,
for 2 hours to run c.65, and finally adding another hour
to the end of VM.2 for c.55. The resulting schedule has a
total cost of 16 VM-hours, or $16, which is less than the
budget of $18 and completes both a and c by the deadline.
The exponential score is then 2−1 + 2−3 = 0.625, which is
better than WA-DPDS.

a.70 a.95 

a.110 

a.100 

a.160 

c.60 c.45 

c.50 

c.65 

c.55 

60 120 180 240 300 360 0 
Time in minutes 

VM.1 

VM.2 

VM.3 

VM.4 

Figure 4: Schedule produced by SPSS algorithm for the
example ensemble from Figure 1. Workflows a and c com-
plete within the given budget and deadline.

The example given above illustrates the main concepts
of the algorithms using the artificial ensemble. Two addi-
tional example schedules generated using our simulator are
shown in Figure 5. The schedule generated using DPDS
(Figure 5a) illustrates how tasks from lower priority work-
flows backfill idle VMs when tasks from higher priority
workflows are not ready for execution. On the other hand,
the schedule generated by SPSS (Figure 5b) shows how
SPSS tends to start many workflows in parallel, running
each workflow over a longer period of time on only a few
VMs to minimize cost. In comparison, the dynamic algo-
rithms tend to run one workflow at a time across many
VMs in parallel.

5. Evaluation Methods

5.1. Simulator

To evaluate and compare the three proposed algorithms,
we developed a cloud workflow simulator [46] based on
CloudSim [9]. Our simulation model consists of Cloud,
VM and WorkflowEngine entities. The Cloud entity starts
and terminates VM entities using an Amazon EC2-like
API. VM entities simulate the execution of individual tasks,
including randomized variations in runtime. The Work-
flowEngine entity manages the scheduling of tasks and

V
M

Time

(a) DPDS

V
M

Time

(b) SPSS

Figure 5: Example schedules generated by the algorithms.
Each row is a different VM. Boxes are tasks colored by
workflow.

the provisioning of VMs based on the chosen algorithm.
We assume that the VMs have a single core and exe-
cute tasks sequentially. Although CloudSim provides a
more advanced infrastructure model, which includes time-
sharing and space-sharing policies, we do not use these
features since we are interested mainly in the execution of
tasks on VMs and high-level workflow scheduling and pro-
visioning. The simulator reads workflow description files
in a modified version of the DAX format used by the Pe-
gasus Workflow Management System [47].

The decision to use a simulator instead of actually exe-
cuting workflows on clouds was motivated by our intention
to perform an extensive analysis of the algorithms in vari-
ous aspects. This results in a very large parameter space.
For example, the analysis presented in Section 6.4 required
525,000 simulations of workflow ensembles, each ensemble
consisting of 50 workflows with up to 1000 tasks per work-
flow. Not only would this be impractical to run on a real
infrastructure for obvious reasons, but it would also not en-
able us to study interesting aspects of the problem, such as
the influence of task granularity presented in Section 6.3.
Our use of a simulator, although quite compute-intensive
itself, enabled us to study all these aspects in detail.

5.2. Workflow Ensembles

In order to evaluate the algorithms on a standard set of
workflows, we created randomized ensembles using work-
flows available from the workflow generator gallery [45, 48].
The gallery contains synthetic workflows modeled using
structures and parameters that were taken from real appli-
cations. Ensembles were created using synthetic workflows
from five real applications: SIPHT, LIGO, Epigenomics,
Montage and CyberShake. For each application, workflows
with 50, 100, 200, 300, 400, 500, 600, 700, 800, 900 and
1000 tasks were created. For each workflow size, 20 differ-
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ent workflow instances were generated using parameters
and task runtime distributions from real workflow traces.
The total collection of synthetic workflows contains 5 ap-
plications, 11 different workflow sizes, and 20 workflow
instances, for a total of 1100 synthetic workflows.

Using this collection of workflows, we constructed five
different ensemble types: constant, uniform sorted, uni-
form unsorted, Pareto sorted and Pareto unsorted. In the
unsorted ensembles, workflows of different sizes are mixed
together and the priorities are assigned randomly. For
many applications, however, large workflows are more im-
portant to users than small workflows because they rep-
resent more significant computations. To model this, the
sorted ensembles are sorted by size, so that the largest
workflows have the highest priority.

Constant ensembles contain workflows that all have the
same number of tasks. The number of tasks is chosen
randomly from the set of possible workflow sizes. Once
the size is determined, then N workflows of that size are
chosen randomly for the ensemble from the set of synthetic
workflows.

Uniform ensembles contain workflows with sizes that
are uniformly distributed among the set of possible sizes.
Each workflow is selected by first randomly choosing the
size of the workflow and then randomly choosing a work-
flow of that size from the set of synthetic workflows.

Pareto ensembles contain a small number of larger work-
flows and a large number of smaller workflows. Their sizes
are chosen according to a Pareto distribution. The dis-
tribution was modified so that the number of large work-
flows (of size ≥ 900) is increased by a small amount to
produce a “heavy-tail”. This causes Pareto ensembles to
have a slightly larger number of large workflows, which
reflects behavior commonly observed in many computa-
tional workloads. An example of the distribution of work-
flow sizes that occurs in a Pareto ensemble is shown in
Figure 6.

The number of workflows in an ensemble depends on
the particular application, but we assume that ensemble
sizes are on the order of between 10 and 100 workflows,
typical of the real applications we have examined (see Sec-
tion 1). For example, the number of geographical sites of
interest to the users of the CyberShake application in the
past has been on the order of 100. Second, smaller ensem-
bles consisting of just a few workflows can be aggregated
into a single workflow, so there is no need to treat them
as an ensemble. Similarly, when the number of workflows
grows and each workflow has a large number of tasks, ei-
ther the deadline and budget constraints are low enough to
prevent many of the workflows from running, or the prob-
lem of efficiently allocating them to the resources becomes
similar to a bag-of-tasks problem, which is easier to solve
efficiently.

5.3. Experimental Parameters

In order to observe the interesting characteristics of
the proposed algorithms, for each ensemble, we selected
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Figure 6: Histogram of workflow sizes in Pareto ensembles.
Workflow size is measured in number of tasks.

ranges for deadline and budget that cover a broad parame-
ter space: from tight constraints, where only a small num-
ber of workflows can be completed, to more liberal con-
straints where all, or almost all, of the workflows can be
completed. We computed constraint ranges based on the
characteristics of each ensemble. The budget constraints
are calculated by identifying the smallest budget required
to execute one of the workflows in the ensemble (Min-
Budget), and the smallest budget required to execute all
workflows in the ensemble (MaxBudget):

MinBudget = min
w ∈ e

Cost(w)

MaxBudget =
∑

w ∈ e

Cost(w)

This range—[MinBudget,MaxBudget]—is then divided
into equal intervals to determine the budgets to use in
each experiment. Similarly, the deadline constraints are
calculated by identifying the smallest amount of time re-
quired to execute a single workflow in the ensemble (Min-
Deadline), which is the length of the critical path for the
workflow with the shortest critical path, and by identify-
ing the smallest amount of time required to execute all
workflows (MaxDeadline), which is the sum of the critical
paths of all the workflows:

MinDeadline = min
w ∈ e

CriticalPath(w)

MaxDeadline =
∑

w ∈ e

CriticalPath(w)

This range—[MinDeadline,MaxDeadline]—is then divided
into equal intervals. By computing the budget and dead-
line constraints in this way we ensure that the experiments
for each ensemble cover the most interesting area of the
parameter space for the ensemble.
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In all the experiments we assumed that the VMs have a
price of $1 per VM-hour. This price was chosen to simplify
interpretation of results and should not affect the relative
performance of the different algorithms. In this study the
heterogeneity of the infrastructure is not relevant since
we assume that it is always possible to select a VM type
that has the best price to performance ratio for a given
application [43].

All the experiments were run with maximum autoscal-
ing factor (vmax) set to 1.0 for DPDS and WA-DPDS.
After experimenting with DPDS and WA-DPDS we found
that, due to the high parallelism of workflows used, the re-
source utilization remains high enough without adjusting
the autoscaling rate. Based on experiments with the tar-
get applications, we set the SPSS α parameter for deadline
distribution to be 0.7, which allocates slightly more time
to levels with many tasks.

6. Discussion of Results

6.1. Relative Performance of Algorithms

The goal of the first experiment is to characterize the
relative performance of the proposed algorithms. This was
done by simulating the algorithms on many different en-
sembles and comparing the scores computed using the per-
formance metric based on exponential scoring defined in
Section 3.3.

Figure 7 shows the percentage of simulations for which
each algorithm achieved the highest score for a given en-
semble type. This experiment was conducted using all
five applications, with all five types of ensembles. For
each application and ensemble type, 10 random ensem-
bles of 50 workflows each were created. Each ensemble
was simulated with all three algorithms using 10 budgets
and 10 deadlines (1,000 simulations per application, en-
semble type, and algorithm, or 75,000 in total). The best
scores percentage is computed by counting the number of
times that a given algorithm achieved the highest score
and dividing by 1000. Note that it is possible for multi-
ple algorithms to get the same high score (to tie), so the
numbers do not necessarily add up to 100%. The sum is
much higher than 100% in cases where the dynamic al-
gorithms perform relatively well because DPDS and WA-
DPDS, which are very similar algorithms, often get the
same high score.

There are several interesting things to notice about Fig-
ure 7. The first is that, in most cases, SPSS significantly
outperforms both dynamic algorithms (DPDS and WA-
DPDS). This is attributed to the fact that SPSS is able
to make more intelligent scheduling and provisioning deci-
sions because it has the opportunity to compare different
options and choose the one that results in the best out-
come. In comparison, the dynamic algorithms are online
algorithms and are not able to project into the future to
weigh the outcomes of their choices.

The second thing to notice is that, for constant ensem-
bles, the dynamic algorithms perform significantly better

relative to SPSS compared to other ensemble types. This
is a result of the fact that, since all of the workflows are
of approximately the same size and shape, the choice of
which workflow to execute next has a smaller impact on
the final result.

We can also see that the workflow-aware algorithms
(WA-DPDS and SPSS) both perform better in most cases
than the simple online algorithm that uses resource utiliza-
tion alone to make provisioning decisions (DPDS). This
suggests that there is a significant value in having infor-
mation about the structure and estimated runtime of a
workflow when making scheduling and provisioning deci-
sions.

Finally, it is interesting that, for Montage and Cyber-
Shake, the relative performance of SPSS is significantly
less than it is for other applications. We attribute this to
the structure of Montage and CyberShake. The workflows
for both applications are very wide relative to their height,
and both have very short-running tasks, resulting in rela-
tively short critical paths that makes them look more like
bag-of-tasks applications, which are easier to execute than
more structured applications. DPDS and WA-DPDS are
able to pack more of the tasks into the available budget
and deadline because there are a) more choices for where to
place the tasks, and b) the different choices have a smaller
impact on the algorithms’ ability to execute the workflow
within the constraints. In addition, the short critical paths
put SPSS at a disadvantage. Because of the way SPSS as-
signs deadlines to individual tasks, it is prevented from
starting workflows late, which prevents it from packing
tasks into the idle VM slots at the end of the schedule.

6.2. Results vs. varying deadline and budget

In order to give more details about the performance
of the algorithms, in this section we show how the re-
sults depend on the deadline and budget constraints. As
the performance metric we use the number of completed
workflows of the ensemble, since the exponential score is
not suitable for showing trends. We use all deadline and
budget parameters as defined in Section 5.3 and normal-
ize them to the range from 0 to 1 to facilitate plotting.
For each normalized deadline, we compute the mean num-
ber of completed workflows, averaged over all budgets and
random seeds, so each point on the plot is based on 100
different simulation runs. In Figure 8 and 9 we present
the results of CyberShake and LIGO applications, as rep-
resentatives of fine-grained and coarse-grained workflows.
Similar results were obtained for other applications.

Figure 8 shows the results depending on normalized
deadline. It can be observed, that with increasing dead-
line, the number of completed workflows grows steeply and
then stabilizes. This means that for longer deadlines it is
usually not possible to complete more workflows due to
the budget constraint. For short deadlines, the algorithms
need to allocate more VM instances in parallel, making
it more difficult to utilize the resources efficiently, which
results in lower numbers of completed workflows.
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Figure 7: Percentage of high scores achieved by each algorithm on different ensemble types for all five applications. C =
Constant ensembles, PS = Pareto Sorted ensembles, PU = Pareto Unsorted ensembles, US = Uniform Sorted ensembles,
and UU = Uniform Unsorted ensembles.
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Figure 8: Number of completed workflows from the ensemble depending on normalized deadline.

We can also observe that the algorithms are able to
complete more workflows in the ensembles that have pri-
orities assigned randomly (unsorted), in comparison to the
ensembles where the priorities are assigned based on work-
flow size (sorted). This results from the fact that in the
unsorted distributions the large workflows often have low
priorities, so they can be rejected by the algorithms, thus
making more space in the schedule for smaller high-priority
workflows.

One interesting observation from Figure 8 is that for
CyberShake application the result curves have a sawtooth
shape. This results from the combination of two effects.
The first comes from the fact that dynamic algorithms
perform better when the deadline is close to the full hour,
due to the provisioning mechanism that tries to shut down
unused VM instances before a full hour. The second one is
that when the deadline increases, it may become possible
to admit a larger workflow with higher priority instead of
several smaller ones with lower priority. That is why the
number of completed workflows may decrease, but the ex-
ponential score (utility function) based on priorities will be

higher. These effects are visible for CyberShake applica-
tion, for which the maximum deadline is 3 hours, but they
become less important for LIGO application, for which the
maximum deadline is 20 hours. See also the discussion on
task granularity in Setion 6.3.

Figure9 shows the results based on normalized budget,
each point being the average over all deadline and random
seed. What becomes apparent is that for constant and
unsorted distributions the number of completed workflows
is almost linear. This confirms that the budget constraint
has the linear influence on the results, when the influence
of the deadline is eliminated by averaging. On the other
hand, for sorted distributions the functions are convex, in-
creasing slowly for small budgets and steeper for larger
budgets. This reflects the fact that the in sorted ensem-
bles the largest workflows have the highest priority, so it
requires a large increment of a small budget to fit the next
workflow into the schedule.

The characteristics discussed in this section can be use-
ful not only for analysis of our algorithms, but also for
planning scientific experiments and understanding trade-
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Figure 9: Number of completed workflows from the ensemble depending on normalized budget.

offs between cost, deadline and the number of work com-
plete [49].

6.3. Task Granularity

In the experiments described in previous sections we
noted that, for Montage and CyberShake, the short run-
times of their tasks made the dynamic algorithms perform
better relative to SPSS. In order to test this theory we
adjusted the granularity of the tasks in several Montage
and CyberShake ensembles to see how this would affect
the relative performance of the algorithms. The granular-
ity adjustment was achieved by multiplying the runtime of
each task by a fixed scaling factor.

Figure 10 shows the relative performance of the algo-
rithms as the scaling factor is increased from 1 to 16 for
CyberShake and Montage applications. Each data point
in the figure represents 500 simulations (5 ensembles with
10 budgets and 10 deadlines). The best scores percent was
calculated the same way as it was for Figure 7.

The figure shows that, as the scaling factor increases
beyond 2, the relative performance of SPSS surpasses that
of the dynamic algorithms. This result suggests that, in
general, for fine-grained workflows the dynamic algorithms
will produce better scores, and for coarse-grained work-
flows SPSS will produce better scores.

The granularity of the workflow tasks should be dis-
cussed in relation to the length of the cloud billing cycle.
In this paper we assumed that the resources are billed by
the hour, as is the case of VM instances on Amazon EC2.
However, there are cloud providers that have higher billing
frequency, e.g. every 5 minutes in the case of CloudSigma1

1http://www.cloudsigma.com

or every 1 minute in the case of Google Compute Engine2

(after first 10 minutes). Our results indicate that when
the task granularity is close to the length of the billing
period, SPSS produces better results, while for tasks that
are shorter than the billing period, dynamic algorithms
perform better. This suggests that these granularity ef-
fects have to be taken into account when selecting a cloud
provider, and also when using task clustering algorithms
that group smaller tasks into larger groups [50].

6.4. Inaccurate Task Runtime Estimates

Both of the workflow-aware algorithms rely on esti-
mates of task runtimes to make better scheduling and pro-
visioning decisions. Our experience suggests that such as-
sumption is often reasonable, since we can obtain workflow
performance characteristics from preliminary runs [44, 47,
51]. Some applications, like Periodograms [5] even include
a performance model that estimates task runtimes and
automatically annotates workflow description with these
data. In practice, however, these estimates are often inac-
curate. Given inaccurate estimates, the question is: How
do errors in task runtime estimates impact the perfor-
mance of our scheduling and provisioning algorithms? To
examine this we introduced uniform errors in the task run-
time and observed the behavior of the algorithms in terms
of meeting the desired budget and deadline constraints.

In this experiment the actual runtime of each task is
adjusted in the simulation by adding a random error to
the estimated runtime of ±p%. Since the sampling is done
uniformly, we expect to get just as many overestimates

2https://cloud.google.com/pricing/compute-engine
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as underestimates in any given simulation. Our approach
for generating errors is similar to the one used in [27],
where the random error represents the Quality of Estima-
tion metric.

Figure 11 shows the results for estimate errors ranging
from 0% to 50%. The figure summarizes the outcome of
an extensive suite of 525,000 simulations (10 ensembles
of 50 workflows x 5 applications x 5 distributions x 10
budgets x 10 deadlines x 7 error values x 3 algorithms).
Box plots show the ratio of the ensemble cost to budget,
and of ensemble makespan to deadline. Whiskers on the
plots indicate maximum and minimum values. The ratio
indicates whether the value (for example, the simulated
cost) exceeded the constraint (the budget). Values greater
than 1 indicate that the constraint was exceeded.

Figure 11a shows the ratio of simulated cost to budget.
This plot illustrates two important algorithm characteris-
tics. First, the dynamic algorithms very rarely exceeded
the budget, even with very large errors. This indicates that
the dynamic algorithms are able to adapt to uncertainties
at runtime to ensure that the constraints are not exceeded,
even when the quality of information available to them is
low. Second, unlike dynamic algorithms, the static algo-
rithm frequently exceeded the budget constraint; by large
amounts in some cases. This is a result of the fact that the
static algorithm makes all of its decisions ahead of the exe-
cution and is not able to adapt to changing circumstances.

The SPSS plan describes what tasks to execute on
which VMs, but not when to execute them. At runtime,
the workflow engine is forced to spend extra money to ex-
tend the runtime of some VMs so that all of the tasks
assigned to that VM can be completed. At the same time,
other VMs can be terminated early because the tasks they
were assigned finished earlier than expected. However, be-
cause of dependencies in the workflow, the latter case is
less likely to happen, which causes gaps in the schedule.
So the net result is that the overall cost is increased.

Figure 11b shows the ratio of simulated makespan to
budget. Interestingly, the deadline constraint is rarely ex-
ceeded, even in cases with very poor quality estimates.
For the dynamic algorithms this is a result of the fact that
they can adapt to poor estimates and stop submitting new
tasks when the constraints are reached. Makespan is then
computed as the finish time of the last fully completed
workflow from the ensemble. For the static algorithm this
is a result of the way that SPSS schedules workflows, and
not of a particularly clever optimization. The SPSS al-
gorithm tends to schedule workflows early, using up the
budget long before the deadline is reached. This is a con-
sequence of the deadline distribution function in SPSS,
which prevents workflows from starting late. This is il-
lustrated by the Gantt chart in Figure 5b, which shows
how SPSS tends to pile up workflows at the beginning of
the timeline. In comparison, the dynamic algorithms tend
to spread out workflow starts over the entire duration as
shown in Figure 5a. The consequence of this behavior
is that SPSS plans tend to use up the budget but leave

plenty of time before the deadline. As a result, when the
runtime of the plan is increased by introducing errors, the
SPSS plan has some room to expand without exceeding
the deadline.

Figure 12 shows relative performance as a percentage
of the number of high scores achieved by each algorithm
as the error increases. As in Figure 9 and 8 we show re-
sults for CyberShake and LIGO as representatives of fine-
grained and coarse-grained workflows. The figure shows
that, for this experiment, the scores remain the same as
the error increases. This is a result of the way the er-
ror is applied. Since the error is selected uniformly from
−p to +p it is equally likely that the error will be posi-
tive as negative. Therefore, applying the error leaves the
total runtime of the tasks in the workflow unchanged –
the total number of CPU hours in each workflow remains
nearly the same regardless of the error. The end result is
that the dynamic algorithms are able to achieve the same
score without exceeding the constraints by using a differ-
ent schedule that finishes the same total amount of work
using the same budget and deadline.

Note that the algorithms have not been changed to ac-
count for inaccurate runtime estimates in this experiment.
It is likely that better performance could be achieved if
the algorithms were given a hint as to the accuracy of the
task runtimes. Investigating that optimization is left for
future work. The goal here is to determine how well the
current algorithms are able to stay within the constraints
given inaccurate task runtime estimates.

It is possible that the static algorithm could be mod-
ified to add more breathing room in the schedule to ac-
count for situations where the runtime estimates may be
inaccurate. Such a modification would result in slightly
worse scores when the estimates are good, but would im-
prove scores when the estimates are bad. Alternatively,
the SPSS algorithm could be modified to generate a plan
that specifies when to provision and deprovision each VM.
In that case the workflow engine could be prevented from
exceeding the budget and deadline constraints, but would
prevent some workflows from finishing, which may signif-
icantly decrease the score. These two modifications are
subjects for future work.

6.5. Provisioning Delays

One important issue to consider when provisioning re-
sources in the cloud is the amount of time between when a
resource is requested, and when it actually becomes avail-
able to the application. Typically these provisioning delays
are on the order of a few minutes, and are highly depen-
dent upon the cloud architecture and/or the size of the
VM image [52].

We assume that resources are billed from the minute
that they are requested until they are terminated. As a
result, provisioning delays have an impact on both the cost
and makespan of an ensemble.

Figure 13 shows the ratios of simulated values to con-
straints when the provisioning delay is increased from 0
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seconds up to 15 minutes. The figure summarizes a suite
of 105,000 simulations (10 ensembles of 50 workflows x 5
distributions x 10 budgets x 10 deadlines x 7 error values
x 3 algorithms). To reduce the simulation time, only one
application, Montage, was used in this experiment.

As in Figure 11, the y-axis in each plot represents the
ratio of the simulated value to the constraint value for the
budget constraint or the deadline constraint.

The effect of provisioning delays on workflow perfor-
mance is similar to that of inaccurate runtime estimates:
when the delays are small, all algorithms are able to pro-
duce results within the constraints, but for larger delays,
the dynamic algorithms are able to adapt to avoid exceed-
ing the constraints while the static algorithm is not. In the
case of delays of more than one minute, which is typical of
what has been observed on academic clouds [53] such as
Magellan [54] and FutureGrid [55], approximately half of
the SPSS simulations exceeded the budget; in some cases
by up to a factor of 2. In comparison, none of the simula-
tions that used a dynamic algorithm exceeded the budget
or the deadline constraint.

Figure 14 shows the relative performance as a per-
centage of the number of high scores achieved by each
algorithm as the provisioning delay increases. This fig-
ure shows that, as the delay increases, the relative perfor-
mance of the static algorithm increases as well. This be-
havior is a result of the fact that the static algorithm is, in
essence, cheating by using more time and money than the
dynamic algorithms. In the previous section we showed
how the relative performance of the algorithms remains
the same when a uniform error is applied to the runtime
constraints. In that case, the dynamic algorithms adapted
to the error by rearranging the schedule to accomplish the
same amount of work given the same deadline and budget.
In this case, the dynamic algorithms adapt by performing
less work (executing fewer workflows) to remain within the
constraints while accounting for the delays. In both cases,
the static algorithm completed the same amount of work,
but did so by exceeding the constraints.

This experiment suggests that SPSS is too sensitive
to provisioning delays in its current form to be of practi-
cal use in real systems. It is possible that modifying the
SPSS algorithm to account for provisioning delays would
improve its performance on this experiment. In fact, since
provisioning operations are infrequent (because all the al-
gorithms tend to provision resources for a long time), it
is likely that the performance of SPSS could be improved
significantly by simply adding an estimate of the provision-
ing delay to its scheduling function. Such an estimate may
not have to be particularly accurate to get good results,
and developing an estimate from historical data should be
relatively simple. Testing this idea is left for future work.

6.6. Task Failures

Running workflows consisting of large numbers of tasks
on distributed systems often results in failures. The goal
of the next experiment was to assess the behavior of the

algorithms in the presence of task execution failures by in-
troducing a failure model into the simulator. The model
is characterized by a failure rate f that defines the prob-
ability that a task will fail. The failure time of the task
is determined by randomly sampling a value between the
task start time and finish time. If the task fails, it is re-
ported to the workflow engine, which retries the task until
it succeeds. The dynamic algorithms re-add the task to
the priority queue (queue P in Algorithm 2) so that it can
be resubmitted by the scheduler. The SPSS algorithm im-
mediately resubmits the failed task to the same VM that
was selected in the plan (to minimize the disruption to the
overall plan).

Figure 15 shows the ratios of simulated values to con-
straints when the failures are introduced. The figure sum-
marizes a suite of 525,000 simulations (10 ensembles of
50 workflows x 5 applications x 5 distributions x 10 bud-
gets x 10 deadlines x 7 failure rates x 3 algorithms). As
in the previous experiments, these results show that high
failure rates can degrade the performance of the static al-
gorithm considerably, while the dynamic algorithms are
able to adapt.

Figure 16 shows the relative performance as a percent-
age of the number of high scores achieved by each algo-
rithm as the failure rate increases. The results are similar
to the ones of Figure 14. Comparing Figure 15 to Fig-
ures 11 and 13 one may conclude that failures are worse
than provisioning delays and runtime estimate errors, since
their impact is larger. However, we consider higher fail-
ure rates as rare events that suggest a significant system
malfunction or invalid selection of resources.

6.7. SPSS Planning Time

Because SPSS involves more complicated logic than the
dynamic algorithms and makes its decisions before execu-
tion, it is important to understand what impact planning
time has on the overall execution time.

Figure 17 shows the SPSS planning time for ensembles
of 100 workflows with five different workflow sizes: 50, 200,
400, 600, and 800 tasks. The ensembles were generated
using a constant distribution equal to the workflow size
desired. Two different applications were used: SIPHT and
CyberShake. Each box summarizes the results of 2000
simulations (2 applications x 10 ensembles x 10 budgets x
10 deadlines).

Figure 17 shows that, for small workflows, the SPSS
planning time is reasonable, taking on the order of tens of
seconds to a few minutes. For larger ensembles of large
workflows, however, the SPSS planning time can easily
reach 10 minutes. Considering that the largest workflows
used in this experiment are still relatively small (maximum
of 800 tasks), and that real workflows are often much larger
(workflows with tens of thousands of tasks are common,
and even workflows with millions of tasks are possible),
it is unlikely that SPSS will be practical for ensembles of
very large workflows.
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Figure 17: Planning time of SPSS algorithm for ensembles
of 100 workflows and different workflow sizes.

SPSS considers scheduling each task on the cheapest
available slot, which involves scanning all of the available
slots on all of the VMs. Since the number of available slots,
in the worst case, is proportional to the number of tasks
scheduled (because scheduling a task splits an existing slot
into at most two slots: one before the task, and one after),
the complexity of SPSS is O(n2), where n is the number of
tasks in the ensemble. In comparison, the dynamic algo-
rithms all have a more scalable complexity of O(n). DPDS
only examines the tasks in the workflow once when they
are scheduled, and WA-DPDS does it twice: once in the
admission algorithm, and once when they are scheduled.
This makes the dynamic algorithms a better fit for larger
workflows and ensembles even though in some cases they
may not produce as good results as SPSS.

It may be possible to optimize SPSS to reduce its run-
time by, for example, clustering the workflow to increase
task granularity, which would decrease the ratio of plan-
ning time to ensemble makespan. It may also be possi-
ble to reduce the complexity of SPSS by employing more
sophisticated data structures to store the available slots.
Investigating these topics is left for future work.

7. Conclusions and Future Work

In this paper we addressed the interesting and impor-
tant new problem of scheduling and resource provisioning
for scientific workflow ensembles on IaaS clouds. The goal
of this work is to maximize the number of user-prioritized
workflows that can be completed given budget and dead-
line constraints.

This problem differs from previous work on grid and
utility grid scheduling in that cloud infrastructures pro-
vide more control over provisioning, so that the number of
resources can be adjusted according to the requirements
of the application. Therefore the problem space becomes
larger; it requires not only an efficient mapping of tasks
to available resources, but also the selection of the best
resource provisioning plan.

Formulating the problem as a maximization of the num-
ber of prioritized workflows completed from the ensemble
is also novel and requires workflows to be admitted or re-
jected based on their estimated resource demands. We

believe that this bi-constrained problem is highly relevant
because such constraints are commonly imposed on many
real-world projects. The approach is also directly applica-
ble to grid environments that provide resource reservations
and charge service units for resource use.

We developed three algorithms to solve this problem:
two dynamic algorithms, DPDS and WA-DPDS, and one
static algorithm, SPSS. The algorithms were evaluated
via simulation on ensembles of synthetic workflows, which
were generated based on statistics from real scientific ap-
plications.

The results of our simulation studies indicate that the
two algorithms that take into account the structure of
the workflow and task runtime estimates (WA-DPDS and
SPSS) yield better results than the simple priority-based
scheduling strategy (DPDS), which makes provisioning de-
cisions based purely on resource utilization. This under-
scores the importance of viewing workflow ensembles as a
whole rather than as individual tasks or individual work-
flows.

In cases where there are no provisioning delays, task
runtime estimates are good, and failures are rare, we found
that SPSS performs significantly better than both dynamic
algorithms. However, when conditions are less than per-
fect, the static plans produced by SPSS are disrupted and
it frequently exceeds the budget and deadline constraints.
In comparison, the dynamic algorithms are able to adapt
to a wide variety of conditions, and rarely exceed the con-
straints even with long delays, poor estimates, and high
failure rates. However, this comes at the cost of not be-
ing able to complete as many workflows as SPSS in ideal
conditions.

In addition, we found that SPSS tends to perform bet-
ter on coarse-grained workflows than the dynamic algo-
rithms. For wide, fine-grained workflows, such as Cyber-
Shake and Montage, however, the dynamic algorithms fre-
quently produce performance that is as good or better than
SPSS, because they are better able to pack the smaller
tasks onto idle VMs close to the deadline than SPSS, which
distributes deadlines to tasks in a way that prevents them
from starting late.

For very large workflows and ensembles, we found that
the planning time of the SPSS algorithm is prohibitive.
SPSS often took 10 minutes or more to plan ensembles
of 100 workflows with 800 tasks each. This suggests that
ensembles of workflows with tens of thousands of tasks,
which are commonly encountered in real workflow appli-
cations, would take many hours to plan using SPSS. This
makes the dynamic algorithms much more attractive for
large scale problems.

This study suggests several areas for future work. Our
current approach models data access as part of the task
execution time and does not explicitly consider data stor-
age and transfer costs. In the future we plan to extend the
application and infrastructure model to include the vari-
ous data storage options available on clouds. A previous
experimental study [51] suggests that the data demands
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of scientific workflows have a large impact on not only
the execution time, but also on the cost of workflows in
commercial clouds. In dynamic algorithms, it will be in-
teresting to extend our utilization-based autoscaling with
more advanced workflow-aware strategies based on feed-
back control. We also plan to investigate heterogeneous
environments that include multiple VM types and cloud
providers, including private and community clouds, which
will make the problem even more complex and challenging.

The results of this study can be applied to develop tools
that assist researchers in planning their large-scale compu-
tational experiments. The estimates of cost, runtime, and
number of workflows completed that can be obtained from
both the static algorithms and from the simulation runs,
constitute valuable hints for planning ensembles and eval-
uating the associated trade-offs.
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Figure 10: Percentage of high scores achieved by each algorithm for CyberShake (top) and Montage (bottom) ensembles
when task runtime is scaled by a constant factor. A scaling factor of x means that the runtime of tasks in each workflow
was multiplied by x.
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Figure 11: Boxplots for budget and deadline ratios when runtime estimate error varies from ±0% to ±50% for all three
algorithms. Values greater than 1 indicate that the budget/deadline constraint was exceeded.
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Figure 12: Percentage of high scores achieved by each algorithm on CyberShake and LIGO when runtime estimate error
varies from 0% to 50%
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Figure 13: Boxplots for budget and deadline ratios when provisioning delay varies from 0 seconds to 15 minutes for all
three algorithms. Values greater than 1 indicate that the budget/deadline constraint was exceeded.
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Figure 14: Percentage of high scores achieved by each algorithm on CyberShake and LIGO ensembles when provisioning
delay varies from 0 seconds to 15 minutes.
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Figure 15: Boxplots for budget and deadline ratios when failure rate varies from 0% to 50% for all three algorithms.
Values greater than 1 indicate that the budget/deadline constraint was exceeded.
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Figure 16: Percentage of high scores achieved by each algorithm on CyberShake and LIGO ensembles when failure rate
varies 0 to 50%.
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